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ON CONJUGACY GROWTH FOR SOLVABLE GROUPS

EMMANUEL BREUILLARD AND YVES DE CORNULIER

Abstract. We prove that a finitely generated solvable group
which is not virtually nilpotent has exponential conjugacy growth.

This note is an addendum to the paper “On the conjugacy growth functions
of groups” by Guba and Sapir [6].

1. Introduction

Let G be a finitely generated group. Our goal is to provide a proof of the
following result.

Theorem 1.1. If G is virtually solvable and not virtually nilpotent, then G
has exponential conjugacy growth. In fact, the exponential growth rate can be
bounded below by a positive number independent of the generating set.

In fact, using different techniques, Hull [5] independently proved that non-
virtually nilpotent polycyclic groups have exponential conjugacy growth.

Recall that a group G generated by a finite symmetric set Σ containing 1G

is said to have exponential conjugacy growth, if

CG,Σ := lim inf
n→∞

1
n

log cG,Σ(n) > 0,

where cG,Σ(n) is the number of conjugacy classes of G intersecting the n-ball
Σn nontrivially. It is easy to see that although CG,Σ may depend on the choice
of Σ, the fact that it is positive does not. If the CΣ,G admit a positive lower
bound independent of the choice of Σ in G, we say that G has uniform expo-
nential conjugacy growth. Thus, Theorem 1.1 can be reformulated as saying
that finitely generated nonvirtually nilpotent solvable groups have uniform
exponential conjugacy growth.
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Recall that Osin proved in [10] that finitely generated solvable groups have
uniform exponential word growth unless they are virtually nilpotent. This
means that the rate of exponential word growth can be bounded below by
a number independent of the choice of a generating set in G. Theorem 1.1
is thus a strengthening of Osin’s result. However, we will use the fact that
solvable groups have uniform exponential growth in our proof of Theorem 1.1.

In [2], the first-named author has given another proof of Osin’s theorem
which relied on a ping-pong argument and made key use of a theorem of
Groves about metabelian images of solvable groups. This result of Groves
will also be instrumental in the proof of Theorem 1.1.

Let us recall Groves’ theorem. Let Aff be the algebraic group of affine
transformations of the line {x �→ ax + b}, that is, if K is any field,

Aff(K) =
{

u(a, b) :=
(

a b
0 1

)
, a ∈ K×, b ∈ K

}
.

Theorem 1.2 (Groves [7]). Let G be a finitely generated virtually solvable
group which is not virtually nilpotent. Then there exists a field K and a finite
index subgroup H of G such that H admits a homomorphism into the affine
group Aff(K) whose image is not virtually nilpotent.

For a proof of the above theorem, we refer the reader to Groves’ original
paper, which is based on prior work of Hall, or to [2, Theorem 1.6] for a
self-contained proof.

Groves’s theorem will reduce the proof of Theorem 1.1 to the case when G
is a subgroup of Aff(K) for some field K, which can be assumed to be finitely
generated because G is.

Let us end this introduction by mentioning the following open problem (see
also Problem 3.2 below).

Problem 1.3. Prove (or disprove) that any nonvirtually nilpotent, finitely
generated, elementary amenable group has exponential conjugacy growth.

By Chou [4], such a group has exponential growth; however there is no
analogue of Groves’s theorem for those groups and accordingly our methods
do not apply.

2. Proof of the main theorem

We now begin the proof of Theorem 1.1 and we will complete it by the end
of this section modulo certain auxiliary observations, which will be proven in
the last two sections, the first of which being the following slight refinement
of Groves’s theorem.

Recall that a global field is a finite algebraic extension of either Q or Fp(t).

Proposition 2.1. In Groves’s Theorem 1.2, we can take K to be a global
field.
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Proof. See Section 4. �

To prove Theorem 1.1, we also need the following elementary lemma, whose
proof is postponed to Section 3.

Lemma 2.2. Let G be a finitely generated group and H either a quotient
or a finite index subgroup of G. If H has exponential conjugacy growth (resp.
uniform exponential conjugacy growth), then so does G.

Theorem 1.1 will easily follow from the following proposition.

Proposition 2.3. Let K be a global field. Let G be a finitely generated
subgroup of Aff(K) which is not virtually nilpotent. Let r = rk(Γ) be the rank
(i.e. torsion-free rank as an Abelian group) of the image Γ of G inside K×

and Σ a finite symmetric generating subset of G containing id. Then the
intersection of Σn with any unipotent conjugacy class of G has cardinality
OΣ(nr) (uniformly over the conjugacy class).

Since G is finitely generated, the matrix entries of its elements lie in a
finitely generated subring A of K. Such a ring A can be embedded (diagonally)
as a discrete subring into a finite product

∏d
i=1 Ki of local fields (Archimedean

or not), so that the product formula is satisfied, namely
∏

αi(a) = 1 for all
a ∈ A×, where αi(x) is the absolute value of x ∈ Ki, and A× the group of
invertible elements in A.

Setting α(a) = maxi αi(a) we see from the product formula that α(a−1) ≤
α(a)d−1 for all a ∈ A×.

The map
∏d

i=1 K×
i → Rd, (xi)i �→ (log(α(xi))i is clearly a proper map, and

hence so is the group homomorphism Γ → Rd, γ �→ (log(αi(γ)))i, where Γ is
endowed with the discrete topology. Its image is a discrete subgroup of Rd of
rank at most r = rk(Γ) and consequently, the number of elements γ ∈ Γ with
α(γ) ≤ exp(n) is O(nr).

Proof of Proposition 2.3. The image Γ of G in K× lies in A×. Since the
conjugation action on the set of unipotent elements factors through A×, we
see that two elements u(1, b) and u(1, b′) are conjugate in G if and only if
there exists γ ∈ Γ such that b′ = γb.

It is easy to check that there exists some C = CΣ > 0 such that if u(a, b) ∈
Σn, then α(b) ≤ exp(Cn). On the other hand α(γ) ≤ α(b−1)α(b′) ≤ α(b)d−1 ×
α(b′) ≤ exp(dCn). According to the remark preceding the proof of the propo-
sition, there are only O(nr) such elements in Γ. We are done. �

Proof of Theorem 1.1. Applying Groves’s theorem combined with Propo-
sition 2.1 and Lemma 2.2, we may assume that G is a finitely generated
nonvirtually nilpotent subgroup of Aff(K), where K is a global field. Let Σ
be a finite symmetric generating subset of G containing id.
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Applying Osin’s theorem on uniform exponential growth, or rather the
more precise Theorem 1.3 of [2], we know that Σn contains at least (1 + ε)n

elements, where ε is positive and independent of the choice of Σ. On the other
hand, the image Γ of G in K× is a finitely generated Abelian group. Let r be
its rank. The size of the image of Σn/2 is therefore at most RΣ(n) = OΣ(nr).
By the pigeonhole principle, there must be one value in K× with at least
(1 + ε)n/2/RΣ(n) preimages in Σn/2. Given g,h two such preimages gh−1 is
a unipotent element in Σn. This makes at least (1 + ε)n/2/RΣ(n) unipotent
elements in Σn.

Applying Proposition 2.3, there are at most OΣ(nr) elements of Σn in
every given unipotent conjugacy class of G. Hence for all n large enough [i.e.,
≥ n0(Σ)], one can find at least (1 + ε

2 )n/2 different conjugacy classes in Σn.
This ends the proof. �

3. General facts regarding conjugacy growth

We prove here Lemma 2.2. In fact, it immediately follows from the following
more general result. If r ≥ 0 is real, define cG,Σ(r) = cG,Σ(�r�), which is the
maximal number of non-G-conjugate elements in the r-ball in G.

Lemma 3.1. (1) Let G be a finitely generated group and H a quotient of G.
Let Σ be a generating subset (finite symmetric and containing id), and Σ′ the
image of Σ into H . Then for all n we have cG,Σ(n) ≥ cH,Σ′ (n).

(2) Let G be a finitely generated group and H a subgroup of finite index k.
Let Σ be a generating subset (finite symmetric and containing id). Then there
exists a generating subset Σ′ of H (finite symmetric and containing id), such
that, for all n we have

cG,Σ(n) ≥ 1
k

cH,Σ′

(
n

2k + 1

)
.

Proof. The assertion for H a quotient of G is left to the reader.
If H has index k in G, it is well-known (see, e.g., [3, Lemma C.1] for a short

proof or deduce it from [9, Lemma 2.2 and Theorem 2.7]) that Σ2k−1 contains
a symmetric generating subset Σ′ of H . So Σn contains the (n/(2k − 1))-ball
of (H,Σ′). In particular, it contains a subset Y consisting of cH,Σ′ (n/(2k − 1))
pairwise non-H-conjugate elements. Now it is clear that the maximal number
of pairwise G-conjugate elements in Y is k, so Y contains a subset of at least
cH,Σ′ (n/(2k − 1))/k pairwise non-G-conjugate elements. �

Problem 3.2. Prove (or disprove) that the converse of Lemma 2.2 does
not hold, that is, that exponential conjugacy growth is not inherited by finite
index subgroups.
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4. The specialization argument

In this section, we prove Proposition 2.1. The proof relies on the following
specialization argument.

Lemma 4.1. Let A be a finitely generated commutative ring with no zero
divisors. Suppose that x, y ∈ A, x is not a root of unity and xy 	= 0. Then
there exists a global field L and a ring homomorphism φ : A → L such that
φ(x) is not a root of unity and φ(y) 	= 0.

First, we explain how to deduce Proposition 2.1 from the last lemma, and
then proceed to the proof of that lemma. We shall need the following obser-
vation.

Lemma 4.2. Let Γ be a subgroup of Aff(K). Then Γ is virtually nilpotent if
and only if the image of Γ in the multiplicative group K× is finite or Γ ∩ K =

{0}.

Proof. If one of the two conditions holds, clearly Γ is virtually Abelian.
Conversely, suppose that Γ has a finite index nilpotent subgroup Λ and

that Γ ∩ K is nontrivial. Suppose by contradiction that the image of Γ in K×

is infinite. Then the conjugates of any nontrivial element in Γ ∩ K give at
least as many elements as there are in the image of Γ in K×. Hence, Γ ∩ K
and hence Λ ∩ K is infinite as well. On the other hand, since the centralizer
in Aff(K) of any nontrivial element is Abelian, and any nontrivial nilpo-
tent group has a nontrivial center, we deduce that any nilpotent subgroup of
Aff(K) is Abelian; in particular, Λ is Abelian; since moreover the centralizer
in Aff(K) of any nontrivial element of K is contained in K, we deduce that
Λ ⊂ K. So the image of Γ in K× is finite, a contradiction. �

Proof of Proposition 2.1. Let A be the ring generated by matrix entries
of G. Let x ∈ A× (the multiplicative group of invertible elements in A) be
an element of infinite order in the projection of G on K×, and let u ∈ A be
a nontrivial element in G ∩ K. By Lemma 4.1, there exists a homomorphism
from A to a global field L, so that the image of x is not a root of unity and
the image of u is nonzero. By Lemma 4.2, the image of G in Aff(L) is not
virtually nilpotent. �

We now begin the proof of Lemma 4.1 with the following observation.

Lemma 4.3. Let K be an infinite field, K̂ an algebraic closure, and A a
finitely generated commutative K-algebra. Let A be integral over a free subring
B = K[t1, . . . , td], and let u be a nonzero element of A. Then there exists a
K-algebra homomorphism φ : A → K̂ mapping B into K and mapping u to
a nonzero element. In particular, for every a ∈ A, if a has integral degree k
over B, then φ(a) has degree ≤ k over K.
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Proof. Let � be the integral degree of u. We have u� +pk−1u
�−1 + · · · +p0 =

0, where pi ∈ K[t1, . . . , td] with p0 	= 0. Since K is infinite, there exists
(u1, . . . , ud) ∈ Kd such that p0(u1, . . . , ud) 	= 0. By the lifting theorem for inte-
gral extensions (see [8, VII.3.1]), the K-algebra homomorphism K[t1, . . . , td] →
K mapping ti to ui extends to a homomorphism φ : x �→ x̄ from A to the al-
gebraic closure of K. We have

ū
(
ūk−1 + φ(pk−1)ūk−2 + · · · + φ(p1)

)
= −φ(p0),

so ū 	= 0. The last assertion is clear since φ(B) ⊂ K. �

Lemma 4.4. Let K be a finitely generated field and K̂ an algebraic closure.
Then for all k, the set of roots of unity in K̂ having degree ≤ k over K, is
finite.

Proof. This is very classical. Clearly, if K0 ⊂ K is a finite extension, it is
enough to prove the result for K0. Taking K0 to be a purely transcendental
extension of F = Fp or Q [8, VIII.1], we can therefore suppose that K =
F (t1, . . . , tn). Now if an element has degree ≤ k over F (t1, . . . , tn) and is
algebraic over F , then it has degree ≤ k over F (see the proof of [1, V.§11.7,
Corollary 1]). This reduces to the case when K = F ; if F is finite this is
trivial since there are finitely many elements of each degree in F̂ ; if F = Q
this follows from the fact that the degree of a primitive nth root of unity is
given by Euler’s totient function ϕ(n) (see [1, V.§11.4]). �

Proof of Lemma 4.1. Define (R,K) = (Z,Q) if A has zero characteristic,
and (R,K) = (Fp[x],Fp(x)) if A has characteristic p > 0 (in which case x is
by hypothesis transcendental over Fp). Then A embeds into A′ = A ⊗R K,
which is the localization of A with respect to R − {0}. Let K̂ be an algebraic
closure of K.

By the Noether normalization theorem ([8, VIII.2.1]), A′ is a finite integral
extension of some B := K[t1, . . . , tn], where t1, . . . , tn are algebraically inde-
pendent indeterminates. Let k be the minimal degree of a monic polynomial
over B vanishing at x. By Lemma 4.4, there are only finitely many roots of
unity in K̂ of degree at most k over K. Let � be the least common multiple
of their orders.

Set u = (x� − 1)y. By Lemma 4.3, there exists a K-algebra homomorphism
φ : A′ → K̂ such that φ(u) 	= 0 and φ(B) ⊂ K. Then φ(y) 	= 0 and φ(x), which
has degree at most k over K, is not a root of unity, for otherwise its order
would divide �, whilst φ(x)� 	= 1. �
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