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ERGODICITY AND MIXING OF W*-DYNAMICAL SYSTEMS
IN TERMS OF JOININGS

ROCCO DUVENHAGE

Abstract. We study characterizations of ergodicity, weak mix-
ing and strong mixing of W*-dynamical systems in terms of join-
ings and subsystems of such systems. Ergodic joinings and Orn-
stein’s criterion for strong mixing are also discussed in this con-
text.

1. Introduction

In [6], we studied joinings of W*-dynamical systems, and in particular gave
a characterization of ergodicity in terms of joinings, similar to the measure
theoretic case. In this paper, we continue to extend certain results regarding
joinings of measure theoretic dynamical systems to the noncommutative set-
ting of W*-dynamical systems. First, we generalize the necessary condition for
ergodicity to arbitrary group actions, and also prove a similar set of sufficient
and necessary conditions for weak mixing in terms of ergodic compact systems
and discrete spectra (see Section 2). Section 3 is devoted to an interesting (and
known) class of examples of W*-dynamical systems obtained from group von
Neumann algebras of discrete groups and their automorphisms, however we
express our results in the language of locally compact quantum groups. Next,
we study ergodic joinings in Section 4. In Sections 2 and 4, we also consider
simple applications for the case where the group action is that of a countable
discrete amenable group, namely a weak ergodic theorem and a Halmos–von
Neumann type theorem, respectively. In the latter, we make the rather strong
assumption of asymptotic Abelianness “in density.” The focus in this paper
is on building some general aspects of the theory of joinings of W*-dynamical
systems, and these applications are more for illustration of how joinings can
potentially be used rather than being important results in themselves. In Sec-
tion 5, we present a joining characterization of strong mixing (for the special
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case where the acting group is Z), and use it to obtain a version of Ornstein’s
criterion for strong mixing in the case of W*-dynamical systems. Sections 2
and 3 differ from Sections 4 and 5 in the sense that in the former subsystems
of W*-dynamical systems play a central role while in the latter they do not.
At the same time Sections 4 and 5 just take initial steps in the respective
topics, while the topics in Sections 2 and 3 are more fully developed. Along
the way we give indications of further work that might be done.

We use the same basic definitions as in [6], and will again refer to a W*-
dynamical system simply as a “dynamical system,” or even just a “system.”
For convenience, we summarize the essential definitions used in [6]: A dynam-
ical system A = (A,μ,α) consists of a faithful normal state μ on a σ-finite
von Neumann algebra A, and a representation α : G → Aut(A) : g �→ αg of an
arbitrary group G as ∗-automorphisms of A, such that μ ◦ αg = μ for all g.
We will call A an identity system if αg = ιA for all g where ιA : A → A is
the identity mapping, while we call it trivial if A = C1A where 1A (often de-
noted simply as 1) is the unit of A. In the rest of the paper, the symbols
A, B and F will denote dynamical systems (A,μ,α), (B,ν,β) and (F,κ,ϕ)
respectively, all making use of actions of the same group G. A joining of A
and B is a state ω (i.e., a positive linear functional with ω(1) = 1) on the
algebraic tensor product A � B such that ω(a ⊗ 1B) = μ(a), ω(1A ⊗ b) = ν(b)
and ω ◦ (αg � βg) = ω for all a ∈ A, b ∈ B and g ∈ G. The set of all join-
ings of A and B is denoted by J(A,B). We call A disjoint from B when
J(A,B) = {μ � ν}. A dynamical system A is called ergodic if its fixed point al-
gebra Aα := {a ∈ A : αg(a) = a for all g ∈ G} is trivial, that is, Aα = C1A. We
call F a subsystem of A if there exists an injective unital ∗-homomorphism h of
F onto a von Neumann subalgebra of A such that μ ◦ h = κ and αg ◦ h = h ◦ ϕg

for all g ∈ G. (In [6], the terminology “factor” instead of “subsystem” was
used.) If furthermore h : F → A is surjective, then we say that h is an iso-
morphism of dynamical systems, and the systems A and F are isomorphic.

Unlike [6], in this paper, we will have occasion to use completions of the
algebraic tensor product. Even though A and B are von Neumann algebras,
we will encounter the maximal C*-algebraic tensor product A ⊗m B in Sec-
tions 2, 4 and 5. In Section 3, we do use the von Neumann algebraic tensor
product, however in this case it is to handle locally compact quantum groups
and not directly related to joinings.

The work in this paper is of course strongly influenced by previous work on
joinings in measure theoretic ergodic theory which originates in Furstenberg’s
work [9]. In this regard, we mention that [5] and [10], as well as unpublished
lecture notes by A. del Junco, served as very useful sources.

For example, the joining obtained in [6, Construction 3.4], and which we
will again use here, can be viewed (ignoring dynamics) as a generalization of
a diagonal measure 	(Y × Z) := ρ(Y ∩ Z) defined in terms of some measure
ρ on a measurable space X and where Y,Z ⊂ X . A noncommutative version
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of a diagonal measure using essentially the same idea as our construction of
a joining appeared in [8, Section 4].

Also keep in mind that the use of joinings in noncommutative dynamical
systems is not without precedent, as a special case of this idea (under the
name “stationary couplings”) is used in work on entropy [22].

2. Ergodicity and weak mixing

We start by improving on the characterization of ergodicity given in [6].
In particular, we prove a stronger version of [6, Theorem 3.7] using a simpler
proof. We do this by using an approach given in unpublished lecture notes by
A. del Junco for the measure theoretic case.

Theorem 2.1. A dynamical system A is ergodic if and only if it is disjoint
from all identity systems.

Proof. Suppose A is ergodic, and let B be any identity system. Con-
sider any ω ∈ J(A,B). From this joining, we obtain (see [6, Construction 2.3
and Proposition 2.4]) a conditional expectation operator Pω : Hμ → Hν (i.e.

〈Pωx, y〉 = 〈x, y〉) such that UgP
∗
ω = P ∗

ωVg , where γμ : A → Hμ and γν : B →
Hν are the GNS constructions for (A,μ) and (B,ν) respectively, U and V the
corresponding unitary representations of α and β on the Hilbert spaces Hμ

and Hν respectively, and we denote by Ωω their common unit cyclic vector
(in the GNS Hilbert space obtained from ω, which contains Hμ and Hν).
Therefore for any b ∈ B, we have UgP

∗
ωγν(b) = P ∗

ωγν(b), since B is an iden-
tity system. But A is ergodic, hence by [3, Theorem 4.3.20] the fixed point
space of U is CΩω , so P ∗

ωγν(b) = 〈Ωω, P ∗
ωγν(b)〉Ωω = ν(b)Ωω . For any a ∈ A,

it follows that

ω(a ⊗ b) = 〈γμ(a∗), γν(b)〉 = 〈γμ(a∗), P ∗
ωγν(b)〉 = μ(a)ν(b)

hence ω = μ � ν, which means that A is disjoint from B. The converse was
proven in [6, Theorem 3.3] using a subsystem of A. �

Before we move on to weak mixing, we give a simple application of The-
orem 2.1, namely we prove a weak ergodic theorem. The result itself is not
that interesting, but we do this to illustrate how joinings can in principle be
used to prove results that don’t refer to joinings in their formulation (see in
particular Corollary 2.4). Again, we follow the basic plan for the measure
theoretic case given in the unpublished lecture notes by del Junco.

Definition 2.2. For a dynamical system A, consider the cyclic represen-
tation (H,π,Ω) of (A,μ) obtained by the GNS construction. Set Ã := π(A)′,
define the state μ̃ on Ã by μ̃(b) := 〈Ω, bΩ〉, and let the unital ∗-homomorphism
δ : A � Ã → B(H) be defined by δ(a ⊗ b) := π(a)b. The state μ� on the uni-
tal ∗-algebra A � Ã defined by μ�(t) := 〈Ω, δ(t)Ω〉 will be called the diagonal
state for (A,μ).
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The state μ� is in fact a joining of A and its “mirror image” Ã con-
structed on (Ã, μ̃) defined above by carrying α to Ã using the natural ∗-anti-
isomorphism a �→ Ja∗J where J is the modular conjugation associated with
(π(A),Ω) (see [6, Construction 3.4]). But it is not this aspect of μ� that will
be used in the next proposition (see Section 5 for further elaboration on the
joining aspect).

Proposition 2.3. Let A be ergodic, with G countable, discrete and amena-
ble, and consider any right Følner sequence (Λn) in G. We can extend the
diagonal state for (A,μ) to a state μ� on the maximal C*-algebraic tensor
product A ⊗m Ã, and then

w ∗ -limn→∞
1

|Λn|
∑

g∈Λn

μ� ◦ (αg ⊗m ιÃ) = μ ⊗m μ̃,

where w ∗ -lim denotes the weak* limit and ιÃ is the identity mapping on Ã.

Proof. We will make use of the identity system B := (Ã, μ̃, ιÃ). The maxi-
mal tensor product has the property that δ in Definition 2.2 can be extended
to a ∗-homomorphism A ⊗m Ã → B(H), and hence we can easily extend the
diagonal state to a state μ� on A ⊗m Ã. (The general case of such extensions
is discussed in Section 4.) Then

ωn :=
1

|Λn|
∑

g∈Λn

μ� ◦ (αg ⊗m ιÃ)

is also a state on A ⊗m Ã. The set S of states of the unital C*-algebra A ⊗m Ã
is weakly* compact (see for example [3, Theorem 2.3.15]), hence the sequence
(ωn) has a cluster point ρ in S in the weak* topology.

We now show that ρ|A�Ã is a joining of A and B. For each ε > 0, a ∈ A,
b ∈ Ã and N ∈ N, there is an n > N such that |ρ(a ⊗ b) − ωn(a ⊗ b)| < ε.
Furthermore, ωn(a ⊗ 1Ã) = μ(a) and ωn(1A ⊗ b) = μ̃(b). Therefore, |ρ(a ⊗
1Ã) − μ(a)| < ε and |ρ(1A ⊗ b) − μ̃(b)| < ε for all ε > 0, and so ρ(a ⊗ 1Ã) = μ(a)
and ρ(1A ⊗ b) = μ̃(b). Next, note that for all h ∈ G

|ωn ◦ (αh ⊗m ιÃ)(a ⊗ b) − ωn(a ⊗ b)|

=
1

|Λn|

∣∣∣∣ ∑
g∈(Λnh)\Λn

μ� ◦ (αg ⊗m ιÃ)(a ⊗ b)

−
∑

g∈Λn \(Λnh)

μ� ◦ (αg ⊗m ιÃ)(a ⊗ b)
∣∣∣∣

≤ |Λn 	 (Λnh)|
|Λn| ‖a ⊗ b‖

→ 0
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as n → ∞. Since ρ is a cluster point of (ωn), we conclude that ρ ◦ (αg ⊗m ιÃ) =
ρ, and therefore ρ|A�Ã ∈ J(A,B).

By Theorem 2.1 and continuity, it follows that ρ = μ ⊗m μ̃. In particular,
this means that μ ⊗m μ̃ is the unique weak* cluster point of (ωn), which
implies that (ωn) converges to μ ⊗m μ̃, as required. �

To clarify the meaning of Proposition 2.3, we include the following weak
mean ergodic theorem in terms of a Hilbert space (the conventional proof of
the mean ergodic theorem is both more elementary, and delivers a stronger
result than the current approach, but again, our motivation here is to illustrate
that results regarding joinings can have nontrivial consequences). The proof
of this result is essentially a partial converse to the proof of [6, Theorem 3.7].

Corollary 2.4. Consider the situation in Definition 2.2 and Proposi-
tion 2.3, and let U be the unitary representation of α on H , in other words
π(αg(a)) = Ugπ(a)U ∗

g and UgΩ = Ω. Then

lim
n→∞

1
|Λn|

∑
g∈Λn

〈Ugx, y〉 = 〈(Ω ⊗ Ω)x, y〉

for all x, y ∈ H , where Ω ⊗ Ω is the projection of H onto CΩ, i.e. (Ω ⊗ Ω)x =
Ω〈Ω, x〉.

Proof. For x := π(a)Ω and y := bΩ where a ∈ A and b ∈ Ã, it follows from
Proposition 2.3 that

〈(Ω ⊗ Ω)x, y〉 = μ ⊗m μ̃(a∗ ⊗ b)

= lim
n→∞

1
|Λn|

∑
g∈Λn

μ�
(
αg(a∗) ⊗ b

)

= lim
n→∞

1
|Λn|

∑
g∈Λn

〈Ugx, y〉

but π(A)Ω and ÃΩ are both dense in H , since μ is faithful and normal. �

We now proceed to weak mixing, our goal being an analogue of Theo-
rem 2.1.

Definition 2.5. Consider a dynamical system A and let (H,π,Ω) be the
cyclic representation of (A,μ) obtained from the GNS construction, and let
U be the corresponding unitary representation of α on H , that is, Ugπ(a)Ω =
π(αg(a))Ω. An eigenvector of U is an x ∈ H\ {0} such that there is a function,
called its eigenvalue, χx : G → C such that Ugx = χx(g)x for all g ∈ G. The
eigenvalue g �→ 1 will be denoted as 1. Denote by H0 the Hilbert subspace
spanned by the eigenvectors of U . The set of all eigenvalues is denoted by σA

and is called the point spectrum of A. We call A weakly mixing if dimH0 = 1.
We say A has discrete spectrum if H0 = H . We call A compact if the orbit
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UGx is totally bounded in H for every x ∈ H , or, equivalently, if αG(a) is
totally bounded in (A, ‖ · ‖μ) for every a ∈ A, where ‖a‖μ :=

√
μ(a∗a).

We have the following equivalence when G is Abelian.

Proposition 2.6. Let G be Abelian. Then A has discrete spectrum if and
only if it is compact.

Proof. By [12, Section 2.4] (or see [2, Lemma 6.6] for the special case that
we are using here), H0 is the set of all x ∈ H whose orbits UGx are totally
bounded in H . �

It is not clear if Proposition 2.6 can be extended to non-Abelian G. There-
fore, we are going to give the sufficient and necessary conditions for weak
mixing separately in terms of compactness and discrete spectra, respectively.

Theorem 2.7. Let A be ergodic. If A is disjoint from all ergodic compact
systems, then it is weakly mixing.

Proof. The plan is essentially the same as for the proof of the corresponding
direction in Theorem 2.1 (see [6, Theorem 3.3]). Suppose A is not weakly
mixing, then by [2, Propositions 6.5 and 6.7(1)] it has a nontrivial compact
subsystem, say F. Since A is ergodic, so is F. So by [6, Construction 3.4 and
Lemma 3.5] we are finished. �

Theorem 2.8. If A and B are ergodic, and B has discrete spectrum with
σA ∩ σB = {1}, then A is disjoint from B. In particular, if A is weakly mixing,
then it is disjoint from all ergodic systems with discrete spectrum.

Proof. As in the proof of Theorem 2.1, we employ a conditional expectation
operator. So consider any ω ∈ J(A,B), and then use the same notation as in
Theorem 2.1’s proof. Let y ∈ Hν be any eigenvector of V with eigenvalue χ,
then y = γν(e) for some e ∈ B by [23, Theorem 2.5], while UgP

∗
ωy = χ(g)P ∗

ωy.
So either P ∗

ωy = 0 or χ ∈ σA ∩ σB. In the latter case P ∗
ωy ∈ CΩω , since A is

ergodic, hence in either case we have P ∗
ωy ∈ CΩω . Therefore,

〈γμ(a∗), γν(e)〉 = 〈γμ(a∗), P ∗
ωγν(e)〉 = 〈γμ(a∗),Ωω 〉 〈Ωω, P ∗

ωγν(e)〉
= μ(a)〈Ωω, γν(e)〉

for all a ∈ A. For an arbitrary b ∈ B one has a sequence (bn) of linear combina-
tions of such eigenoperators e, such that γν(bn) → γν(b), since B has discrete
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spectrum. Hence,

ω(a ⊗ b) = 〈γμ(a∗), γν(b)〉 = lim
n→∞

〈γμ(a∗), γν(bn)〉

= lim
n→∞

μ(a)〈Ω, γν(bn)〉

= μ(a)ν(b)

which means that J(A,B) = {μ � ν}. �

3. The quantum group duals of discrete groups

Halmos [11] studied dynamical systems consisting of an automorphism of
a compact Abelian group, with the automorphism providing an action of Z

on the group by iteration. In particular, he characterized ergodicity (which
turns out to be equivalent to strong mixing in this case) in terms of the orbits
of the induced action in the dual group (or character group). Here, we study
a generalization of this type of system, where the compact group is replaced
by a compact quantum group obtained as the dual of a discrete group Γ which
need not be Abelian. For simplicity, we also only consider actions of G = Z

in this section.
We use the von Neumann algebra setting for locally compact quantum

groups (which include both our discrete group and its compact quantum group
dual as special cases), as developed by Kustermans and Vaes [14] (also see
[27] and [13]). Below we briefly review the definitions of this theory to fix the
conventions and notations that we will use. Other useful sources regarding
this material is [26], and [24, Section 18] which focusses on Hopf–von Neumann
algebras and Kac algebras.

We should mention that since we are ultimately only interested in discrete
groups and their dual quantum groups, we could in principle work in the
setting of Kac algebras or even in terms of group von Neumann algebras.
However, the framework set up in [14] is simple and powerful, and very con-
venient to work in, while the language of quantum groups also makes the
generalization from Abelian to general discrete groups clearer, and opens the
window to possible further generalization when replacing the discrete group
by a discrete quantum group (which we will not do in this paper).

A locally compact quantum group is defined to be a von Neumann al-
gebra M with a unital normal ∗-homomorphism Δ : M → M ⊗ M (where
M ⊗ N denotes the von Neumann algebraic tensor product of two von Neu-
mann algebras), such that (Δ ⊗ ιM ) ◦ Δ = (ιM ⊗ Δ) ◦ Δ (where ιM denotes
the identity map on M), and on which there exist normal semi-finite faith-
ful (n.s.f.) weights ϕ and ψ which are left and right invariant respectively,
namely ϕ((θ ⊗ ιM ) ◦ Δ(a)) = ϕ(a)θ(1) for all a ∈ M+

ϕ and ψ((ιM ⊗ θ) ◦ Δ(a)) =
ψ(a)θ(1) for all a ∈ M+

ψ , for all θ ∈ M+
∗ , where M+

∗ is the positive normal
linear functionals on M , and M+

ϕ = {a ∈ M+ : ϕ(a) < ∞}. This quantum
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group is denoted as (M,Δ). We will call (M,Δ) a compact quantum group
if we can take ϕ = ψ as a state, which we will call the Haar state. Note that
the Haar state is faithful and normal.

The dual (M̂, Δ̂) of (M,Δ) is again a locally compact quantum group
and is defined as follows (also see [27, Definition 3.1]), where we assume M
is in standard form with respect to the Hilbert space H : Denote by W ∈
M ⊗ B(H) the so-called multiplicative unitary of (M,Δ) with respect to the
GNS construction on H obtained from some ϕ as above; see [14, Theorem 1.2].
Let λ̂ : M∗ → B(H) : θ �→ (θ ⊗ ι)(W ) with ι the identity on B(H). Then M̂

is defined to be the σ-weak closure of {λ̂(θ) : θ ∈ M∗ } and Δ̂ is defined by
Δ̂(a) := ΣW (a ⊗ 1)W ∗Σ where Σ : H ⊗ H → H ⊗ H is the “flip map” and
1 ∈ M is the identity operator on H . The symbol ι will always denote the
identity map on some von Neumann algebra which will be clear from context.

Next, we give the basic definitions and results which we use to build our
dynamical systems.

Definition 3.1. An automorphism of (M,Δ) is a ∗-automorphism α : M →
M such that Δ ◦ α = (α ⊗ α) ◦ Δ.

Proposition 3.2. Let α be an automorphism of a compact quantum group
(A,Δ) with Haar state μ. Then μ ◦ α = μ.

Proof. From the strong form of left invariance [14, Proposition 3.1], we have
μ ◦ α(a)1 = α−1[μ(α(a))1] = α−1[(ι ⊗ μ) ◦ Δ ◦ α(a)] = α−1 ◦ (ι ⊗ μ) ◦ (α ⊗ α) ◦
Δ(a) = [ι ⊗ (μ ◦ α)] ◦ Δ(a) but this says that μ ◦ α is also left invariant, hence
by uniqueness of left invariant states (which also explains the terminology the
Haar state) we have μ ◦ α = μ. �

Hence, A =(A,μ,α) is a dynamical system with G = Z by simply setting
αn := αn for n ∈ Z. Let us now look at the specific case that will interest us
throughout the rest of this section, and also fix the notation that we will use:

Let Γ be any group and assign to it the discrete topology and counting
measure. We set

(3.1) (A,Δ) := (L̂∞(Γ), Δ̂Γ),

where [ΔΓ(f)](g,h) := f(gh) for all f ∈ L∞(Γ) and g,h ∈ Γ, and where of
course we view the elements of L∞(Γ) as linear operators on H := L2(Γ)
by multiplication. In this situation, we in fact have that A is generated by

{λ(g) : g ∈ Γ} where we write λ(g) ≡ λ(θg) with λ : L∞(Γ)∗ → B(H) defined
in the same way as λ̂ above, and θg(f) := f(g), which translates into λ : Γ →
B(H) being a unitary representation of Γ with [λ(g)f ](h) = f(g−1h) for all
f ∈ H and g,h ∈ Γ, and having the property Δ(λ(g)) = λ(g) ⊗ λ(g). In this
case we also have that the Haar state μ is tracial, that is, μ(ab) = μ(ba)
for all a, b ∈ M , however this doesn’t play a direct role in our further work.
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Furthermore, let

T : Γ → Γ

be any automorphism of the group Γ. From T , we now obtain an automor-
phism of (A,Δ) as follows: Define a unitary operator U : H → H by Uf :=
f ◦ T . Since [U ∗λ(g)Uf ](h) = [λ(g)(f ◦ T )](T −1(h)) = (f ◦ T )(g−1T −1(h)) =
f(T (g)−1h) = [λ(T (g))f ](h), we have

U ∗λ(g)U = λ(T (g))

which in particular means that the set of generators of A is invariant under
U ∗(·)U and hence A itself as well. So we have a well-defined mapping

α : A → A : a �→ U ∗aU

which we call the dual of T . It remains to show that α is an automorphism
of (A,Δ). Note that Δ ◦ α(λ(g)) = Δ(λ(T (g))) = λ(T (g)) ⊗ λ(T (g)) = (α ⊗
α)(λ(g) ⊗ λ(g)) = (α ⊗ α) ◦ Δ(λ(g)), and by linearity and σ-weak continuity
this extends to all of A, that is to say Δ ◦ α = (α ⊗ α) ◦ Δ as required.

We will refer to the dynamical system A =(A,μ,α) as the dual system of
(Γ, T ), and this notation will be fixed throughout the rest of this section.
Our eventual goal in this section is a refinement of Theorems 2.1 (one direc-
tion) and 2.7 for dual systems, however we first develop some general theory
regarding dual systems.

As we show next, every automorphism of (A,Δ) is the dual of some auto-
morphism of Γ, hence assuming the automorphism T of Γ to be given places
no restriction on the dynamics obtained as automorphisms of (A,Δ).

We will use the following additional notation: By δg with g ∈ Γ, we de-
note the element of H defined by δg(g) = 1 and δg(h) = 0 for g �= h ∈ Γ. In
particular we set Ω := δ1 where 1 here denotes the identity of Γ. Then Ω
is cyclic and separating for A, and μ(a) = 〈Ω, aΩ〉 so (H, ιA,Ω) is the cyclic
representation of (A,μ) obtained in the GNS construction. Also note that
λ(g)Ω = δg . We will use the notation χg := δg when we want to view this
function as an element of L∞(Γ) rather than H = L2(Γ); this makes some the
arguments slightly easier to read. Using the notation γ : A → H : a �→ aΩ, the
multiplicative unitary W of (A,Δ) has the following defining property (see
[14, Theorem 1.2]): W ∗[γ(a) ⊗ γ(b)] = (γ ⊗ γ)[Δ(b)(a ⊗ 1)].

Theorem 3.3. Every automorphism α of (A,Δ) in (3.1) is the dual of
some automorphism T of the discrete group Γ.

Proof. Using the notation above, we define a unitary operator U : H → H
by U ∗aΩ := α(a)Ω. We first show that

(3.2) (U ⊗ U)W = W (U ⊗ U)
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to enable us to define an automorphism of (Â, Δ̂). Using the defining property
of W , we have

(U ∗ ⊗ U ∗)W ∗(δg ⊗ δh) = (U ∗ ⊗ U ∗)(γ ⊗ γ)
[
Δ(λ(h))

(
λ(g) ⊗ 1

)]
= (U ∗ ⊗ U ∗)(γ ⊗ γ)[λ(hg) ⊗ λ(h)]
= [γ ◦ α ◦ λ(hg)] ⊗ [γ ◦ α ◦ λ(h)]
= (γ ⊗ γ)

(
[(α ⊗ α) ◦ Δ(λ(h))]

[(
α ◦ λ(g)

)
⊗ 1

])
= (γ ⊗ γ)

(
[Δ(α(λ(h)))][α(λ(g)) ⊗ 1]

)
= W ∗(U ∗ ⊗ U ∗)(δg ⊗ δh)

which proves (3.2). For any θ ∈ A∗ it follows from the definition of λ̂ and from
(3.2) that

Uλ̂(θ)U ∗ = (θ ⊗ ι)[(1 ⊗ U)W (1 ⊗ U ∗)]
= (θ ⊗ ι)[(U ∗ ⊗ 1)W (U ⊗ 1)]
= [(θ ◦ α) ⊗ ι](W )

= λ̂(θ ◦ α)

and therefore UÂU ∗ = Â so

α̂ : Â → Â : a �→ UaU ∗

is a well-defined ∗-automorphism of Â. Next observe from the definition of Δ̂
and again using (3.2) that

(α̂ ⊗ α̂) ◦ Δ̂(a) = (U ⊗ U)ΣW (a ⊗ 1)W ∗Σ(U ∗ ⊗ U ∗)
= ΣW (α̂(a) ⊗ 1)W ∗Σ

= Δ̂ ◦ α̂(a)

in other words α̂ is an automorphism of (Â, Δ̂). However, by Pontryagin du-
ality (see, for example, [14, p. 75]) (Â, Δ̂) = (L∞(Γ),ΔΓ). With somewhat
tedious but fairly elementary arguments, one can then show that α̂(f) = f ◦ T
for all f ∈ L∞(Γ) for some automorphism T of the group Γ. Lastly we
show that α is the dual of T in the sense defined earlier. Define UT : H →
H : f �→ f ◦ T , then U ∗

T fUT δg = f(T −1(g))δg = U ∗fUδg for all f ∈ L∞(Γ),
so UT U ∗f = fUT U ∗, in particular for f = χh. Hence, for all g �= h in Γ
we have χhUT U ∗δg = 0 and so U ∗δg = k(g)U ∗

T δg = k(g)δT (g) for some com-
plex number k(g) of modulus 1. But then α(λ(g))Ω = U ∗δg = k(g)λ(T (g))Ω
and therefore k(g)λ(T (g)) ⊗ λ(T (g)) = Δ(k(g)λ(T (g)) = (α ⊗ α) ◦ Δ(λ(g)) =
[k(g)]2λ(T (g)) ⊗ λ(T (g)) since Ω is separating for A, so k(g) = 1 which means
that UT = U as required. �

Having set up the framework, we can now start doing ergodic theory. We
first discuss the theorem of Halmos in the current setting. Recall that A is
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strongly mixing if
lim

n→∞
μ(αn(a)b) = μ(a)μ(b)

for all a, b ∈ A. We will say that g ∈ Γ has a finite orbit under T if the orbit
T N(g) := {Tn(g) : n ∈ N} is a finite set, where N ={1,2,3, . . .}.

The following result is fairly standard, but often expressed in terms of
group C*-algebras, or in the language of group von Neumann algebras (see
[1, Proposition 2.12] for an example of this type of result). For completeness,
and since we use this result later, we include a proof based on that of the
Abelian case in for example, [19, Section 2.5].

Theorem 3.4. If the dual system A is ergodic, then the only element of
Γ with a finite orbit under T is its identity 1. Conversely, if 1 is the only
element of Γ with finite orbit under T , then A is strongly mixing. It follows
that A is strongly mixing if and only if it is ergodic.

Proof. Suppose g ∈ Γ\ {1} has a finite orbit under T . Then there is a small-
est n ∈ N such that Tng = g. Hence, this is the smallest n in N for which
(U ∗)nδg = δg . Set

x := δg + U ∗δg + (U ∗)2δg + · · · + (U ∗)n−1δg

then U ∗x = x. It is also easily seen that U ∗Ω = Ω, but as we now show,
x /∈ CΩ. Since x = δg + δT (g) + · · · + δT n−1(g), while g �= 1 and hence T j(g) �= 1,
we have x(1) = 0 �= 1 = Ω(1). At the same time x(g) = 1 so x �= 0, so x /∈ CΩ.
This means the fixed point space of U ∗ has dimension larger than 1, and
therefore A is not ergodic.

Conversely, suppose 1 is the only element of Γ with finite orbit under T .
Consider g,h ∈ G. If g = h = 1, then it is easily seen that limn→∞ 〈(U ∗)nδg,
δh〉 = 1 = 〈δg,Ω〉〈Ω, δh〉. Otherwise, if at least one of g or h is not 1, then from
our supposition, Tn(h) �= h for n large enough, and therefore it is again easily
seen that limn→∞ 〈(U ∗)nδg, δh〉 = 0 = 〈δg,Ω〉〈Ω, δh〉. From this, we deduce
that

lim
n→∞

〈(U ∗)nx, y〉 = 〈x,Ω〉〈Ω, y〉
for all x, y ∈ H , but this means that A is strongly mixing. �

Weak mixing is an intermediate condition between ergodicity and strong
mixing and is therefore also equivalent to these two conditions. Another
simple corollary of Theorem 3.4 (which can also be seen directly) is that if
1 < |Γ| < ∞, then A cannot be ergodic.

We now move on to subsystems and compactness. In our current situation,
if A is not weakly mixing then it is not ergodic, and so one can obtain a non-
trivial compact subsystem by considering the fixed point algebra of α. But
a result purely in terms of dual systems would be preferable, and from the
point of view of weak mixing we want a result in terms of a compact subsystem
that need not be an identity system. Hence, we consider the following:
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Let E := {g ∈ Γ : T N(g) is finite} and let F denote the von Neumann alge-
bra generated by {λ(g) : g ∈ E}. Then

Theorem 3.5. The system F = (F,κ,ϕ) := (F,μ|F , α|F ) is isomorphic to
the dual system of (E,T |E) and it is a compact subsystem of A. Furthermore,
if F is trivial then A is ergodic.

Proof. One easily sees that T |E is an automorphism of the subgroup E
of Γ, hence α(F ) = F . So F is indeed a subsystem of A. It is also readily
seen that if K is the closure of FΩ in H , then π : F → B(K) : a �→ a|K is
well-defined and (K,π,Ω) is the cyclic representation of (F,κ) obtained in the
GNS construction. Also note that K is the closure of D := span{δg : g ∈ E}.

Note that π is injective since Ω is separating for F , and then one can verify
that π(F ) is generated by λE : E → B(K) where [λE(g)f ](h) := f(g−1h) for
f ∈ K = L2(E) in terms of the counting measure on E. So π(F ) = L̂∞(E).
It is readily verified that π is an isomorphism (as defined in Section 1) of the
dynamical system F and the dual system of (E,T |E).

Consider any v =
∑r

j=1 cjδgj in D and let ng = |T N(g)| denote the length
of g’s orbit, that is, it is the smallest element of N such that Tng (g) = g. Then
(U ∗)ng1 ···ngr v = v, in other words v also has a finite orbit. For arbitrary x ∈ K
and ε > 0, there will be a v ∈ D with ‖x − v‖ < ε and therefore ‖(U ∗)nx −
(U ∗)nv‖ < ε for all n ∈ N, but since (U ∗)Nv is finite, (U ∗)Nx is totally bounded.
We conclude that F is compact.

When A is not ergodic, E �= {1} by Theorem 3.4, and therefore K �= CΩ
so F �= C1 by the definition of K. In other words, F is nontrivial. �

We will refer to F defined above as the finite orbit subsystem of A.
Before we proceed with subsystems and joinings, we give the following

analogue of Theorem 3.4 as an application of (part of) Theorem 3.5.

Theorem 3.6. The dual system A is compact if and only if all the orbits
in (Γ, T ) are finite.

Proof. Suppose A is compact. Then in particular for any g ∈ Γ the orbit
δT N(g) := {δT n(g) : n ∈ N} = (U ∗)Nδg is totally bounded in H . Hence, there is
a finite set N ⊂ H such that for every δT n(g) there is an x ∈ N with ‖δT n(g) −
x‖ < 1/

√
2. However, for any pair h �= j in Γ we have ‖δh − δj ‖ =

√
2, so for

any x ∈ N the ball {y ∈ H : ‖y − x‖ < 1/
√

2} contains at most one point in
the orbit δT N(g). Since N is finite it follows that T N(g) is finite.

Conversely, assume that all the orbits T N(g) in Γ are finite, that is, E = Γ,
so F = A and therefore A is compact by Theorem 3.5. �

Using Theorems 3.4 and 3.6, one can now in a standard way easily construct
concrete examples of dynamical systems which are either ergodic or compact
or neither. For example if Γ is a free group generated by an alphabet S and



ERGODICITY AND MIXING 555

T : S → S is a bijection which we extend to a automorphism T : Γ → Γ, then
we get a dual system which is ergodic or compact or neither depending on
whether the orbits of T on S are all infinite or all finite or neither. Another
example is to consider the group Γ of finite permutations of a possibly infinite
set S with automorphisms given by g �→ h−1gh where h is an element of the
group of all bijections of S, in which case one can again obtain ergodicity or
compactness or neither by choosing h appropriately.

Next, we mention a simple converse for Theorem 3.5.

Proposition 3.7. If A is ergodic, then it has no nontrivial compact sub-
systems.

Proof. Note that A is weakly mixing by Theorem 3.4 and hence does not
have a nontrivial compact subsystem by [2, Theorem 6.8]. �

We now reach our final goal for this section, namely to make a connection
with joinings.

Theorem 3.8. If the dual system A is disjoint from all compact dual sys-
tems, then it is ergodic.

Proof. Define a group Γ̃ that consists of the same elements as Γ but with
the product g · h := hg. Then T is an automorphism of Γ̃. Let B be the dual
system of (Γ̃, T ). It is easily verified that B ⊂ A′. Let F be the finite orbit
subsystem of B, so in particular F is compact and isomorphic to a dual system
by Theorem 3.5. Then we see that ω : A � F → C : t �→ 〈Ω, δ(t)Ω〉 is a joining
of A and F where δ : A � F → B(H) is defined through δ(a ⊗ b) = ab. (This
is again the “diagonal measure” idea.) Note that as in [6, Lemma 3.5], ω is
trivial (i.e., equal to μ � ν) if and only if F is trivial. But since (Γ̃, T ) has
the same orbits as (Γ, T ), we know from Theorem 3.4 that B is ergodic if and
only if A is. Hence, if we assume that A is not ergodic, then F is nontrivial
by Theorem 3.5. �

Proposition 3.7 suggests that the converse of Theorem 3.8 might be true,
however I don’t have a proof or a counter example.

4. Ergodic joinings

In this section, we briefly motivate and study ergodic joinings. We begin
by noting that for our systems A and B from Section 1, every state on the
(unital) ∗-algebra A � B can in fact be extended to a state on the maximal
C*-algebraic tensor product A ⊗m B. This is a consequence of the following
proposition pointed out to me by the referee, which is certainly known, but
for which I have no reference.

Proposition 4.1. Let A and B be unital C*-algebras, and ω any state on
their algebraic tensor product A � B. Then ω is bounded with respect to the
maximal C*-norm on A � B.
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Proof. In this proof, the notation s ≤ t for s, t ∈ A � B means that t − s
is a finite sum of terms of the form u∗u with u ∈ A � B. The proof has two
steps.

Firstly, we assume the so-called Axiom A1 of F. Combes [4, p. 38], namely
that for every t ∈ A � B there exists a scalar λt ≥ 0 such that

s∗t∗ts ≤ λts
∗s

for all s ∈ A � B. We now show that from this assumption it follows that
ω is bounded with respect to the maximal C*-norm ‖ · ‖m on A � B. Let
(Hω, πω,Ωω) be the cyclic representation of (A � B,ω) obtained from the
GNS construction, so we have a linear γω : A � B → Hω such that γω(A � B)
is dense in Hω , 〈γω(s), γω(t)〉 = ω(s∗t), and

πω(t)γω(s) := γω(ts)

for all s, t ∈ A � B. Then

‖πω(t)γω(s)‖2 = ω((ts)∗ts) ≤ λtω(s∗s) = λt‖γω(s)‖2

for all s, t ∈ A � B, and since γω(A � B) is dense in Hω , it follows that πω(t) can
be extended to a bounded linear operator on Hω . As for the cyclic representa-
tion of a state on a C*-algebra, πω : A � B → B(Hω) is a ∗-homomorphism, for
example 〈πω(t)∗γω(u), γω(s)〉 = 〈γω(u), γω(ts)〉 = ω(u∗ts) = ω(s∗t∗u) =
〈γω(s), πω(t∗)γω(u)〉 from which πω(t∗) = πω(t)∗ follows. This implies that
t �→ ‖πω(t)‖ is a C*-seminorm on A � B, and therefore ‖πω(t)‖ ≤ ‖t‖m for
t ∈ A � B; see [16, p. 193], for example. But using the cyclic representation,
we then have

|ω(t)| = | 〈Ωω, πω(t)Ωω 〉| ≤ ‖πω(t)‖ ≤ ‖t‖m

and hence ω is bounded with respect to the maximal C*-norm as required.
Secondly we show that Combes’ axiom is indeed satisfied, and this will

complete the proof. Note that for 0 ≤ a ∈ A and 0 ≤ b ∈ B we have a ⊗ b =
(a1/2 ⊗ b1/2)∗(a1/2 ⊗ b1/2) ≥ 0. For a2 ≥ a1 in A and b2 ≥ b1 in B it follows
that a2 ⊗ b2 − a1 ⊗ b1 = (a2 − a1) ⊗ (b2 − b1)+a1 ⊗ (b2 − b1)+(a2 − a1) ⊗ b1 ≥ 0,
hence

a2 ⊗ b2 ≥ a1 ⊗ b1.

For an arbitrary t =
∑n

k=1 ak ⊗ bk ∈ A � B, it follows from [17, Inequality 8.5],
the inequality above, and the fact that for c ≥ 0 in a unital C*-algebra one
has c ≤ ‖c‖, that

t∗t ≤ n
n∑

k=1

(a∗
kak) ⊗ (b∗

kbk) ≤
(

n
n∑

k=1

‖ak ‖2‖bk ‖2

)
1A ⊗ 1B

hence Combes’ axiom holds with λt = n
∑n

k=1 ‖ak ‖2‖bk ‖2. �
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In particular for any systems A and B, it follows that in effect every element
ω of J(A,B) is a state on A ⊗m B, and by continuity we have ω ◦ (αg ⊗m βg) =
ω for all g ∈ G. In the rest of this section, we work in terms of this setting.

Proposition 4.2. The set J(A,B) is weakly* compact, and it is the closed
convex hull of its extreme points. In particular, this set of extreme points,
which we will denote by Je(A,B), is not empty.

Proof. Let S be the set of states on A ⊗m B. Since S is weakly* compact,
and it is readily verified that J(A,B) is weakly* closed in S, it follows that
J(A,B) is weakly* compact. It is easy to see J(A,B) is convex. Since
μ ⊗m ν ∈ J(A,B), it follows from the Krein–Milman theorem that Je(A,B)
is not empty and that J(A,B) is the closed convex hull of Je(A,B). �

Definition 4.3. A C*-dynamical system (C, τ) consists of a unital C*-
algebra C and a representation τ : G → Aut(C) : g �→ τg of a group G. Let
Eτ denote the extreme points of the set of τ -invariant states on C.

This set of extreme points connects to ergodicity (in the sense that we
have been using the term) in the following way: by [3, Theorem 4.3.20] a W*-
dynamical system is ergodic if and only if the unitary representation of its
dynamics on its GNS Hilbert space has a one-dimensional fixed point space.
On the other hand, according to [3, Theorem 4.3.17], if the triple (C,ρ, τ) is
G-Abelian (see [3, Definition 4.3.6]) for some τ -invariant state ρ on C, then
ρ ∈ Eτ if and only if the unitary representation of τ on the GNS Hilbert space
of (C,ρ) has a one-dimensional fixed point space. So in this case, we can
say that every element ρ of Eτ gives us an ergodic C*-dynamical system of
the form (C,ρ, τ). The latter will appear again in Section 5, but without the
assumption that it is G-Abelian.

Proposition 4.4. If A and B are ergodic, then Je(A,B) ⊂ Eα⊗mβ where
(α ⊗m β)g := αg ⊗m βg .

Proof. Since A and B are ergodic, we have μ ∈ Eα and ν ∈ Eβ ; see for
example [3, Theorem 4.3.17]. Now consider any ω ∈ Je(A,B) and write ω =
rω1 + (1 − r)ω2 where ω1 and ω2 are states invariant under α ⊗m β, and
0 < r < 1. Then μ = ω(· ⊗ 1B) = rω1(· ⊗ 1B) + (1 − r)ω2(· ⊗ 1B), but μ ∈ Eα,
hence μ = ωj(· ⊗ 1B) and likewise ν = ωj(1A ⊗ ·). Thus, ωj ∈ J(A,B), but ω is
extremal in the latter set, therefore ω = ωj . This shows that ω ∈ Eα⊗mβ . �

This proposition motivates the term ergodic joining (of A and B) for each
element of Je(A,B) when A and B are both ergodic.

We end this section with another illustration of how joinings can in principle
be used, by proving a Halmos–von Neumann type theorem for W*-dynamical
systems in terms of Hilbert space. Unfortunately, we require a form of as-
ymptotic Abelianness defined as follows.
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Definition 4.5. Consider a C*-dynamical system (C, τ) whose group G is
countable, discrete and amenable. Let (Λn) be any Følner sequence in G. If

(4.1) lim
n→∞

1
|Λn|

∑
g∈Λn

‖[a, τg(b)]‖ = 0

for all a, b ∈ C where [·, ·] is the commutator, then we say (C, τ) is (Λn)-
asymptotically Abelian.

This type of asymptotic Abelianness was also used in [17] for the case
G = Z. We will not in fact need any properties of Følner sequences; we will
only use (4.1), for example, it does not matter if (Λn) is a right or left Følner
sequence.

Proposition 4.6. Let A and B be ergodic, (Λn)-asymptotically Abelian
and have the same point spectrum, i.e. σA = σB. Then the unitary represen-
tations U and V of α and β, respectively (as in Definition 2.5) can be done
on Hilbert subspaces of some Hilbert space, such that the eigenvectors of U
and V span the same Hilbert subspace, say H0, and such that Ugx = Vgx for
all x ∈ H0 and g ∈ G.

Proof. We follow the basic plan due to Lemańczyk [15] (also see [10, The-
orem 7.1]) for the measure theoretic case. By Proposition 4.2, there exists an
ω ∈ Je(A,B). Note furthermore that (A ⊗m B,α ⊗m β) is (Λn)-asymptotically
Abelian, and hence it is easy to see that the pair (A ⊗m B,ω) is G-Abelian
(see [3, Definition 4.3.6]). Now consider the “combined” GNS construction
for (A ⊗m B,ω), (A,μ) and (B,ν) as given by [6, Construction 2.3], namely
(Hω, γω), (Hμ, γμ) and (Hν , γν), and the corresponding unitary representa-
tions W , U and V of α ⊗m β, α and β, respectively. From (Hω, γω) and
(Hμ, γμ), we of course also obtain the respective cyclic representations with
common cyclic vector: (Hω, πω,Ωω) and (Hμ, πμ,Ωω).

Take any χ ∈ σA = σB then by [23, Theorem 2.5] the corresponding eigen-
vectors of U and V are of the form γμ(a) and γν(b) for some a ∈ A and b ∈ B,
and furthermore αg(a) = χ(g)a and βg(b) = χ(g)b. Hence,

Wgγω(a∗ ⊗ b) = γω

(
αg(a)∗ ⊗ βg(b)

)
= γω(a∗ ⊗ b)

since |χ| = 1. Therefore, γω(a∗ ⊗ b) = cΩω for some c ∈ C by [3, Theo-
rem 4.3.17] (which uses above mentioned G-Abelianness). So

cγμ(a) = cπμ(a)Ωω = πω(a ⊗ 1B)πω(a∗ ⊗ b)Ωω = γω

(
(aa∗) ⊗ b

)
= dγν(b)

for some d ∈ C\{0}, since αg(aa∗) = |χ(g)|2aa∗ = aa∗ �= 0 and A is ergodic.
We conclude that γμ(a) and γν(b) are proportional, and therefore the eigen-
vectors of U and V span the same Hilbert subspace H0 of Hω . Lastly, for any
x ∈ H0, we have Ugx = Wgx = Vgx by [6, Construction 2.3]. �
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That some form of asymptotic Abelianness should be necessary is perhaps
not surprising (see [23, Remark 2.7]), however it would probably be desirable
to rather have a version of Proposition 4.6 for C*-dynamical systems (with
an invariant state).

5. Strong mixing

Throughout this section, we consider the situation in Definition 2.2, but
with G = Z. Remember that as in the special case in Section 3, A is strongly
mixing when

lim
n→∞

μ(αn(a)b) = μ(a)μ(b)

for all a, b ∈ A. Let Ã =(Ã, μ̃, α̃) be the “mirror image” of A which we referred
to after Definition 2.2. It turns out that α̃n(b) = UnbU ∗

n for all b ∈ Ã with U
as in Definition 2.5; see [6, Construction 3.4] for more details. Then one can
define a joining Δn of A and Ã for every n by

Δn(a ⊗ b) := μ�(αn(a) ⊗ b)

for all a ∈ A and b ∈ Ã. It is easy to verify that Δn is indeed a joining, and
in particular μ� = Δ0 is a joining. This joining is an example of what in
measure theoretic ergodic theory is called a graph joining (see, for example,
[10, Examples 6.3] or [5, Section 2.2]). We then have the following simple
joining characterization of strong mixing.

Proposition 5.1. The system A is strongly mixing if and only if

(5.1) lim
n→∞

Δn(a ⊗ b) = μ(a)μ̃(b)

for all a ∈ A and b ∈ Ã.

Proof. The system A is strongly mixing if and only if limn→∞ 〈Unx, y〉 =
〈x,Ω〉〈Ω, y〉 for all x, y ∈ H , but in turn this is equivalent to (5.1), since ÃΩ
is dense in H . �

We can also view (5.1) as saying that the sequence (Δn) of joinings con-
verges pointwise to the joining μ � μ̃.

Next, we are going to use this result to prove a version of Ornstein’s crite-
rion for strong mixing (in the measure theoretic setting) [18, Theorem 2.1] for
W*-dynamical systems. Its worth mentioning that although Ornstein’s pa-
per [18] doesn’t explicitly deal with joinings, it did lead to Rudolph’s seminal
work [21] on joinings and both papers have been very influential in further
developments in classical ergodic theory.

But first we need the following lemma.

Lemma 5.2. Consider a system A which is not weakly mixing, but with
(A,μ,αn) ergodic for every n ∈ N (the action of Z in this case is given by
j �→ (αn)j). Then for every k > 0 there exists a projection P ∈ A, left fixed by
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the modular automorphism group associated with μ, such that 0 < μ(P ) < 1/k,
Pαn(P ) = αn(P )P for all n, and

(5.2) limsup
n→∞

μ(αn(P )P ) > kμ(P )2,

or equivalently,

(5.3) limsup
n→∞

Δn

(
P ⊗ (Jπ(P )J)

)
> k(μ � μ̃)

(
P ⊗ (Jπ(P )J)

)
,

where J is the modular conjugation associated with (π(A),Ω).

Proof. The proof is divided into two parts. Part (i) proves the existence
of a projection P ∈ A such that 0 < μ(P ) < 1/k, Pαn(P ) = αn(P )P for all n,
and (5.2) is satisfied. Part (ii), for which I am indebted to the referee, proves
that the construction in (i) yields a projection P left fixed by the modular
automorphism group associated with μ, and that this invariance ensures the
equivalence of (5.2) and (5.3).

(i) Using the notation in Definition 2.5, but denoting U1 simply as U for
simplicity, and correspondingly α1 as α, it follows from the fact that A is
ergodic but not weakly mixing that U has an eigenvalue χ ∈ C\{1} with
corresponding eigenvector of the form uΩ for some u ∈ A which means (see
[23, Theorem 2.5]) that α(u) = χu, where for simplicity of notation we have
identified A with π(A) and hence making π in Definition 2.5 the identity
mapping A → A (we can do this since μ is faithful).

Without loss, we can assume that u is unitary. Namely, α(u∗u) = χ̄χu∗u =
u∗u, so u∗u ∈ C1, since A is ergodic. It follows that u∗u = ‖u∗u‖1 = ‖u‖21,
since u∗u ≥ 0. Since u �= 0, we can assume that u∗u = 1 by renaming u/‖u‖
as u. In the same way ergodicity and this normalization procedure gives
uu∗ = 1.

Note that u /∈ C1, since χ �= 1. Since αn(u) = χnu while (A,μ,αn) is er-
godic, it follows that χn �= 1 for all n ∈ Z.

Denote the spectrum of u by σ(u) and let E be the spectral measure relative
to (σ(u),H) with

u =
∫

ι dE

where ι : σ(u) → σ(u) denotes the identity map (consult [16, Section 2.5] for
a clear exposition of the spectral theory that we are using here). Note that
from the definition of the spectrum of an element it follows that σ(αn(u)) =
σ(u), hence for v ∈ σ(u) we have χnv ∈ σ(u). But χmv �= χnv and hence

E({χmv})E({χnv}) = E({χmv} ∩ {χnv}) = 0

for any integers m �= n. Setting

χ̃ : σ(u) → σ(u) : v �→ χv
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and defining spectral measures F := α ◦ E and D := E ◦ χ̃−1 relative to
(σ(u),H), one can verify that

∫
ι dF = χu =

∫
ι dD and hence by uniqueness

of the spectral measure we have α ◦ E = E ◦ χ̃−1 and more generally

(5.4) αn ◦ E = E ◦ χ̃−n

for all n ∈ Z. Putting all this together, we find that

αm(E({v}))αn(E({v})) = 0

for all integers m �= n, hence Pn := α1(E({v}))+ · · · +αn(E({v})) is a projec-
tion and so 0 ≤ nμ((E({v})) ≤ 1 for every n ∈ N, which means

(5.5) E({v}) = 0

for all v ∈ σ(u).
In the remainder of the proof, for any set V in the unit circle we will

simply write E(V ) instead of E(V ∩ σ(u)), and we will also use the notation
P(θ1,θ2] := E(ei(θ1,θ2]) for any interval (θ1, θ2]. Consider −π < θ1 < θ2 ≤ π.
By (5.4)

αn
(
P(θ1,θ2]

)
= P(θ1+Argχ−n,θ2+Argχ−n].

But for any ε > 0 there are arbitrarily large values of n such that | Argχ−n| < ε
and hence such that αn(P(θ1,θ2])P(θ1,θ2] ≥ P(θ1+ε,θ2−ε]. Furthermore, since μ
is normal while 〈Ω,E(·)Ω〉 is a usual positive measure, one can show that
limn→∞ μ(P(θ1,θ1+1/n]) = 0, and by also employing (5.5) one similarly finds
limn→∞ μ(P(θ2−1/n,θ2]) = 0. Combining this with the fact that P(θ1,θ2] −
P(θ1+ε,θ2−ε] = P(θ1,θ1+ε] + P(θ2−ε,θ2] it follows that for any ε′ we can choose ε
small enough that μ(P(θ1,θ2] − P(θ1+ε,θ2−ε]) < ε′ and therefore there are arbi-
trarily large values of n such that

μ
(
αn

(
P(θ1,θ2]

)
P(θ1,θ2]

)
> μ

(
P(θ1,θ2]

)
− ε′.

Now suppose that there is a δ > 0 such that μ(P(θ1,θ2]) = 0 or μ(P(θ1,θ2]) ≥ δ
for all −π < θ1 < θ2 ≤ π. With V (m,r) := (−π + 2π(r − 1)/m, −π + 2πr/m],
we have

∑m
r=1 μ(PV (m,r)) = 1, hence each

Im :=
{
V (m,r) : μ

(
PV (m,r)

)
≥ δ, r ∈ {1, . . . ,m}

}
contains at least one element, and we have a sequence of intervals Im ∈ I2m

with Im+1 ⊂ Im. But then 〈Ω,E(
⋂∞

m=1 Im)Ω〉 ≥ δ contradicting (5.5). We
conclude that for any k′ > k > 0 there are −π < θ1 < θ2 ≤ π such that 0 <
μ(P(θ1,θ2]) < 1/k′. With P := P(θ1,θ2], we have Pαn(P ) = αn(P )P from (5.4),
completing part (i) of the proof.

(ii) We continue with the notation in (i).
By [25, Corollary VIII.1.4] α ◦ σt = σt ◦ α, where t �→ σt is the modular

automorphism group associated with μ. With u and χ as before, it follows
that α(σt(u)) = χσt(u). Together with α(u) = χu, this implies that

σt(u) = λtu
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for some λt ∈ C, according to [23, Lemma 2.1(3)], for every t ∈ R. Note that
|λt| = 1. From the group property of σt it is easily verified that λs+t = λsλt.
Since t �→ 〈x,σt(u)y〉 = 〈Δ−itx,uΔ−ity〉 is continuous for all x, y ∈ H , where
Δ is the modular operator associated with (A,Ω), it follows that t �→ λt is
continuous. Therefore,

λt = eiθt

for all t ∈ R for some θ ∈ R; see for example [20, p. 12]. It follows that
ΔituΩ = σt(u)Ω = eiθtuΩ, hence by the definition of JΔ1/2 (see, for example,
[3, Section 2.5.2])

Ju∗Ω = J(JΔ1/2)uΩ = Δ1/2uΩ = eθ/2uΩ

and by taking the norm both sides we conclude that eθ/2 = 1 and therefore
θ = 0. This proves that

σt(u) = u

for all t ∈ R.
Note that the fixed point algebra of the modular automorphism group is

itself a von Neumann algebra (as is the fixed point algebra of any system)
and since u is in this fixed point algebra as shown above, it follows that its
spectral projections are too. In particular,

σt(P ) = P

for all t ∈ R. This means that ΔitPΩ = PΔitΩ = PΩ and therefore

JPΩ = J(JΔ1/2)P ∗Ω = Δ1/2PΩ = PΩ

so

Δn

(
P ⊗ (JPJ)

)
= μ�

(
αn(P ) ⊗ (JPJ)

)
= 〈Ω, αn(P )JPJΩ〉

= 〈Ω, αn(P )PΩ〉 = μ(αn(P )P ).

Furthermore,

μ � μ̃
(
P ⊗ (JPJ)

)
= μ(P )〈Ω, JPJΩ〉 = μ(P )2.

The equivalence of (5.2) and (5.3) now follows. �

Now we are in a position to state and prove our version of Ornstein’s
criterion. In its proof, we encounter a C*-dynamical system with invariant
state, that is, a (C,ρ, τ) with (C, τ) as in Definition 4.3 and where ρ is any state
on C with ρ ◦ τg = ρ for all g ∈ G (with G = Z the relevant case). We will refer
to such a (C,ρ, τ) as a C*-dynamical system as well. For such a C*-dynamical
system, weak mixing is defined in the same way as for W*-dynamical systems
in Definition 2.5, but we call it ergodic if the fixed point space of the unitary
representation of τ on the Hilbert space H of the GNS construction of (C,ρ)
is one dimensional, that is, dim{x ∈ H : Ugx = x for all g ∈ G} = 1.
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Theorem 5.3. Let A be a system such that (A,μ,αn) is ergodic for every
n ∈ N. (Alternatively, we could assume that A is weakly mixing.) Further-
more, assume that there is a real number k > 0 such that

limsup
n→∞

Δn(c∗c) ≤ kμ � μ̃(c∗c)

for all c ∈ A � Ã. Then A is strongly mixing.

Proof. Note that A is weakly mixing, for if it was not, our assumptions
would contradict Lemma 5.2 for c = P ⊗ (Jπ(P )J). In the rest of the proof,
we only need weak mixing of A, rather than the ergodicity of (A,μ,αn) for
all n ∈ N.

We now follow the basic argument presented in [5, Theorem 4.3] for the
measure theoretic case, and we work in the setting of the maximal C*-algebraic
tensor product as explained at the beginning of Section 4. Since J(A, Ã) is
weakly* compact by Proposition 4.2, the sequence (Δn) has a cluster point
ω in J(A, Ã) in the weak* topology. From our assumptions, it follows that
ω ≤ kμ ⊗m μ̃.

Note that Ã is weakly mixing, since A is. Also recall that a C*-dynamical
system (C,ρ, τ) for an action of Z is weakly mixing if and only if

lim
N →∞

1
N

N∑
n=1

|ρ(aτn(b)) − ρ(a)ρ(b)| = 0

for all a, b ∈ C; see, for example, [17, Proposition 5.4] or [7, Definition 2.3 and
Proposition 3.4], and keep in mind that ({1, . . . ,N })N is a Følner sequence
in Z. We now use this characterization of weak mixing to show that the C*-
dynamical system A ⊗m Ã := (A ⊗m Ã, μ ⊗m μ̃, α ⊗m α̃) is weakly mixing. It
will be convenient to write ρ := μ ⊗m μ̃ and τ := α ⊗m α̃. For any

c =
m∑

j=1

aj ⊗ cj ∈ A � Ã

and

d =
m∑

j=1

bj ⊗ dj ∈ A � Ã

we have

|ρ(cτn(d)) − ρ(c)ρ(d)|

≤
m∑

j=1

m∑
k=1

|μ(ajαn(bk))μ̃(cjα̃n(dk)) − μ(ajαn(bk))μ̃(cj)μ̃(dk)|

+
m∑

j=1

m∑
k=1

|μ(ajαn(bk))μ̃(cj)μ̃(dk) − μ(aj)μ(bk)μ̃(cj)μ̃(dk)|
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≤
m∑

j=1

m∑
k=1

‖aj ‖ ‖bk ‖ |μ̃(cjα̃n(dk)) − μ̃(cj)μ̃(dk)|

+
m∑

j=1

m∑
k=1

‖cj ‖ ‖dk ‖ |μ(ajαn(bk)) − μ(aj)μ(bk)|

therefore limN →∞
1
N

∑N
n=1 |ρ(cτn(d)) − ρ(c)ρ(d)| = 0, since A and Ã are both

weakly mixing. Now consider arbitrary a, b ∈ A ⊗m Ã and any ε > 0. Then
there are c, d ∈ A � Ã such that in the maximal C*-norm ‖a − c‖m < ε and
‖b − d‖m < ε, so

|ρ(aτn(b)) − ρ(a)ρ(b)|
≤ |ρ(cτn(d)) − ρ(c)ρ(d)|

+
∣∣ρ(

(a − c)τn(b)
)∣∣ +

∣∣ρ(
cτn(b − d)

)∣∣ + |ρ(c − a)ρ(b)| + |ρ(c)ρ(d − b)|
≤ |ρ(cτn(d)) − ρ(c)ρ(d)| + 2ε‖b‖m + 2ε(‖a‖m + ε).

From all this, it follows that limN →∞
1
N

∑N
n=1 |ρ(aτn(b)) − ρ(a)ρ(b)| = 0, i.e.

A ⊗m Ã is weakly mixing.
From the definitions of weak mixing and ergodicity of a C*-dynamical sys-

tem, it follows that A ⊗m Ã is ergodic and therefore μ ⊗m μ̃ ∈ Eα⊗mα̃ by [3,
Theorem 4.3.17] and Definition 4.3. However, if ω1 ≤ kω0 where ω0 ∈ Eα⊗mα̃

while ω1 is an invariant state on A ⊗m Ã under α ⊗m α̃, then ω1 = ω0, since
if this was not the case, then k > 1 so ω2 := (kω0 − ω1)/(k − 1) is an invari-
ant state which gives ω0 = ω1/k + (k − 1)ω2/k contradicting ω0 ∈ Eα⊗mα̃. So
ω = μ ⊗m μ̃ which means that μ ⊗m μ̃ is the unique cluster point of (Δn) in
the weak* topology. Hence,

w ∗ -limn→∞ Δn = μ ⊗m μ̃

in J(A, Ã). Therefore, A is strongly mixing by Proposition 5.1. �

Note that the following partial converse is of course also true, namely if A
is strongly mixing, then it is weakly mixing and w ∗ -limn→∞ Δn = μ ⊗m μ̃.
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des systèmes non commutatifs, Comm. Math. Phys. 145 (1992), 411–423. MR 1162806

[23] E. Størmer, Spectra of ergodic transformations, J. Funct. Anal. 15 (1974), 202–215.
MR 0377544
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