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COHOMOLOGY OF DECOMPOSITION AND THE
MULTIPLICITY THEOREM WITH APPLICATIONS TO

DYNAMICAL SYSTEMS

LEON A. LUXEMBURG

Abstract. The article obtains some lower bounds for the sec-
tional category of a map based on the cohomology of the base

space and the total space. We also obtain geometric results

on the multiplicity of maps and show applications to equilib-
ria on the boundary of stability regions (basins of attraction) of

dynamical systems on differentiable manifolds. We consider a

number of generalizations of Lusternik–Schnirelmann’s theorem

which states that if a covering of an n dimensional sphere consists

of n + 1 closed sets, then at least one of the sets contains antipo-
dal points. An elementary proof is given for a generalization of
this result to packings of Euclidean spaces.

1. Introduction

In this article, we prove some geometric results on multiplicity of maps of
CW complexes which are unions of a finite number of closed sets. A stronger
result for Euclidean spaces is obtained via an elementary proof (not requiring
algebraic topology) for packings of Euclidean spaces. We also consider ap-
plications to flows of dynamical systems. Some of the results of this article
connect and trace back to Lusternik–Schnirelmann’s theorem [2] stating that
if a sphere Sn is a union of n + 1 closed subsets then at least one of them
contains a pair of antipodal points. We generalize it for coverings of H-spaces
and of products of real projective spaces.

The sectional category of a map f : X → Y , denoted secat(f), is one less
than the number of sets in the smallest open cover of Y such that f admits a
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cross-section over each member of the cover, see, for example, [4]–[6]. By the
Lusternik–Schnirelmann category cat(Y ) of a space Y , we mean the smallest
number of open subsets of Y covering Y and contractible in Y .

One of the objectives of this article is to introduce easily computable lower
bounds for the sectional category in terms of the cohomology of the base
space Y and the total space X and to show some applications of our method
to giving lower bounds on the number of equilibria on the boundaries of
stability of flows of dynamical systems. The Morse–Smale theory cannot be
used for covering spaces of compact manifold because these covering spaces are
usually noncompact. However, most practical problem occur in Rn which is a
universal cover for the torus. This calls for alternative methods presented in
this paper. If the map f : X → Y is a fibration, then every subset contractible
in Y admits a cross-section, therefore, obviously, secat(f) + 1 ≤ cat(Y ). This
shows that giving a lower bound on sectional category means providing a
lower bound for the Lusternik–Schnirelmann (LS) category, but not vice versa.
Theorem 2.1 provides lower bounds for the sectional category and thus also
gives the lower bounds for the LS category. Lower bounds for the LS category
of a space based on its cohomology were obtained previously in a large number
of papers, see, for example, [5, 8, 9].

The sectional category and its relations to the Lusternik–Schnirelmann cat-
egory was studied in [4, 5] and [6]. In his seminal article [10], Schwartz intro-
duced the concept of a sectional category and described a method of providing
lower bounds for it in terms of the nilpotency of the kernel p∗ : H∗(B,Q) →
H∗(E,Q) for a fibration p : E → B.

However, the lower bound given by Theorem 2.1 is much easier to compute
because it is formulated in terms of cohomology of the base space and the
total space only. Additionally, the nilpotency based lower bound would give
no results for the products of real projective spaces of dimension > 1 since all
the cohomology with rational coefficients Q will be zero in this case. However,
our approach allows us to get some interesting results in this particular case
as well, see Theorem 2.4 below. See [11] for another interesting approach to
obtaining lower bounds for a sectional category which is still more difficult
computationally.

2. Statements of main theorems

The proofs of Theorems 2.1–2.4 stated in this section will be given in Sec-
tion 4. The spaces considered in this article are assumed Hausdorff and maps
are assumed continuous. We use singular homology and cohomology through-
out the article.

Notation 2.1. Let p > 0 be an integer and let h1 ≤ h2 ≤ · · · ≤ hp, be a
nondecreasing sequence of positive integers, then by F [h1, . . . , hp, x1, . . . , xp]
we denote the graded algebra of truncated polynomials of variables x1, . . . , xp
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of degree ≤ hi in variable xi over a field F with the usual skew commutativity
assumption xy = (−1)deg(x)deg(y)

yx.
Alternatively, one can describe F [h1, . . . , hp, x1, . . . , xp] as a tensor prod-

uct of rings F (xi, hi), where F (xi, hi) is a factor ring of the ring F [xi] of
polynomials of one variable xi over an ideal generated by the element xhi+1

i .
We set formally h0 = 0 and let now k > 0 be an integer such that for some

integer i, 1 ≤ i ≤ p − 1, we have

h0 + · · · + hi < k ≤ h0 + h1 + · · · + hi + hi+1.

Then we define �(h1, . . . , hp, k) by the equality �(h1, . . . , hp, k) = i.
We note that if hi = 1 for all i, 1 ≤ i ≤ p then �(h1, . . . , hp, k) = k − 1.
Also, �(h1, . . . , hp, k) < p since k ≤ h0 + h1 + · · · + hp, therefore,

p − �(h1, . . . , hp, k) > 0.

If f : X → Y is an arbitrary map between two sets, then we will say that f has
multiplicity n if n is the smallest integer such that the inverse image f −1(y)
of every point y ∈ Y consists of no more than n points.

Theorem 2.1 (Multiplicity theorem). Let M be a normal space and let F
be any field. Assume that the cohomology ring H ∗(M,F ) contains a graded
subalgebra F [h1, . . . , hp, x1, . . . , xp] of truncated polynomials of variables x1,
. . . , xp, where for all i, 1 ≤ i ≤ p we have xi ∈ H1(M,F ). Let k be a positive
integer, k ≤ h1 + · · · + hp and let ρ : M̃ → M be a map such that

rank(H1(M̃,F )) < p − �(h1, . . . , hp, k).

Then, the following is true:

(2.1)

For any k closed sets Hi ⊂ M , where 1 ≤ i ≤ k, satisfying the
condition

⋃k
i=1 Hi = M and any compact sets Li ⊂ M̃ such that

ρ(Li) = Hi for all i,1 ≤ i ≤ k, there exists a pair of points x, y in
some Li such that ρ(x) = ρ(y), i.e. ρ has multiplicity greater than
1 on at least one set Li. In particular, secat(ρ) ≥ k.

Remark 2.1. Since the definition of a sectional category of a map involves
cross sections over open sets and Theorem 2.1 talks about closed sets, some
clarification about why (2.1) implies that secat(ρ) ≥ k, is in order. Let U =
{Ui : 1 ≤ i ≤ k} be a finite open cover of a normal space space M such that
each Ui admits a cross-section with respect to a map ρ : M̃ → M . It is a
well known simple fact from the point set topology that there exists a closed
cover of M , V = {Ci : 1 ≤ i ≤ k} such that Ci ⊂ Ui. Then, the restrictions of
cross-sections from Ui onto Ci define cross-sections on Ci. Therefore, if for
some integer k and any closed cover V = {Ci : 1 ≤ i ≤ k} of M there do not
exist cross-sections over each set Ci, then secat(ρ) ≥ k.



488 L. A. LUXEMBURG

Additionally, we can show that under some conditions, the converse is also
true. To be more precise, let us assume that ρ : M̃ → M is a fibre bundle map
with the fibre which is ANR and such that M is paracompact. Let us also
consider a closed cover V = {Ci : 1 ≤ i ≤ k} of M such that each set Ci admits
a cross-section ρi with respect to ρ. Then there are open sets Ui, Ci ⊂ Ui such
that for each i,1 ≤ i ≤ k, there is an extension ζi : Ui to M̃ of cross-section ρi

from Ci onto Ui. So, in this case, it does not matter whether we define the
sectional category for closed or open sets. The proof is not difficult, however,
we are not going to prove the latter fact here because it is not essential for
the results claimed in this article.

Theorem 2.2. Let π : Rn → Tn be a factor map from the n dimensional
Euclidean space onto a torus mapping an equivalence class of all vectors with
coordinates differing by an integer into a corresponding point on a torus Tn.
Let Tn be a union of k closed sets Hi, satisfying the condition

k⋃
i=1

Hi = Tn, 1 ≤ k ≤ n + 1

and let compact sets Li ⊂ Rn where 1 ≤ i ≤ k be such that π(Li) = Hi. Then
the sum

∑k
i=1 μi, where μi is a multiplicity of the restriction of map π on Li,

is at least n + 1. In particular, secat(π) ≥ n.

Theorem 2.3. Let M be an H-space and is a finite CW complex and let F
be a field of characteristic 0. Let k be an integer such that 1 ≤ k ≤ β1(M,F )
where

β1(M,F ) = rank(H1(M,F )) = rank(H1(M,F )).

Let ρ : M̃ → M be a map such that

rank(H1(M̃,F )) = β1(M̃,F ) < β1(M,F ) − k + 1.

Then the condition (2.1) is satisfied, in particular, secat(ρ) ≥ k.

Theorem 2.4. Let M =
∏p

i=1 RP hi × Tn be a product of p real projective
spaces RP hi of dimension hi > 1, and an n dimensional torus Tn where p or
n can be zero. Let k be an integer, and let

1 ≤ k ≤ h1 + · · · + hp + n.

Let ρ : M̃ → M be a map such that

rank(H1(M̃,F )) < p + n − �(1, . . . ,1, h1, . . . , hp, k)

where 1 is repeated n times. Then (2.1) is satisfied, in particular, secat(ρ) ≥ k.

Corollary 2.1. Let L ⊂ Rn be a compact set such that all of its parallel
translations by vectors with integer coordinates fill the whole Rn. Then L
contains n + 1 points x1, . . . , xn+1 such that for some vector y ∈ Rn all points
x1 + y, . . . , xn+1 + y have only integer coordinates.
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Proof. This is a restatement of Theorem 2.2 for k = 1. �
Corollary 2.2. Let M = Tn and let 1 ≤ k ≤ n. Let F be a field and let

ρ : M̃ → M be a map such that

rank(H1(M̃,F )) < n − k + 1.

Then secat(ρ) ≥ k.

This corollary immediately follows from Theorem 2.4 above.

Remark 2.2. The Lusternik–Schnirelmann’s result [2] that in any decom-
position of a sphere

Sn =
n+1⋃
i=1

Li

as a union of n + 1 closed sets Li, at least one of sets would contain two
antipodal points and an independently proved equivalent K. Borsuk’s result
that the n dimensional sphere as a geometric object cannot be decomposed
into a union of n + 1 sets of smaller diameters, follow from Theorem 2.1.
Indeed, suppose none of the sets Li contains antipodal points, then the union
of just any n sets K =

⋃n
i=1 Li satisfies the condition that ρ(K) = RPn where

ρ : Sn → RPn is the covering map of Sn onto the projective space RPn.
Now, since H∗(RPn) = Z2(n,x) for some generator x ∈ H1(RPn), and Sn is
simply connected, by Theorem 2.1 for the case when m = 1, at least one of
the sets Li, where 1 ≤ i ≤ n, contains two points x, y such that ρ(x) = ρ(y)
which means they are antipodal. Theorem 2.4 is also another generalization
of Lusternik–Schnirelmann’s theorem.

Applications to equilibria of flows of dynamical systems on mani-
folds. A vector field X on a differentiable manifold M is C(k) if it has exactly
k stable equilibria e1, . . . , ek on M with corresponding open regions of attrac-
tions S(e1), . . . , S(ek) such that M =

⋃k
i=1 S(ei) and every trajectory of the

flow corresponding to X converges to some (not necessarily stable) equilib-
rium point as t → ∞. (Here, by a stable equilibrium we mean an equilibrium
point of the vector filed X such that the corresponding Jacobian has all eigen-
values in the open left half plane, and by the region of attraction or stability
region of a stable equilibrium we mean its stable manifold, that is, the union
of all trajectories converging to this equilibrium.) Let ρ : M̃ → M be a cov-
ering map from a covering space M̃ onto M with a vector field X defined on
M and let X(ρ) be the induced vector field on the manifold M̃, that is, the
uniquely defined vector field such that ρ∗(X(ρ)) = X , where ρ∗ is the induced
vector bundle map.

Theorem 2.5. Let M be a compact manifold. Assume that the cohomol-
ogy ring H∗(M,F ) for some algebraic field F contains a graded subalgebra
F [h1, . . . , hp, x1, . . . , xp] of truncated polynomials of variables x1, . . . , xp, xi ∈
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H1(M,F ) for all i such that 1 ≤ i ≤ p. Let k be an integer such that 1 ≤ k ≤
h1 + · · · + hp and let ρ : M̃ → M be a covering map satisfying

(2.2) rank(H1(M̃,F )) < p − �(h1, . . . , hp, k).

Let also X be a C(k) vector field on M and X(ρ) be the induced vector field
on M̃. Let e1, . . . , ek be all stable equilibria on M with corresponding open
regions of attractions S(e1), . . . , S(ek) so that

M =
k⋃

i=1

S(ei).

Let equilibria d1, . . . , dk in M̃ satisfy ρ(di) = ei and let them have compact
regions of attractions S(d1), . . . , S(dk) respectively. Then there exist at least
2 equilibria x and y on the boundary of at least one of stability regions S(di)
such that ρ(x) = ρ(y).

This is a principal result showing that under certain restrictions on k in
terms of the cohomology of the manifold M , the number of equilibria on
the boundaries of stability regions strictly increases when we consider the
induced vector field on universal coverings, and, more generally, on coverings
satisfying (2.2), because at least some equilibria on a boundary of a stability
region in M̃ will be mapped into the same equilibrium in M . The implication
of this is that the Morse–Smale theory [7], which gives the lower bounds for
equilibria on compact manifolds M for Morse–Smale fields, fails to give precise
lower bounds for the induced vector fields on generally noncompact covering
manifolds M̃ . This fact is important in applications when we have a periodic
vector field on Rn which factors through the universal cover over a torus,
π : Rn → Tn, see [12]–[13].

Proof of Theorem 2.5. Theorem 2.5 immediately follows from Theorem 2.1.
Indeed, according to Theorem 2.1, for Hi = S(ei), there exist two distinct
points x1 and y1 in Li = S(di) for some integer i, where 1 ≤ i ≤ k, such that
ρ(x1) = ρ(y1). Since X is C(k), for trajectories x(t), y(t) passing through
these points respectively, we will have

lim
t→∞

x(t) = x, lim
t→∞

y(t) = y.

It is easy to see that x, y are distinct equilibria which lie on the boundary of
S(di) and ρ(x) = ρ(y). �

Let us consider another example. Let Y be a periodic vector field on Rn

with exactly one stable equilibrium point in each period and let us assume
that every trajectory of Y converges to an equilibrium point, that is, we will
assume that

⋃∞
i=1 S(di) = Rn, where S(di) is the region of stability of the

stable equilibrium di and all equilibria di are obtained by translation of some
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equilibrium point d1 via a vector with integer coordinates. (This means that
Y = X(π) for some C(1) vector field X on the torus Tn.) Assume also that
sets S(di) are bounded.

Then from Corollary 2.1 it follows that the factor map π : Rn → Tn has
multiplicity n + 1 on every S(di). Just as in the proof of Theorem 2.5 given
above, we can now show that there are at least n + 1 equilibria on S(di)
which are mapped into one point by π. Since π is obviously one to one on
S(di), these equilibria lie on the boundary of S(di). This proves the following
corollary.

Corollary 2.3. Let X be a C(1) vector field on a torus Tn and let Y =
X(π) be the vector field on Rn induced by the factor map π : Rn → Tn. Then
there are at least n + 1 equilibria on the boundary of every region of stability
S(di) of any stable equilibrium di of the vector field X(π) which are mapped
into the same point by the factor map π.

3. Truncated polynomial algebra decomposition

This section contains more than a minimum necessary to prove the results
of Section 2, because the cohomology of decomposition is of some independent
interest.

Theorem 3.1. Let the cohomology ring H∗(M,F ) for some field F contain
algebra

F [h1, . . . , hp, x1, . . . , xp], h1 ≤ · · · ≤ hp,

xi ∈ H1(M,F ) for each i,1 ≤ i ≤ p.

Let for some integer k,1 ≤ k ≤ h1 + · · · +hp, a space M =
⋃k

s=1 Hs be a union
of k arbitrary closed sets Hs. Then for the inclusion maps is : Hs → M and
the induced homomorphisms i∗

s : H1(M,F ) → H1(Hs, F ) we have:

(i)
k∑

s=1

rank i∗
s(H

1(M,F )) ≥ p,

(ii) max{rank i∗
s(H

1(M,F )) : 1 ≤ s ≤ k} ≥ p − �(h1, . . . , hp, k).

Notation 3.1. Let A=F [h1, . . . , hp, x1, . . . , xp], h1 ≤ · · · ≤ hp and let Ai be
the submodule of A consisting of polynomials of degree i. Then A1 is a linear
vector space over F spanning elements x1, . . . , xp and dimA1 = p. Let

(3.1) x =
p∑

i=1

ξixi ∈ A1, ξi ∈ F

be an arbitrary nonzero vector from A1. Let i be the smallest integer such
that ξi �= 0, then we set xi = L(x) and will call xi the leading element of x.
Any set S consisting of some, possibly repeated, elements of T = {x1, . . . , xp}
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will be called admissible if each xi occurs in S no more than hi times. An
element xi ∈ S will be called saturated if it occurs in S exactly hi times and S
will be called saturated if its every element is (saturation of S does not imply
that every xi ∈ A1 also belongs to S). We will introduce a lexicographic order
for monomials in A so that

∏p
i=1 xμi

i <
∏p

i=1 xνi

i if for the smallest i such that
μi �= νi we have μi < νi. Let also

(3.2) k0 = h1 + · · · + hp.

Lemma 3.1. Let c1, . . . , ck, k ≤ k0 be some elements of A1 as above and
let S = {xi1 , . . . , xik

} be the set of their corresponding leading elements, xis =
L(cs). Then, if S is an admissible set, we have

(3.3)
k∏

j=1

cj �= 0.

Proof. The product
∏k

j=1 cj is a sum of nonzero monomials of degree k

and the monomial
∏k

j=1 xij which is the product of the leading elements of
cj , xij = L(cj), has a nonzero coefficient in this sum, is itself nonzero, and is
strictly smaller than all other monomials in this sum. Therefore, it is not
cancelled and

∏k
j=1 cj �= 0. �

Lemma 3.2. Let V1, . . . , Vl, Vl+1, l ≥ 1 be linear subspaces of A1. Suppose
for every i, 1 ≤ i ≤ l, an element ci ∈ Vi is chosen so that the set of leading
elements S = {L(ci) : 1 ≤ i ≤ l} is an admissible set. Then if for some integer
j,0 ≤ j < p we have

l + 1 ≤ h1 + · · · + hj+1,(3.4)
dimVl+1 ≥ j + 1(3.5)

there exists an element cl+1∈ V l+1 such that the set {L(cl+1)} ∪ S is also
admissible and, therefore, by Lemma 3.1,

l+1∏
j=1

cj �= 0.

Proof. Let Y = {xi1 , . . . , xir } be the set of all elements in S which are
saturated (without repetition), then since cardinality(S) = l, (3.4) and the
sequence h1 ≤ · · · ≤ hp is nondecreasing, it follows that

(3.6) r ≤ j.

Let

(3.7) T = {x1, . . . , xp}
and let Q be the vector subspace of A1 spanned over all elements in the set
T \Y , then

dimQ ≥ p − r
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and (3.5) and (3.6) imply that dimVl+1 ≥ r + 1 and, therefore, there exists a
nonzero element cl+1 such that

(3.8) cl+1 ∈ Vl+1 ∩ Q.

Clearly, its leading coefficient is not in Y and, therefore, the set {L(cl+1)} ∪ S
is admissible. �

Lemma 3.3. Let V1, . . . , Vk be linear subspaces of A1,1 ≤ k ≤ k0. Then if

(3.9)
k∑

i=1

dimVi > (k − 1)p

then there exist elements ci ∈ Vi for each i satisfying 1 ≤ i ≤ k such that the
product

k∏
i=1

ci �= 0.

Proof. We will select elements ci ∈ Vi with the property that

(3.10) the leading elements L(ci) for i ≤ l form an admissible set

by induction on l. Let spaces V1, . . . , Vk be numbered in the order of nonde-
creasing dimensions,

(3.11) dimV1 ≤ · · · ≤ dimVk.

Note, that dimV1 > 0, otherwise, we would have (contrary to (3.9)) that
k∑

i=1

dimVi ≤ (k − 1)p

due to the fact that for all i, dimVi ≤ dimA1 = p. Let c1 ∈ V1 be an arbitrary
nonzero element. Assume inductively, that elements ci ∈ Vi, 1 ≤ i ≤ l are
selected so that the set Θ = {L(ci) : 1 ≤ i ≤ l} is admissible. Let dimVl+1 = p.
Then, since l + 1 ≤ k ≤ k0 = h1 + · · · + hp, for j = p − 1, the conditions (3.4)
and (3.5) of Lemma 3.2 are satisfied and, therefore, by the same lemma, an
element cl+1∈ V l+1 can be chosen so that the set Θ ∪ {L(cl+1)} is admissible,
which completes the inductive step. Now assume that

(3.12) dimVl+1 < p.

This, and (3.11), (3.9) imply that

(k − 1)p <

k∑
i=1

dimVi =
l+1∑
i=1

dimVi +
k∑

i=l+2

dimVi

≤ (l + 1)(p − 1) + p(k − l − 1) = p(k − 1) + (p − l − 1).

Therefore,

(3.13) l + 1 < p,
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(3.12) and (3.11) imply that dimV1 ≤ · · · ≤ dimVl+1 ≤ p − 1. Therefore,

(3.14) dimVl+1 ≥ l + 1

because, otherwise, from (3.11), (3.13) it follows that

dimV1 ≤ · · · ≤ dimVl+1 ≤ l

and
k∑

i=1

dimVi =
l+1∑
i=1

dimVi +
k∑

i=l+2

dimVi ≤ l(l + 1) + p(k − l − 1)

= l2 + l + pk − pl − p = p(k − 1) + l(l + 1 − p) < p(k − 1)

which contradicts (3.9).
Let now V be a vector space spanned on elements T \Θ (where T is defined

by (3.7)), then, since Θ consists of no more than l different elements, dim V ≥
p − l. This, and (3.14) imply that there exists a nonzero element cl+1 such that
cl+1 ∈ V ∩ Vl+1. From the definition of the space V , it follows that the leading
element of cl+1 is different from the elements of the set Θ. This immediately
implies that the set Θ ∪ {cl+1} is admissible, which completes the inductive
step in the selection process satisfying (3.10). Now, from Lemma 3.1 it follows
that the product

∏k
i=1 ci is nonzero. �

Lemma 3.4. Let V1, . . . , Vk be linear subspaces of A1,1 ≤ k ≤ k0. If dimVj ≥
i + 1 = �(h1, . . . , hp, k) + 1 (see Notation 3.1), for some integer i satisfying
0 ≤ i ≤ p and all integers j satisfying 1 ≤ j ≤ k so that

h0 + · · · + hi < k ≤ h0 + · · · + hi + hi+1

then there exist elements cs ∈ Vs for all s where 1 ≤ s ≤ k such that their
leading coefficients L(cs) form an admissible set and their product

∏k
s=1 cs is

nonzero.

Proof. We choose elements cs by induction. c1 ∈ V1 is chosen as an arbi-
trary nonzero element. The inductive step is now afforded by Lemma 3.2. �

Lemma 3.5. Let M =
⋃k

s=1 Hs be a union of arbitrary closed sets Hs.
Consider for each positive integer s,1 ≤ s ≤ k, the following exact cohomol-
ogy sequence, where the cohomology groups are taken with coefficients in an
arbitrary commutative ring with unity. The coefficient ring is omitted from
notations for brevity.

(3.15)
j∗

←−H2(M,Hs)
δ←−H1(Hs)

i∗
s←−H1(M)

j∗
s←−H1(M,Hs)

δ←−.

Let

(3.16) Vs = Ker(i∗
s) = Im(j∗

s )

and let cs ∈ Vs be arbitrary elements, 1 ≤ s ≤ k. Then the cup product∏k
s=1 cs ∈ Hk(M) is zero.
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Proof. Our statement immediately follows from the following commutative
diagram

k⊗
s=1

H1(M,Hs)
∪−→ Hk

(
M,

k⋃
s=1

Hs

)
= Hk(M,M) = 0

↓
k⊗

s=1

j∗
s ↓ j∗

k⊗
s=1

H1(M) ∪−→ Hk(M)

where ∪ is the cup product. �

Proof of Theorem 3.1. (i) Let Vs = Ker(i∗
s) = Im(j∗

s ) where the notations
are taken from (3.15) with coefficients in F . Then from the exactness of the
sequence (3.15) it follows that

(3.17) rank i∗
s(H

1(M,F )) = rank(H1(M,F )) − dimVs = p − dimVs.

Therefore,

(3.18)
k∑

s=1

rank i∗
s(H

1(M,F )) =
k∑

s=1

(p − dimVs) = pk−
k∑

s=1

dimVs.

If

(3.19)
k∑

s=1

dimVs > p(k − 1)

then by Lemma 3.3 there exist elements ci ∈ Vi,1 ≤ i ≤ k such that the product∏k
i=1 ci �= 0 which contradicts Lemma 3.5. This implies that (3.19) is false and,

therefore, (3.18) implies (i).
Let us prove (ii). Suppose inequality (ii) is false. Then for every integer s

satisfying 1 ≤ s ≤ k we have

rank i∗
s(H

1(M,F )) = p − dimVs < p − �(h1, . . . , hp, k)

which implies that dimVs ≥ �(h1, . . . , hp, k) + 1. Therefore, by Lemma 3.4
there exist elements cs ∈ Vs for all s,1 ≤ s ≤ k such that their product

∏k
s=1 cs

is nonzero which again contradicts Lemma 3.5. �

4. Proofs of Theorems 2.1–2.4

Proof of Theorem 2.1. Assume the contrary, that is, that ρ maps each
set Li bijectively (and, therefore, homeomorphically) onto Hi. From The-
orem 3.1, it follows that for some integer s,1 ≤ s ≤ k for the set Hs we have

(4.1) p − �(h1, . . . , hp, k) ≤ rank i
∗(H1(M,F )) ≤ rank(H1(Hs, F )),
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where i : Hs ⊂ M is the inclusion map. Since F is a field, there is a natural iso-
morphism Hk(S,F ) ≈ Hom(Hk(S,F ), F ) for any space S and k > 0. See [14]
for various generalizations. This statement, together with (4.1), implies that
the group i∗(H1(Hs, F )) ⊂ H1(M,F ) also has rank at least p − �(h1, . . . , hp, k)
where i∗ : H1(Hs, F ) → H1(M,F ) is the homorphism induced by the inclusion
map i. Since F is a field, we also have from the condition of our theorem

rank(H1(M̃,F )) = rank(H1(M̃,F )) < p − �(h1, . . . , hp, k)(4.2)
≤ rank i∗(H1(Hs, F )).

Consider the following commutative diagram

(4.3)
H1(Ls, F )

j∗−→ H1(M̃,F )
ρ1∗ ↓ ρ∗ ↓

H1(Hs, F ) i∗−→ H1(M,F )

where the vertical homomorphisms are induced by ρ and the horizontal ones
by inclusions. Due to (4.2) and the fact that ρ is a homeomorphism on Ls

(and, therefore, ρ1∗ is an isomorphism), it follows that

(4.4) rank
(
i∗ ◦ ρ1∗(H1(Ls))

)
≥ p − �(h1, . . . , hp, k)

however, the commutativity of the diagram above and the condition of the
theorem imply that,

(4.5) rank
(
ρ∗ ◦ j∗(H1(Ls))

)
≤ rank(H1(M̃)) < p − �(h1, . . . , hp, k).

Since ρ∗ ◦ j∗(H1(Ls)) = i∗ ◦ ρ1∗(H1(Ls)), (4.4) contradicts (4.5). This contra-
diction proves the theorem. �

Proof of Theorem 2.2. We can assume that all sets Hi and, therefore, all
Li are different. Otherwise, we can remove the repeated sets and prove our
theorem for the reduced collection of sets which will imply it for the original
collection. Let N denote the set of all positive integers and let Nk be the set
of all integers s, 1 ≤ s ≤ k and let S = {Jm : m ∈ N } be the set of all nonzero
vectors in Rn with integer coordinates. Let also Lm

i denote a set obtained
via a parallel translation Lm

i = P (Li, Jm) of Li by a vector Jm. From the
conditions of the theorem, it follows that

(4.6)
k⋃

i=1

∞⋃
m=1

Lm
i = Rn.

Since all sets Lm
i are bounded, the covering {Lm

i : i ∈ Nk,m ∈ N } is locally
finite and, therefore, only a finite number of its elements intersects every n
dimensional cube In ⊂ Rn.

If In is large enough so that no set Lm
i intersects both of any two of

its opposite faces, then there exist at least n + 1 sets Lm1
i1

, . . . ,L
mn+1
in+1

with
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nonempty intersection,

(4.7)
n+1⋂
q=1

L
mq

iq
�=∅

see [1], Theorem IV.2, p. 43 (Lebesgue’s Covering theorem which states that
for any finite closed covering of a cube In with sets which do not simulta-
neously intersect any two opposite faces of In, there exist at least n + 1 of
the elements of this covering with nonempty intersection). Let us partition
the collection of sets U = {L

mq

iq
: q ∈ Nn+1} into groups with the same lower

indices, that is, into groups of sets such that sets in each group are obtained
by parallel translations of the same set Li via a vector from S. Let there be
l groups and let the ith group have ri elements so that

(4.8)
l∑

i=1

ri = n + 1.

It is clear that if for every integer i, such that 1 ≤ i ≤ l, the map ρ has
multiplicity at least ri on every set in the ith group then (4.8) implies the
theorem. Let us consider a group consisting of p = rs elements {Lk

s : 1 ≤ k ≤
p} where we simplified the notations to avoid multiple indices (which may
require renumbering of the set of vectors S). (4.7) implies that

(4.9)
p⋂

k=1

Lk
s �= ∅.

Let

(4.10) x ∈
p⋂

k=1

Lk
s .

Then our notational convention implies that

(4.11) Lk
s = P (Ls, Jk), Lk

s = P (L1
s, Jk − J1).

Now, (4.10), (4.11) imply that for every k,2 ≤ k ≤ p we have

(4.12) yk = x + J1 − Jk ∈ L1
s.

Therefore, the coordinates of the points x, y2, . . . , yp differ only by an integer
and they all belong to L1

s. This means that the multiplicity of π on L1
s is at

least p = rs and, therefore, the multiplicity μs of π on Ls is also at least rs.
This, together with (4.8), (4.11) imply

∑k
i=1 μi ≥ n + 1. �

Proof of Theorem 2.3. By the Hopf’s theorem, Corollary 13, Chapter 5.9
in [3], the cohomology ring over any field F of characteristic 0 of a finite type
H-space is isomorphic to that of the finite product of spheres. Therefore,
H∗(M,F ) contains the exterior algebra of n = β1(M,F ) variables which is the
same as F [1, . . . ,1, x1, . . . , xn] (here, 1 is repeated n times). In this case, from
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Notation 2.1 it follows that �(h1, . . . , hp, k) = k − 1, therefore the inequality
rank(H1(M̃,F )) = β1(M̃,F ) < β1(M,F ) − k +1 is equivalent to the one given
in Theorem 2.1. Our theorem now follows from Theorem 2.1. �

Remark 4.1. Let M =
∏p

i=1 RP hi × Tn be a product of p real projective
spaces RPhi of dimension hi > 1, and an n dimensional torus Tn where p or
n can be zero. Then the cohomology algebra H∗(M,Z2) is

Z2[1, . . . ,1, h1, . . . , hp, t1, . . . , tn, x1, . . . , xp],

where 1 is repeated n times, and t1, . . . , tn are generators corresponding to
the cohomology of the torus. In this case, from the Notation 2.1 it follows
that for k ≤ n + 1,

�(1, . . . ,1, h1, . . . , hp, k) = k − 1
and for n + 1 < k ≤ n + h0 + · · · + hp we have

�(1, . . . ,1, h1, . . . , hp, k) = n + i,

where n + h0 + · · · + hi < k ≤ n + h0 + · · · + hi + hi+1.

Proof of Theorem 2.4. First, notice that the one dimensional sphere is
homeomorphic to the one dimensional real projective space, so M could be
assumed to be the product of projective spaces only, that is, we can assume
that

M =
p∏

i=1

RP hi .

The cohomology ring H∗(
∏p

i=1 RPhi ,Z2) is isomorphic to Z2[h1, . . . , hp, x1,
. . . , xp]. The needed result now follows from Theorem 2.1 and Remark 4.1. �
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