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HILBERTIAN MATRIX CROSS NORMED SPACES ARISING
FROM NORMED IDEALS

TAKAHIRO OHTA

Abstract. Generalizing Pisier’s idea, we introduce a Hilbertian
matrix cross normed space associated with a pair of symmetric

normed ideals. When the two ideals coincide, we show that our

construction gives an operator space if and only if the ideal is

the Schatten class. In general, a pair of symmetric normed ideals

that are not necessarily the Schatten class may give rise to an

operator space. We study the space of completely bounded map-
pings between the matrix cross normed spaces obtained in this

way and show that the multiplicator norm naturally appears as
the completely bounded norm.

1. Introduction

An operator space is a subspace of the set of bounded operators on a Hilbert
space, which is abstractly characterized as a Banach space equipped with
matrix norms satisfying certain properties. An operator space whose base
space is a Hilbert space is said to be a Hilbertian operator space. The theory of
homogeneous Hilbertian operator space is one of the central topics in operator
space theory and it plays an essential role in various situations. For example, it
is used to analyze the structures of the space of operator spaces with the metric
which is analogous to the Banach–Mazur distance (cf. [18]) and to obtain
an embedding of operator spaces into noncommutative Lp-spaces (cf. [11]
and [16]).

The relationships between homogeneous Hilbertian operator spaces and op-
erator ideals are first studied by Mathes and Paulsen. Mathes and Paulsen
considered in [14] a larger category, called matricially cross normed spaces
(m.c.n. spaces), than that of operator spaces. They showed that if H1 and H2

are homogeneous Hilbertian m.c.n. spaces with the common base space H ,
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then the space of completely bounded mappings CB(H1,H2) becomes a sym-
metric normed ideal (s.n. ideal) [14, Proposition 1.2] and showed that every
s.n. ideal on B(H) which is not equivalent to the ideal of compact operators
or the ideal of trace class operators is isomorphic as a set to the space of com-
pletely bounded mappings on some homogeneous Hilbertian m.c.n. spaces [14,
Theorem 2.2].

Pisier showed that the norm of the elements in the interpolating spaces
between the row Hilbert space and the column Hilbert space is represented
by the operator norm on the Schatten ideals [18, Theorem 8.4]. Inspired by
this analysis, in our paper we introduce a Hilbertian m.c.n. space H(Φ,Ψ) for
a pair of symmetric norming functions (s.n. functions) Φ,Ψ with Φ ≥ Ψ and
investigate the structure of the space. The matrix norm of H(Φ,Ψ) is defined
by

‖T ‖H(Φ,Ψ) =
(

sup
x

‖
∑

TixT ∗
i ‖Ψ

‖x‖Φ

)1/2

,

where T =
∑

ξi ⊗ Ti ∈ H ⊗ Mn and (ξi) is an orthonormal basis of a separable
Hilbert space H . We also focus on the space of completely bounded mappings
between two spaces arising in this way. The m.c.n. space H(Φ,Ψ) is not always
an operator space. In Section 3, we show that if the m.c.n. space H(Φ,Ψ) is
an operator space, then for all x, y, z ∈ SΦ the following inequality

‖x ⊗ y‖Ψ

‖x‖Ψ
≤ ‖z ⊗ y‖Φ

‖z‖Φ

is satisfied, where SΦ is the s.n. ideal arising from Φ. In particular, when
Φ = Ψ we show that the m.c.n. space H(Φ) = H(Φ,Φ) is an operator space
if and only if Φ is the Schatten norm. However, the situation differs for
Φ �= Ψ. Indeed, when Φ is a Q∗-norm and Ψ is a Q-norm, H(Φ,Ψ) is always
an operator space.

We also study the space of completely bounded mappings between m.c.n.
spaces we constructed. We determine the completely bounded norm from the
row Hilbert space R to H(Φ,Ψ) as

‖x‖CB(R,H(Φ,Ψ)) =
(

sup
y

‖ |x|2 ⊗ y‖Ψ

‖y‖Φ

)1/2

.

This implies that if H(Φ,Ψ) is an operator space, then we have the isomet-
ric isomorphisms CB(R,H(Φ,Ψ)) = SΨ̃ and CB(C,H(Φ,Ψ)) = SΦ̃∗ for the
column Hilbert space C (see Section 3 for the definition of Φ̃).

The above result leads us to consider the condition:

∃c > 0, ‖x ⊗ y‖Ψ ≤ c‖x‖Ψ‖y‖Ψ, ∀x, y ∈ SΨ.

This condition implies that there exists a constant

p = lim
n→∞

logn

log ‖Pn‖Φ
(Pn is any rank n projection)
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such that ‖x‖p ≤ c‖x‖Φ, where ‖x‖p is the Schatten p-norm. This together
with a dual version implies the above mentioned fact that H(Φ) is an operator
space only if Φ is the Schatten norm.

2. Preliminaries

In this section, we collect the basics of the theory of operator spaces and
operator ideals, which are often used in the paper. We refer to [9] and [17]
for the theory of operator spaces and to [10] for the theory of operator ideals.

An operator space is abstractly characterized as follows. We consider a Ba-
nach space E such that for each n ∈ N there is a norm ‖ · ‖n on the matrix
space Mn(E) of n × n matrices with entries in the elements of E and the
family {Mn(E), ‖ · ‖n} with ‖ · ‖1 equal to the original norm of E. Then we
can consider the two properties:

(M1) ‖( x 0
0 y )‖m+n = Max{ ‖x‖m, ‖y‖n} for any x ∈ Mm(E), y ∈ Mn(E), and

m,n ∈ N, and
(M2) ‖axb‖n ≤ ‖a‖ ‖x‖m‖b‖ for any x ∈ Mm(E), a ∈ Mn×m, b ∈ Mm×n, and

m,n ∈ N, where Mm×n = Mm×n(C) and axb means the matrix product.

(M1) may be replaced with

(M1)′ ‖( x 0
0 y )‖m+n ≤ Max{ ‖x‖m, ‖y‖n}, for any x ∈ Mm(E), y ∈ Mn(E), and

m,n ∈ N.

For a Hilbert space H , an operator space E ⊆ B(H) is a Banach space satis-
fying the properties (M1) and (M2) under the identification of Mn(E) as a sub-
space of Mn(B(H)) = B(Hn). Conversely, Ruan [15, Theorem 3.1] showed
that a Banach space having the matrix norm structure with the proper-
ties (M1) and (M2) has an isometric embedding into the space B(H) for some
Hilbert space H such that the matrix norms come from Mn(B(H)) = B(Hn).
The properties (M1) and (M2) are called Ruan’s axioms. In the operator
space category, the morphisms are the completely bounded (c.b.) mappings.
Let E, F be operator spaces and u be a linear mapping from E to F . We say
that u is completely bounded if

‖u‖cb = sup
n

‖idn ⊗ u : Mn(E) → Mn(F )‖ < ∞,

where Mn(E) is identified with the algebraic tensor product Mn ⊗ E. The
completely bounded norm of u is defined by ‖u‖cb . An operator space E is
said to be homogeneous if for any bounded linear mapping u on E we have
‖u‖ = ‖u‖cb . We denote the Banach space of completely bounded mappings
from E to F with norm ‖ · ‖cb by CB(E,F ).

The category of matrix cross normed spaces is larger than that of oper-
ator spaces. Let H be a separable Hilbert space with a sequence of matrix
norms {‖ · ‖n} ∞

n=1 on the family {Mn(H)}∞
n=1 such that ‖ · ‖1 coincides with
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the norm of H . We call H a matrix cross normed space (m.c.n. space) if

‖x ⊗ A‖n = ‖x‖ ‖A‖Mn

for all x ∈ H,A ∈ Mn, and n ∈ N.
For a finite-dimensional or separable infinite-dimensional Hilbert space K

with dimension n, identifying B(K) with the matrix space Mn we denote the
matrix whose (i, j)-entry is 1 and the other entries are 0 by eij .

Next, we introduce the basic theory of the operator ideals (cf. [10 Chap-
ter III]). Let c0, ĉ, and k̂ be the spaces of sequences of real numbers defined
by

c0 =
{

ξ = {ξi} : lim
i→∞

ξi = 0
}

,

ĉ =
{
ξ = {ξi} ∈ c0 : only finitely many ξi’s are nonzero

}
,

k̂ =
{
ξ = {ξi} ∈ ĉ : ξ1 ≥ ξ2 ≥ · · · ≥ ξn ≥ · · · ≥ 0

}
,

respectively. A real valued function Φ on ĉ is called a symmetric norming (s.n.)
function if it satisfies the followings:

(1) Φ is a norm on ĉ;
(2) Φ(1,0,0, . . .) = 1;
(3) Φ(ξ1, ξ2, . . . , ξn,0,0, . . .) = Φ(|ξj1 |, |ξj2 |, . . . , |ξjn |,0,0, . . .) for all ξ ∈ ĉ,

where {j1, j2, . . . , jn} is any permutation of {1,2, . . . , n}.

For an s.n. function Φ, we set

cΦ =
{

ξ = {ξi} ∈ c0 : sup
n

Φ
(
ξ(n)
)

< ∞
}

,

where ξ(n) = (ξ1, . . . , ξn,0,0, . . .). We extend the domain of Φ by

Φ(ξ) = lim
n→∞

Φ
(
ξ(n)
)
, ξ ∈ cΦ.

For 1 ≤ p ≤ ∞, we denote by Φp the �p-norm.
Throughout the paper, H denotes a separable infinite-dimensional Hilbert

space with an orthonormal basis {ξi} ∞
i=1 and S∞ denotes the subspace of

B(H) consisting of all compact operators on H . For x ∈ S∞, we denote
by {sj(x)}∞

j=1 the singular numbers (s-numbers) of x, i.e., the nonincreasing
rearrangement of eigenvalues of |x|.

Let S be a two-sided ideal of B(H). A functional ‖ · ‖s on S is said to be
a symmetric norm if it satisfies the followings:

(1) ‖ · ‖s is a norm on S;
(2) for any rank one operator x, ‖x‖s = ‖x‖;
(3) ‖axb‖s ≤ ‖a‖‖x‖s‖b‖ (∀a, b ∈ B(H), ∀x ∈ S).

We call (S, ‖ · ‖s) a symmetrically normed ideal if ‖ · ‖s is a symmetric norm
on S and makes S a Banach space.
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For an s.n. function Φ, we denote by SΦ the set of operators x ∈ S∞ with
s(x) = {sj(x)} ∈ cΦ, and put

‖x‖Φ = Φ(s(x)).

Then SΦ is an s.n. ideal with the norm ‖ · ‖Φ. In this paper, we often use the
property

xx∗ ∈ SΦ ⇔ x∗x ∈ SΦ and ‖xx∗ ‖Φ = ‖x∗x‖Φ.

Let Φ be an s.n. function. The function

Φ∗(η) = max
ξ∈k̂

{
1

Φ(ξ)

∑
i

η∗
i ξi

}
.

makes sense for any η ∈ ĉ and Φ∗ is an s.n. function. We call Φ∗ the adjoint
of Φ. Note that for any s.n. function Φ, we have (Φ∗)∗ = Φ and the following
duality

‖x‖Φ = sup
‖y‖Φ∗ ≤1

| Tr(yx)|.

We introduce a few classes of normed ideals used in this paper. We denote
by Sp = SΦp the Schatten ideal for 1 ≤ p ≤ ∞. For 1 ≤ q ≤ p < ∞, the Lorentz
ideal Sp,q is an s.n. ideal whose norm is given by

‖x‖p,q =

( ∞∑
j=1

sj(x)q

j1−q/p

)1/q

.

Let 1 = π1 ≥ π2 ≥ · · · ≥ 0 be a sequence of nonincreasing positive numbers
such that limn→∞ πn = 0 and

∑∞
n=1 πn = ∞. We say that such a sequence is

binormalizing. The s.n. function Φπ is defined by

Φπ(a) =
∞∑

n=1

πna∗
n, a = (an),

where (a∗
n) is the nonincreasing rearrangement of (an). Note that if q = 1, then

the Lorentz ideal Sp,1 is equal to the ideal SΦπ defined by the binormalizing
sequence πj = j1/p−1.

Finally, we introduce an important class of operator spaces. If E0,E1 are
compatible Banach spaces, then we denote by (E0,E1)θ for 0 < θ < 1 the
complex interpolation space of them (see [5, Chapter 4]). If E0,E1 are opera-
tor spaces whose base spaces are compatible, we construct an operator space
complex interpolation by identifying Mn((E0,E1)θ) with (Mn(E0),Mn(E1))θ

for each n ∈ N. We denote by R and C the row and column operator space re-
spectively [9, Section 3.4]. These spaces are homogeneous Hilbertian operator
spaces whose matrix norms are given by∥∥∥∥∥

n∑
i=1

ξi ⊗ Ti

∥∥∥∥∥
R

=

∥∥∥∥∥
n∑

i=1

TiT
∗
i

∥∥∥∥∥
1/2

,

∥∥∥∥∥
n∑

i=1

ξi ⊗ Ti

∥∥∥∥∥
C

=

∥∥∥∥∥
n∑

i=1

T ∗
i Ti

∥∥∥∥∥
1/2

,
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for a finite sequence of matrices {Ti}n
i=1. Note that R∗ = C and C∗ = R in

the operator space category. We denote by R(θ) the operator space complex
interpolation (R,C)θ for 0 < θ < 1, which is a homogeneous Hilbertian oper-
ator space. We set R(0) to be the row Hilbert space R and R(1) to be the
column Hilbert space C. When θ = 1/2, we write OH = R(1/2). Pisier [18,
Theorem 1.1] introduced these spaces and showed that for any finite sequence
{Ti} it holds that ∥∥∥∥∑

i

ξi ⊗ Ti

∥∥∥∥
OH

=
∥∥∥∥∑

i

Ti ⊗ T̄i

∥∥∥∥1/2

,

where T̄i means the complex conjugate of Ti. Another important property
of OH is the self-duality. For an operator space E, the operator space Ē
means its complex conjugate. The matrix norms of the elements of Ē are
defined by

‖(xij)‖Mn(Ē) = ‖(xij)‖Mn(E).

Pisier showed in [18, Theorem 1.1] the completely isometric identification

OH = OH ∗.

Another important example of a homogeneous Hilbertian operator space is the
minimal operator space Hmin. Let E be a Banach space. We can embed E into
a commutative C∗-algebra (for example the space of all continuous functions
on the unit ball of E∗ equipped with the weak topology). We denote by
min(E) the operator space whose matrix norms arise form this embedding.
The minimal operator space norm is the minimal norm among all operator
space norms. When E is a Hilbert space H , we denote the minimal operator
space by Hmin. The matrix norm on Hmin satisfies∥∥∥∥∥

m∑
i=1

ξi ⊗ Ti

∥∥∥∥∥
min

= sup

∥∥∥∥∥
m∑

i=1

viTi

∥∥∥∥∥,
where the supremum is taken over all unit vectors {vi} of �m

2 .

3. Basic properties of the m.c.n. space H(Φ,Ψ)

Let K be a separable Hilbert space which is identified with a subspace of
separable infinite-dimensional Hilbert space. For n ∈ N ∪ {∞}, we denote by
In the identity operator on the Hilbert space of dimension n. Let T be a
finite sum T =

∑
i ξi ⊗ Ti in the algebraic tensor product H ⊗ B(K) and we

set T ∗ =
∑

i ξi ⊗ T ∗
i . Pisier showed the identification of matrix norms of R(θ)

(0 ≤ θ ≤ 1) in [18, Theorem 8.4] as follows:∥∥∥∥∑
i

ξi ⊗ Ti

∥∥∥∥
R(θ)⊗minB(K)

= sup
{∥∥∥∥∑

i

TixT ∗
i

∥∥∥∥1/2

p

: x ∈ Sp,+, ‖x‖p ≤ 1
}

,
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where p = θ−1. We define the operators ρT and ρT ∗ on B(K) by

ρT (x) =
∑

TixT ∗
i , x ∈ B(K),

ρT ∗ (x) =
∑

T ∗
i xTi, x ∈ B(K).

Neither ρT nor ρT ∗ depends on the choice of the basis {ξi} ∞
i=1. If S is a two-

sided ideal in B(K), we have ρT (S) ⊆ S and ρT ∗ (S) ⊆ S. For fixed s.n.
functions Φ and Ψ with Ψ ≤ Φ, we define a norm ‖ · ‖Φ,Ψ on the space of finite
sums T ∈ H ⊗ B(K) by

‖T ‖Φ,Ψ = ‖ρT : SΦ → SΨ‖1/2.

Now, we introduce an m.c.n. space H(Φ,Ψ) whose matrix norm structure
is given by identifying Mn(H(Φ,Ψ)) with (H ⊗ Mn, ‖ · ‖Φ,Ψ). We write
H(Φ) = H(Φ,Φ) for simplicity. Before proving that H(Φ,Ψ) is a homoge-
neous m.c.n. space, we prove a useful formula. We denote by F (K) and U(K)
the subsets of B(K) consisting of all finite-rank operators and all unitary op-
erators, respectively. If S is a subset of B(K), we denote by S+ the subset of
S consisting of positive elements in B(K).

Lemma 3.1. For any operator T , we have the equality

‖T ‖2
Φ,Ψ = sup{Tr(aρT (b))} = ‖T ∗ ‖2

Ψ∗,Φ∗ ,

where the supremum is taken over all a, b ∈ F (K)+ with ‖a‖Ψ∗ ≤ 1 and
‖b‖Φ ≤ 1.

Proof. Note first that for any b ∈ SΦ it holds that

‖b‖Φ = sup
a∈F (K)

‖a‖Φ∗ ≤1

| Tr(ab)|,

and if a is positive we can choose b to be also positive [10, proof of Theo-
rem 12.2]. The trace duality implies

‖ρT : SΦ → SΨ‖ = sup
‖b‖Φ≤1

‖ρT (b)‖Ψ = sup
‖b‖Φ≤1

‖a‖Ψ∗ ≤1

| Tr(aρT (b))|.

If we let a = u|a| and b = v|b| be the polar decompositions of a and b, respec-
tively, by the Schwarz inequality we have

| Tr(aρT (b))| ≤ Tr
(∑

i

| |a| 1
2 Tiv|b| 1

2 |2
)1/2

Tr
(∑

i

| |a| 1
2 u∗Ti|b| 1

2 |2
)1/2

= Tr(|a|ρT (v|b|v∗))1/2 Tr(u|a|u∗ρT (|b|))1/2

≤ sup
x,y≥0

‖x‖Ψ∗ ,‖y‖Φ≤1

Tr(xρT (y)).
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Thus,

‖ρT : SΦ → SΨ‖ = sup
x,y≥0

‖x‖Ψ∗ ,‖y‖Φ≤1

Tr(xρT (y)) = sup
y≥0

‖y‖Φ≤1

‖ρT (y)‖Ψ

= sup
x∈F (K)+,y≥0

‖x‖Ψ∗ ,‖y‖Φ≤1

Tr(xρT (y)) = sup
x∈F (K)+

‖x‖Ψ∗ ≤1

‖ρT ∗ (x)‖Φ∗

= sup
x,y∈F (K)+

‖x‖Ψ∗ ,‖y‖Φ≤1

Tr(xρT (y)). �

Lemma 3.2. The space H(Φ,Ψ) is homogeneous.

Proof. Let A ∈ B(H). It suffices to show that for any finite sequence

T =
m∑

i=1

ξi ⊗ Ti ∈ H ⊗ Mn

and x ∈ Mn,+, the norm inequality∥∥ρ(A⊗I)T (x)
∥∥

Ψ
≤ ‖A‖2‖ρT (x)‖Ψ.

holds. Let H0 be the finite-dimensional subspace of H spanned by {Aξi}m
i=1

and {ηj }k
j=1 be an orthonormal basis of H0. Then k ≤ m and there is an

m × k-matrix B = (bij) such that ‖B‖ ≤ ‖A‖ and Aξi =
∑k

j=1 bijηj . Note
that

(A ⊗ In)T =
∑

i

Aξi ⊗ Ti =
∑

j

ηj ⊗
(∑

i

bijTi

)
.

Thus, if we let Sj =
∑

i bijTi for 1 ≤ j ≤ k, then∥∥ρ(A⊗I)T (x)
∥∥

Ψ

=
∥∥∥∥∑

j

SjxS∗
j

∥∥∥∥
Ψ

=

∥∥∥∥∥∥∥
⎛⎝S1 · · · Sk

©

⎞⎠ (Ik ⊗ x)

⎛⎜⎝S∗
1
... ©

S∗
k

⎞⎟⎠
∥∥∥∥∥∥∥

Ψ

=

∥∥∥∥∥∥∥(Ik ⊗ x
1
2 )

⎛⎜⎝S∗
1
... ©

S∗
k

⎞⎟⎠
⎛⎝S1 · · · Sk

©

⎞⎠ (Ik ⊗ x
1
2 )

∥∥∥∥∥∥∥
Ψ

=

∥∥∥∥∥∥∥(Ik ⊗ x
1
2 )(B∗ ⊗ In)

⎛⎜⎝T ∗
1
... ©

T ∗
m

⎞⎟⎠
⎛⎝T1 · · · Tm

©

⎞⎠ (B ⊗ In)(Ik ⊗ x
1
2 )

∥∥∥∥∥∥∥
Ψ
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≤ ‖B‖2

∥∥∥∥∥∥∥(Im ⊗ x
1
2 )

⎛⎜⎝T ∗
1
... ©

T ∗
m

⎞⎟⎠
⎛⎝T1 · · · Tm

©

⎞⎠ (Im ⊗ x
1
2 )

∥∥∥∥∥∥∥
Ψ

≤ ‖A‖2‖ρT (x)‖Ψ. �

Proposition 3.3. The space H(Φ,Ψ) is an m.c.n. space and satisfies the
Ruan’s axiom (M2).

Proof. Let T and S be finite sums defined by

T =
∑

i

ξi ⊗ Ti, S =
∑

i

ξi ⊗ Si,

and let a, b ∈ F (K)+. Then

Tr(aρT+S(b))

=
∑

i

Tr
(
a(Ti + Si)b(T ∗

i + S∗
i )
)

= Tr(aρT (b)) + Tr(aρS(b)) +
∑

i

(
Tr(aTibS

∗
i ) + Tr(aSibT

∗
i )
)

≤ Tr(aρT (b)) + Tr(aρS(b)) + 2
√∑

i

Tr(aTibT ∗
i )
√∑

i

Tr(aSibS∗
i )

= Tr(aρT (b)) + Tr(aρS(b)) + 2
√

Tr(aρT (b))Tr(aρS(b))

=
(
Tr(aρT (b))1/2 + Tr(aρS(b))1/2

)2
.

Thus, ‖T +S‖Φ,Ψ ≤ ‖T ‖Φ,Ψ + ‖S‖Φ,Ψ. If T = ξ ⊗ A is a simple tensor product
with ‖ξ‖ = 1, then

‖ρT (x)‖Ψ = ‖AxA∗ ‖Ψ ≤ ‖A‖ ‖x‖Ψ‖A‖ ≤ ‖A‖‖x‖Φ‖A‖.

Conversely,

‖T ‖2
Φ,Ψ ≥ sup

p
‖ApA∗ ‖Ψ = sup

p
‖pA∗Ap‖Ψ = ‖A‖2,

where p runs over all rank one projections. Thus, ‖ξ ⊗ A‖Φ,Ψ = ‖ξ‖‖A‖ and
hence, H(Φ,Ψ) is an m.c.n. space. Finally, if X and Y are scalar matrices,
then

‖XTY ‖2
Φ,Ψ = sup

a,b

| Tr(
∑

i XTiY aY ∗T ∗
i X∗b)|

‖a‖Φ‖b‖Ψ∗

= sup
a,b

| Tr(
∑

i XTiY aY ∗T ∗
i X∗b)|

‖Y aY ∗ ‖Φ‖X∗bX‖Ψ∗

‖Y aY ∗ ‖Φ‖X∗bX‖Ψ∗

‖a‖Φ‖b‖Ψ∗

≤ ‖T ‖2
Φ,Ψ‖X‖2‖Y ‖2.

This shows that H(Φ,Ψ) satisfies Ruan’s axiom (M2). �
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Let us see some examples. Thanks to [18, Theorem 8.4], we have H(Φ∞) =
R and H(Φ1) = C.

Let H1 be a homogeneous Hilbertian m.c.n. space and Φ be an s.n. function.
Mathes and Paulsen [14, p. 1764] define a new m.c.n. space H1,Φ whose matrix
norm is defined by

‖T ‖H1,Φ = sup
x∈SΦ,‖x‖Φ≤1

‖(x ⊗ I)T ‖H1 , T ∈ H ⊗ B(K).

It is easy to see that H1,Φ is an m.c.n. space. For example, HΦ∞ = H and
HΦ1 = Hmin (see [14, Proposition 1.3]). If we are given an s.n. function Φ,
let Φ̃ be the 2-convexification of Φ defined by

Φ̃(a1, . . . , an, . . .) = Φ(a2
1, . . . , a

2
n, . . .)1/2, a ∈ k̂.

Lemma 3.4. For any s.n. functions Φ and Ψ with Φ ≥ Ψ, we have the
completely isometric identifications
• H(Φ1,Φ) = C

Φ̃∗ ,
• H(Φ,Φ∞) = RΦ̃,
• H(Φ,Ψ)Φ2 = Hmin.
In particular, H(Φ1,Φ∞) = Hmin.

Proof. We first prove the second equation. Let T be a finite sum defined
by

T =
∑

i

ξi ⊗ Ti ∈ H ⊗ B(K).

Then
‖T ‖2

Φ,Φ∞ = sup
a,b∈F (K)+

‖a‖Φ,‖b‖Φ1 ≤1

Tr(bρT (a)).

If we write the spectral decomposition of b by b =
∑

i λipi with rank one
projections {pi}, then

Tr(bρT (a)) =
∑

i

λi Tr(piρT (a)) ≤ ‖b‖1 Max
i

{Tr(piρT (a))}.

This shows that b can be replaced by rank one projections. Thus, we have

‖T ‖2
Φ,Φ∞ = sup

a
sup

p:rank one
projection

Tr(pρT (a))

= sup
p

‖ρT ∗ (p)‖Φ∗

= sup
p

∥∥∥∥∥∥∥
(

T ∗
1 p · · · T ∗

np
©

)⎛⎜⎝pT1

... ©
pTn

⎞⎟⎠
∥∥∥∥∥∥∥

Φ∗

= sup
p

‖(pTiT
∗
j p)ij ‖Φ∗ .
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We write p as pζ = 〈ζ, ξ〉ξ with a unit vector ξ ∈ K. Then for η = (ηi)n
i=1 ∈ Kn

we obtain

(pTiT
∗
j p)ijη =

(∑
j

pTiT
∗
j pηj

)
i

=
(∑

j

〈ηj , ξ〉〈TiT
∗
j ξ, ξ〉ξ

)
i

=
(∑

j

〈TiT
∗
j ξ, ξ〉pηj

)
i

=
(
(〈TiT

∗
j ξ, ξ〉)ij ⊗ p

)
η.

So, it holds that
‖T ‖Φ,Φ∞ = sup

ξ
‖(〈TiT

∗
j ξ, ξ〉)ij ‖Φ∗ .

We express any positive operator a ∈ SΦ with ‖a‖Φ ≤ 1 in the form

a = v∗ diag(a1, . . . , an)v,

where v is a unitary matrix and a1 ≥ · · · ≥ an are eigenvalues of a. In the
following we denote by a the diagonal matrices diag(a1, . . . , an). We write
v = (v(i)j)ij . Then {v(k)}n

k=1 is an orthonormal basis of C
n. Thus, the above

supremum is equal to

sup
ξ

sup
a≥0,Φ(a)≤1

sup
v

| Tr(v∗diag(a1, . . . , an)v(〈TiT
∗
j ξ, ξ〉)ij)|

= sup
ξ

sup
a≥0,Φ(a)≤1

sup
{v(k)}n

k=1

∣∣∣∣∑
k,i,j

akv(k)iv(k)∗
j 〈TiT

∗
j ξ, ξ〉

∣∣∣∣
= sup

ξ
sup

a≥0,Φ(a)≤1

sup
{v(k)}n

k=1

∣∣∣∣〈∑
k

akT (v(k))T (v(k))∗ξ, ξ

〉∣∣∣∣,
where T (v(k)) is defined by T (v(k)) =

∑n
i=1 v(k)iTi. Hence,

‖T ‖2
Φ,Φ∞ = sup

a,{v(k)}

∥∥∥∥∑
k

akT (v(k))T (v(k))∗
∥∥∥∥= ‖T ‖2

RΦ̃
.

The second equality follows from

‖T ‖RΦ̃
= ‖T ∗ ‖CΦ̃∗ .

The third equality holds since

‖T ‖H(Φ,Ψ)Φ2
= sup

a1≥···≥an ≥0,
∑

i ai ≤1

{v(k)}n
k=1

‖x‖Φ≤1,‖y‖Ψ∗ ≤1

∣∣∣∣Tr
(∑

k

akyT (v(k))xT (v(k))∗
)∣∣∣∣1/2

≤ sup
k

sup
{v(k)}n

k=1

‖x‖Φ≤1,‖y‖Ψ∗ ≤1

| Tr(yT (v(k))xT (v(k))∗)|1/2
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= sup
v∈�n

2 ,‖v‖ ≤1

∥∥∥∥ξ ⊗
(∑

i

viTi

)∥∥∥∥
H(Φ,Ψ)

= sup
v∈�n

2 ,‖v‖ ≤1

∥∥∥∥∑
i

viTi

∥∥∥∥= ‖T ‖min.

Finally, these equalities imply that H(Φ1,Φ∞) = CΦ2 = Hmin. �

To check whether H(Φ,Ψ) is an operator space, it suffices to check whether
H(Φ,Ψ) satisfies Ruan’s axiom (M1)′. The three m.c.n. spaces in Lemma 3.4
are clearly operator spaces. But, not every H(Φ,Ψ) is an operator space. We
give a necessary condition for H(Φ,Ψ) to be an operator space.

Theorem 3.5. Let Φ and Ψ be s.n. functions with Φ ≥ Ψ. If the m.c.n.
space H(Φ,Ψ) is an operator space, then for any x, y, z ∈ SΦ the following
inequality

‖x ⊗ y‖Ψ

‖x‖Ψ
≤ ‖z ⊗ y‖Φ

‖z‖Φ

holds. In particular, if H(Φ) is an operator space, then Φ is a cross norm.

Proof. We may suppose that x, y, and z are positive diagonal matrices in
Mn (n ∈ N) written by x = diag(xi), y = diag(yi), and z = diag(zi). For each
positive diagonal matrix wi = diag(wi) ∈ Mn, let T =

∑n
i,j=1 ξi ⊗ z

1/2
i w

1/2
j eij ,

Then ρT (x) =
∑

i,j ziwjxjeii, and thus

‖ρT ‖ = sup
x

| Tr(xw)| ‖z‖Ψ

‖x‖Φ
= ‖w‖Φ∗ ‖z‖Ψ.

Let S be the n-tuple of T . Since ‖ρT ‖ ≥ ‖ρS(x ⊗ y)‖Ψ/‖x ⊗ y‖Φ,

‖w‖Φ∗ ‖z‖Ψ ≥ | Tr(xw)| ‖z ⊗ y‖Ψ

‖x ⊗ y‖Φ
.

Taking the supremum over w, we obtain the required inequality. When Φ = Ψ,
if we let x or z be a rank one projection, then we see that Φ must be a cross
norm. �

Question 3.1. Is the converse of Theorem 3.5 true? Namely, if two s.n.
functions Φ and Ψ satisfy the conclusion of Theorem 3.5, is H(Φ,Ψ) always
an operator space?

Theorem 3.5 shows that H(Φ) is an operator space only if ‖ · ‖ is a cross
norm. Indeed, we show in Theorem 5.3 that H(Φ) is an operator space if and
only if Φ is the Schatten p-norm for some p ∈ [1, ∞].

Remark 3.1. Let Cq (1 ≤ q ≤ ∞) be the operator space defined by Cq =
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(C,R)1/q , and we define the operator space Sp(Cq) = (S1⊗̂Cq,S∞ ⊗min

Cq)1/p, where ⊗̂ means the operator space projective tensor product (cf. [9,
Section 7]). Xu showed in [19, Theorem 1] that if we define 2 ≤ p ≤ ∞,
0 < θ < 1, r, r0(θ), r1(θ), and q by

1
r

= 1 − 2
p
,

1
r0(θ)

=
θ

2r
,

1
r1(θ)

=
1 − θ

2r
,

1
q

=
1 − θ

p
+

θ

p′ ,

where 1 = 1/p + 1/p′, then for any x = (x1, x2, . . . , xn) ∈ Sn
p ,

‖x‖Sp(Cq) = sup
{(∑

k

‖axkb‖2
2

)1/2}
,

where the supremum is taken over all a ∈ Sr0(θ) and b ∈ Sr1(θ) with norm
one. This is an analogue of H(Φp1 ,Φq1), where 1/p1 = (1 − θ)(1 − 2/p) and
1/q1 = 1 − θ(1 − 2/p). In this case, we have p1 ≥ q1.

Remark 3.2. We can introduce another construction of m.c.n. spaces. For
any finite sum T =

∑
i ξi ⊗ Ti ∈ H ⊗ Mn, we define

‖T ‖ ∞
Φ,Ψ = ‖ρT ⊗I∞ : SΦ → SΨ‖1/2,

where T ⊗ I∞ acts on B(K ⊗ �2) and K ⊗ �2 is identified with a separable
infinite-dimensional Hilbert space. Then we denote by H�(Φ,Ψ) the m.c.n.
space whose matrix norm structure is given by the family (H ⊗ Mn, ‖ · ‖ ∞

Φ,Ψ).
There is a case where H�(Φ,Ψ) is an operator space though H(Φ,Ψ) is not
an operator space. Let Φ be the KyFan 2-norm, that is Φ(a) = a∗

1 + a∗
2. Then

H(Φ) is not an operator space. Indeed, for x = diag(1,1) ∈ M2 it holds that
‖x ⊗ x‖Φ = 2, but ‖x‖2

Φ = 4. To determine H�(Φ), if we are given Hilbertian
operator spaces H1 and H2 with the common base space H , we define the
matricially normed space H1 ∨ H2 with the base space H by

‖x‖Mn(H1∨H2) = Max
{

‖x‖Mn(H1), ‖x‖Mn(H2)

}
.

It is easy to see that H1 ∨ H2 is an operator space.

Proposition 3.6. Let Φ be an s.n. function defined by

Φ(a) = a∗
1 + θa∗

2 (0 < θ ≤ 1).

Then H�(Φ) is an operator space equal to H�(Φ) = H(Φ∞) ∨ H(Φ1,Φ).

Proof. Let T be a finite sum defined by T =
∑

i ξi ⊗ Ti. For any x ∈ F (K)+,
we write its spectral decomposition as x =

∑m
j=1 sj(x)pj . Then if we let

y = s1(x)p1 + s2(x)
m∑

j=2

pj ,
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then y satisfies ‖y‖Φ = ‖x‖Φ and x ≤ y. Thus, we have

‖ρT ⊗I∞ ‖Φ = sup
1

1+θ ≤α≤1

sup
p,q

∥∥∥∥ρT ⊗I∞

(
αp +

1 − α

θ
q

)∥∥∥∥
Φ

= sup
p,q

Max
{

‖ρT ⊗I∞ (p)‖Φ,
‖ρT ⊗I∞ (p + q)‖Φ

1 + θ

}
,

where p runs over all rank one projections and q runs over all finite rank
projections orthogonal to p. Now for fixed p, it is clear that

‖ρT ⊗I∞ (p + q)‖Φ ≤ (1 + θ)
∥∥∥∥∑

i

TiT
∗
i

∥∥∥∥
for any projection q orthogonal to p. To show the converse, represent p as
pη = 〈η, ξ〉ξ with a unit vector ξ and write

ξ =
n∑

i=1

φi ⊗ ψi, φi ∈ �n
2 , ψi ∈ �2.

If we take a projection r ∈ B(�2) such that the rank of r is not less than 2
and orthogonal to the vectors {ψi} and let q = In ⊗ r, then we have

‖ρT ⊗I∞ (p + q)‖Φ ≥
∥∥∥∥∑

i

TiT
∗
i ⊗ r

∥∥∥∥
Φ

= (1 + θ)
∥∥∥∥∑

i

TiT
∗
i

∥∥∥∥.
Thus,

sup
p,q

Max
{

‖ρT ⊗I∞ (p)‖Φ,
‖ρT ⊗I∞ (p + q)‖Φ

1 + θ

}
= Max

{
‖T ‖2

Φ1,Φ,

∥∥∥∥∑
i

TiT
∗
i

∥∥∥∥}.

�

Question 3.2. Is H�(Φ,Ψ) always an operator space?

As we see below, for many two distinct s.n. functions Φ �= Ψ, the m.c.n.
space H(Φ,Ψ) is an operator space. Pisier [18, Theorem 8.4] showed the
completely isometrically isomorphism H(Φp,Φp) = R(θ), where 1 ≤ p ≤ ∞
and θ = p−1. We consider whether H(Φp,Φq) is an operator space for general
p and q with 1 ≤ p ≤ q ≤ ∞. In the case of p = 1 or q = ∞, H(Φp,Φq) is an
operator space from Lemma 3.4. To deal with the case 1 ≤ p ≤ 2 ≤ q ≤ ∞, we
need the following notion.

Definition 3.1. Let Φ be an s.n. function. We call Φ a Q-norm if there is
an s.n. function Υ such that Υ̃ = Φ, and Φ is a Q∗-norm if Φ is an adjoint of
some Q-norm. In other words, an s.n. function Φ is a Q-norm if there is an
s.n. function Υ such that for any A ∈ SΦ, the norm equality

‖A‖2
Φ = ‖A∗A‖Υ
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is satisfied. Note that a Q-norm is smaller than or equal to the Schatten
2-norm and a Q∗-norm is greater than or equal to the Schatten 2-norm. For
example, the Schatten p-norm Φp is a Q-norm when 2 ≤ p ≤ ∞ and is a
Q∗-norm when 1 ≤ p ≤ 2. The Lorentz ideal Φp,q is a Q-norm if 2 ≤ q ≤ p.

We use the following lemma.

Lemma 3.7 ([7, Proposition 3]). Let Φ be a Q∗-norm and y = ( y1 y2
y3 y4 ) with

yi ∈ Mn (i = 1,2,3,4 and n ∈ N). Then we have the inequality
4∑

i=1

‖yi‖2
Φ ≤ ‖y‖2

Φ.

Theorem 3.8. Let Φ be a Q∗-norm and Ψ be a Q-norm. Then H(Φ,Ψ)
is an operator space.

Proof. It suffices to check the Ruan’s axiom (M1)′. Let T and S be finite
sums given by

T =
k∑

i=1

ξi ⊗ Ti ∈ Mm(H(Φ,Ψ)) and S =
l∑

i=1

ξi ⊗ Si ∈ Mn(H(Φ,Ψ)).

Since for any t ∈ N, it follows that ‖T ⊕ 0t‖H(Φ,Ψ) = ‖T ‖H(Φ,Ψ), we may as-
sume that m = n and clearly that k = l. Take matrices y and z given by

y =
(

y1 y2

y3 y4

)
, z =

(
z1 z2

z3 z4

)
∈ M2n,+

with yj , zj ∈ Mn (i = 1,2,3,4). Then we have∣∣∣∣Tr
(∑

i

(
Ti 0
0 Si

)
y

(
T ∗

i 0
0 S∗

i

)
z

)∣∣∣∣
=
∣∣∣∣∑

i

Tr(Tiy1T
∗
i z1 + Tiy2S

∗
i z3 + Siy3T

∗
i z2 + Siy4S

∗
i z4)

∣∣∣∣
≤ Max

{
‖T ‖2

H(Φ,Ψ), ‖S‖2
H(Φ,Ψ)

} 4∑
j=1

‖yj ‖Φ‖zj ‖Ψ∗

≤ Max
{

‖T ‖2
H(Φ,Ψ), ‖S‖2

H(Φ,Ψ)

}{ 4∑
j=1

‖yj ‖2
Φ

}1/2{ 4∑
j=1

‖zj ‖2
Ψ∗

}1/2

≤ Max
{

‖T ‖2
H(Φ,Ψ), ‖S‖2

H(Φ,Ψ)

}
‖y‖Φ‖z‖Ψ∗ .

The passage from the second line to the third needs the argument in [18,
Remark, p. 85] applying to the second and third terms. In the third line, we
use the Schwarz inequality [6, Theorem IX.5.11] and in the last line we do the
preceding lemma. This shows that the axiom (M1)′ holds. �
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4. Completely bounded mappings between H(Φ,Ψ)s

We consider the relationship between the m.c.n. spaces H(Φ,Ψ) and the
space of completely bounded mappings between them. It is possible to de-
scribe the space CB(H(Φ∞),H(Φ,Ψ)) in terms of the multiplicator norm,
which was discussed by [4] in the case of rearrangement invariant spaces on
the interval [0,1].

Theorem 4.1. Let Φ,Ψ be s.n. functions with Φ ≥ Ψ and x ∈ B(H). Then

‖x‖CB(R,H(Φ,Ψ)) =
(

sup
a∈SΦ

‖ |x|2 ⊗ a‖Ψ

‖a‖Φ

)1/2

.

In particular, if Φ and Ψ satisfy the condition of Theorem 3.5, then we have
the isometric isomorphisms CB(R,H(Φ,Ψ)) = SΨ̃ and CB(C,H(Φ,Ψ)) =
SΦ̃∗ .

Proof. Let x = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn ≥ 0 be a positive diagonal
matrix. Then from the definition

‖x‖CB(R,H(Φ,Ψ)) = sup
T ∈R,a∈SΦ,+,‖a‖Φ≤1

{∥∥∥∥∑
i

λ2
i TiaT ∗

i

∥∥∥∥1/2

Ψ

}
.

If ‖T ‖R ≤ 1, then ‖
∑

i TiT
∗
i ‖ ≤ 1 and thus it follows that (T ∗

i Tj)ij ≤ I . Hence,
we have∥∥∥∥∥

n∑
i=1

λ2
i TiaT ∗

i

∥∥∥∥∥
Ψ

=

∥∥∥∥∥∥∥
⎛⎝T1 · · · Tn

©

⎞⎠diag(λ2
1a, . . . , λ2

na)

⎛⎜⎝T ∗
1
... ©

T ∗
1

⎞⎟⎠
∥∥∥∥∥∥∥

Ψ

= ‖ diag(λ1a
1
2 , . . . , λna

1
2 )(T ∗

i Tj)diag(λ1a
1
2 , . . . , λna

1
2 )‖Ψ

≤
∥∥|x|2 ⊗ a

∥∥
Ψ
.

To show the converse, take a family {Ti}n
i=1 such that T ∗

i Tj = δijI , where δij

is the Kronecker delta.
When Φ and Ψ satisfy the condition of Theorem 3.5, we have∥∥|x|2 ⊗ a

∥∥
Ψ

≤ ‖ |x|2‖Ψ‖a‖Φ = ‖x‖2
Ψ̃

‖a‖Φ

and thus, ‖x‖CB(H(Φ∞),H(Φ,Ψ)) ≤ ‖x‖Ψ̃. The converse is verified by putting a
to be any rank one projection. The last assertion is obtained from Lemma 3.1.

�

Other important Hilbertian operator spaces are Hmin and OH . Let us see
the space CB(Hmin,H(Φp,Φq)) next. When p = q, this space can be identified
with S2.
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Theorem 4.2. For each θ ∈ [0,1], the space CB(Hmin,R(θ)) coincides with
S2 up to equivalence of norm.

Proof. Mathes proved this theorem when θ = 0 or 1 (see [13, Proposi-
tion 6]). We use this result and the complex interpolation theory. Since the
space of completely bounded mappings between homogeneous m.c.n. spaces
is an operator ideal, it suffices to check the cb-norm of the matrices of the
diagonal form A = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn ≥ 0. We denote by ‖A‖cb

the c.b. norm of A : Hmin → R(θ). First we note that

‖A‖cb = sup
T

‖
∑

i ξi ⊗ λiTi‖R(θ)

‖T ‖min
.

Thus, by the complex interpolation property it follows that

‖A‖cb ≤ sup
T

{‖
∑

i ξi ⊗ λiTi‖R

‖T ‖min

}1−θ{‖
∑

i ξi ⊗ λiTi‖C

‖T ‖min

}θ

≤
(∑

i

λ2
i

)1/2

,

where we use the case of θ = 0,1.
To show the converse inequality let p = 1/θ and p′ = 1/1 − θ. Since

‖T ‖H(Φp) = ‖T ∗ ‖H(Φp′ ) and ‖T ‖Hmin = ‖T ∗ ‖Hmin by Lemma 3.1, it follows
that ‖A‖CB(Hmin,R(θ)) = ‖A‖CB(Hmin,R(1−θ)). Let B : Hmin → R(1 − θ) be the
mapping which has the same matrix entries with A. Then the complex in-
terpolation duality yields the isometry R(θ)∗ = R(1 − θ). Thus, we can de-
fine the mapping B∗ ◦ A : Hmin → Hmax = H∗

min, which satisfies ‖B∗ ◦ A‖1 ≤
2‖B∗ ◦ A‖CB(Hmin,Hmax) [14, Proposition 2.1]. Hence, we have∑

i

λ2
i = ‖B∗ ◦ A‖1

≤ 2‖B∗ ‖CB(R(θ),Hmax)‖A‖CB(Hmin,R(θ))

≤ 2‖B‖CB(Hmin,R(1−θ))‖A‖CB(Hmin,R(θ))

≤ 2
(∑

i

λ2
i

)1/2

‖A‖CB(Hmin,R(θ))

Thus, ‖A‖2 ≤ 2‖A‖CB(Hmin,R(θ)). �

To deal with the case p �= q, we need the following lemma.

Lemma 4.3. Let 1 ≤ p ≤ q ≤ ∞ and take θ,ψ ∈ [0,1] such that{
1/p = 1 − ψ + θψ,

1/q = θψ.
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Then for every T ∈ H(Φp,Φq),

‖T ‖Φp,Φq ≤ ‖T ‖(Hmin,R(θ))ψ
.

Proof. For each t ∈ [0,1], take positive numbers pt and qt such that

1
pt

= 1 − t + θt,
1
qt

= θt

and let q′
t = (1 − 1/qt)−1. We define a family of bilinear mappings ft : S2q′

t
×

S2pt → �2(S2) by ft(a, b) = (aTib)i for 0 ≤ t ≤ 1. Then Lemma 3.4 shows that

‖f0‖ = sup
a,b∈S2

Tr
(∑

i

aTibb
∗T ∗

i a∗
)

= ‖T ‖H(Φ1,Φ∞) = ‖T ‖min

and Pisier [18, Theorem 8.4] showed that ‖f1‖ = ‖T ‖R(θ). Thus, the multi-
linear interpolation (see [8, 10.2]) implies that ‖T ‖Φp,Φq = ‖fψ ‖ ≤
‖T ‖(Hmin,R(θ))ψ

. �

Theorem 4.4. Let 1 ≤ p ≤ q ≤ ∞. We have a contractive embedding of Sr

into CB(Hmin,H(Φp,Φq)), where r = 2/(1/q − 1/p + 1).

Proof. Let A = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λn ≥ 0. Then

‖A‖CB(Hmin,H(Φp,Φq)) ≤ ‖A‖CB(Hmin,(Hmin,R(θ))ψ)

≤ ‖A‖(CB(Hmin,Hmin),CB(Hmin,R(θ)))ψ

≤ ‖A‖(S∞,S2)ψ
= ‖A‖r.

In the first step, we use Lemma 4.3 and in the third, we use Theorem 4.2. �

We observe the c.b. norm of the mappings from OH to H(Φp,Φq).

Theorem 4.5. Let 1 ≤ p ≤ q ≤ ∞. Then

CB(OH ,H(Φp,Φq)) =

⎧⎪⎨⎪⎩
S4(1−2/p)−1 (p ≥ 2),
B(H) (p ≤ 2 ≤ q),
S4(2/q−1)−1 (q ≤ 2),

with equal norms.

Proof. The second case is obvious and the third one follows from
Lemma 3.1 and the first one. We show the first case. Let A = diag(λ1, . . . , λn)
be a diagonal operator with λ1 ≥ · · · ≥ λn ≥ 0. Xu showed in [20, Lemma 5.9]
that if 1 ≤ p �= q ≤ ∞, then CB(H(Φp,Φp),H(Φq,Φq)) = S2pq/|p−q|. From
this result, it clearly follows that for any operator A,

‖A‖CB(OH ,H(Φp,Φq)) ≤ ‖A‖CB(OH ,H(Φp,Φp)) = ‖A‖4(1−2/p)−1 .
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To show the converse, for a positive diagonal matrix B = diag(b1, . . . , bn), let
TB,i = bie1i ∈ Mn (i = 1, . . . , n). Then∥∥∥∥∥

n∑
i=1

ξi ⊗ TB,i

∥∥∥∥∥
4

OH

=

∥∥∥∥∥
n∑

i=1

TB,i ⊗ T̄B,i

∥∥∥∥∥
2

min

=

∥∥∥∥∥
n∑

i,j=1

b2
i b

2
j (e1i ⊗ e1i)(ej1 ⊗ ej1)

∥∥∥∥∥
Mn ⊗Mn

=

∥∥∥∥∥
n∑

i=1

b4
i e11 ⊗ e11

∥∥∥∥∥
Mn ⊗Mn

=
n∑

i=1

b4
i .

However, if we let C be a positive diagonal matrix diag(c1, . . . , cn), then we
have ∥∥∥∥∥A

(
n∑

i=1

ξi ⊗ TB,i

)∥∥∥∥∥
H(Φp,Φq)

≥ sup
C

|
∑n

i=1 λ2
i b

2
i ci|1/2

(
∑n

i=1 cp
i )1/p

.

Taking the supremum for B in the unit ball of OH , we obtain

‖A‖CB(OH ,H(Φp,Φq)) ≥ sup
C

|
∑n

i=1 λ4
i c

2
i |1/4

(
∑n

i=1 cp
i )1/p

= ‖A‖4(1−2/p)−1 . �

5. Multiplicator in operator ideals

In this section we show that the m.c.n. space H(Φ) is an operator space if
and only if Φ is the Schatten norm.

In view of the result of Theorem 4.1, for an s.n. function Φ we consider the
following two conditions:
(∗) ∃c1 ≥ 0, ‖x ⊗ y‖Φ ≤ c1‖x‖Φ‖y‖Φ for any x and y;

(∗∗) ∃c2 ≥ 0, ‖x ⊗ y‖Φ ≥ c2‖x‖Φ‖y‖Φ for any x and y.
Note that if an s.n. function Φ satisfies (∗), its adjoint Φ∗ satisfies (∗∗) for c2

with c1c2 = 1. The Schatten p-norm is a cross norm and satisfies both (∗) and
(∗∗) with c1 = c2 = 1.

Let Φ and Ψ be s.n. functions with Φ ≥ Ψ and x ∈ B(�2) such that

sup
a

‖x ⊗ a‖Ψ

‖a‖Φ
< ∞.

We denote by MΦ,Ψ(x) the multiplicator from SΦ to SΨ defined by

MΦ,Ψ(x)(a) = x ⊗ a.

For an s.n. function Φ, we denote by M(SΦ) the space consisting of x ∈ B(�2)
with MΦ,Φ(x) is bounded. We equip M(SΦ) with the norm ‖MΦ,Φ(x)‖. It
holds that

‖x‖Ψ =
‖x ⊗ e11‖Ψ

‖e11‖Φ
≤ ‖MΦ,Ψ(x)‖.
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In case of the Schatten norm (1 ≤ p ≤ q ≤ ∞), we have

‖MΦp,Φq (x)‖ = ‖x‖q.

If an s.n. function Φ satisfies (∗), then

‖MΦ,Φ(x)‖ ≤ c1‖x‖Φ,

and thus Φ satisfies (∗) if and only if ‖x‖Φ is equivalent to ‖MΦ,Φ(x)‖. Since
MΦ,Φ(x)MΦ,Φ(y) = MΦ,Φ(x ⊗ y), we have

‖MΦ,Φ(x ⊗ y)‖ ≤ ‖MΦ,Φ(x)‖ ‖MΦ,Φ(y)‖.

The multiplicator is discussed in [4] for the rearrangement invariant space on
[0, 1].

The conditions (∗) and (∗ ∗) are closely related to the Schatten norm.

Lemma 5.1. If an s.n. ideal SΦ satisfies (∗) or (∗∗), then the limit

p = lim
n→∞

logn

log ‖Pn‖Φ
∈ [1, ∞]

exists, where Pn stands for any rank n projection.

Proof. We prove the statement in the case that (∗) holds. In the case of
(∗∗) the proof is similar. By the hypothesis, for fixed m ∈ N,

‖Pmk ‖Φ ≤ ck−1
1 ‖Pm‖k

Φ, ∀k ∈ N.

If {ti} ∞
i=1 is a subsequence of N, we can take a nondecreasing sequence {ki} ∞

i=1

in N which tends to infinity such that mki ≤ ti < mki+1. Thus, we have

log ti
log ‖Pti ‖Φ

≥ logmki

log ‖Pmki+1 ‖Φ
≥ ki logm

ki log c1 + (ki + 1) log ‖Pm‖Φ
.

Since {ti} ∞
i=1 is arbitrary, it follows that

lim inf
n→∞

logn

log ‖Pn‖Φ
≥ logm

c1 + log ‖Pm‖Φ
.

This implies

lim inf
n→∞

logn

log ‖Pn‖Φ
≥ limsup

m→∞

logm

log ‖Pm‖Φ

and the limit exists. �
Theorem 5.2. Suppose that an s.n. ideal SΦ satisfies (∗) or (∗∗) and let p

be as in the preceding lemma. Then the following statements hold.
(a) if SΦ satisfies (∗), then

‖x‖p ≤ c1‖x‖Φ, ∀x ∈ SΦ.

(b) if SΦ satisfies (∗ ∗), then

c2‖x‖Φ ≤ ‖x‖p, ∀x ∈ SΦ.

In particular, if Φ is a cross norm, then Φ = Φp.
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Proof. Let x = diag(λ1, . . . , λm), λ1 ≥ · · · ≥ λm ≥ 0 be a diagonal matrix
and let

x⊗n =
N∑

i=1

tiei

be the spectral decomposition of the n-fold tensor product of x. In the above
inequality, N is dominated by

(
m+n−1

m−1

)
. If we let pj be the j-th sum of the ei’s

given by pj =
∑j

i=1 ei, then for all j we have
n∑

i=1

tiei =
n∑

i=1

(tj − tj−1)pj ≥ tjpj .

Thus, it holds that

Max
j

{tj ‖pj ‖Φ} ≤ ‖x⊗n‖Φ ≤ N Max
j

{tj ‖pj ‖Φ}

and hence,

Max
j

{(tj ‖pj ‖Φ)1/n} ≤ ‖x⊗n‖1/n
Φ ≤ N1/n Max

j
{(tj ‖pj ‖Φ)1/n}.

Note that from the above inequality, if Φ = Φp, then

(1) ‖x‖p = lim
n→∞

Max
j

{
t
1/n
j (rankpj)1/(pn)

}
.

By the preceding lemma, for any ε > 0, there exists a D ≥ 0 such that

‖pj ‖Φ ≥ D(rankpj)1/(p+ε), for all j ∈ N.

The condition (∗) implies that ‖x⊗n‖Φ ≤ cn−1
1 ‖x‖n

Φ, so that

c1‖x‖Φ ≥ ‖x⊗n‖1/n
Φ

≥ Max
j

{(tj ‖pj ‖Φ)1/n}

≥ Max
j

{
(Dtj)1/n(rankpj)1/{(p+ε)n}}.

The last term converges to ‖x‖p+ε as n → ∞ from the above equality 1, which
proves (a). The proof of (b) is similar. �

From Theorem 5.2 and Theorem 3.5, we obtain the following corollary.

Corollary 5.3. Let Φ be an s.n. function. The m.c.n. space H(Φ) is an
operator space if and only if Φ is some Schatten p-norm (1 ≤ p ≤ ∞).

Remark 5.1. Let X be a rearrangement invariant function space X on the
interval [0,1] (cf. [12, Section 2]). For s > 0, let σs be the dilation operator
given by

σsx(t) = x(t/s)1[0,max{1,s}] (t ∈ [0,1], x ∈ X).
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This operator is well defined on X and ‖σs‖ ≤ max{1, s}. The Boyd in-
dices αX and βX of X are defined by

αX = lim
s→0

log ‖σs‖X→X

log s
, βX = lim

s→∞

log ‖σs‖X→X

log s
.

Note that 0 ≤ αX ≤ βX ≤ 1. In [3, Theorem 1.5], the embedding M(X) ⊆
Lα−1

X
is shown. The Boyd index is discussed in [12] for sequence spaces and

in [2] for s.n. ideals. The Boyd index of an s.n. ideal SΦ is defined by

p = lim
n→∞

logn

log ‖Pn‖Φ

when the limit exists (the limit is in [1, ∞]). Theorem 5.2 means that if Φ
satisfies (∗), then M(SΦ) ⊂ Sp.

In the rest of this paper, we examine the condition (∗) for a few classes of
s.n. functions.

Theorem 5.4. Let π be a binormalizing sequence and let Sn be the partial
sum defined by Sn =

∑n
j=1 πj . Then Φπ satisfies (∗) if and only if there is

a constant c > 0 such that for any m,n ∈ N, the inequality

Smn

SmSn
≤ c

holds.

Proof. Let x ∈ F (K)+ and we write its spectral decomposition by

x =
n∑

j=1

sj(x)pj .

We can represent ‖x‖π in the form

‖x‖π =
n∑

j=1

πjsj(x)

=
(
s1(x) − s2(x)

)
S1 + · · · +

(
sn−1(x) − sn(x)

)
Sn−1 + sn(x)Sn,

so that if we let ej be the partial sum of pi’s given by ej =
∑j

i=1 pi, then

x =
(
s1(x) − s2(x)

)
e1 + · · · +

(
sn−1(x) − sn(x)

)
en−1 + sn(x)en.

Hence, for any a ∈ F (K),

‖x ⊗ a‖π ≤
(

n∑
j=1

(
sj(x) − sj+1(x)

)
Sj

)
Max

j

{
‖ej ⊗ a‖π

Sj

}

≤ ‖x‖π Max
j

{
‖ej ⊗ a‖π

‖ej ‖π

}
.
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Similar argument for a yields

sup
x,a

‖x ⊗ a‖π

‖x‖π ‖a‖π
= sup

p,a

‖p ⊗ a‖π

‖p‖π ‖a‖π
= sup

p,q

‖p ⊗ q‖π

‖p‖π ‖q‖π
,

where p and q run over all finite rank projections. If p is a rank n projection,
then ‖p‖π = Sn and therefore (∗) holds if and only if Smn/SmSn ≤ c. �

Remark 5.2. The condition

sup
m,n

Smn

SmSn
< ∞

appears in [1, Theorem 6], as a necessarily and sufficient condition for the
existence of exactly two nonequivalent symmetric basic sequences in Lorentz
sequence spaces.

Next, we look out the Lorentz ideals Sp,q for 1 ≤ q ≤ p < ∞. When q = 1,
the Lorentz ideal Sp,1 is equal to the ideal SΦπ with πj = j1/p−1, and thus
satisfies (∗) with c1 = 1 from Theorem 5.4.

Proposition 5.5. When 1 ≤ q ≤ p < ∞ the Lorentz ideal Sp,q satisfies (∗).

Proof. Let x, y ∈ Sp,q be positive elements. Note that the spectrum of
x ⊗ y is equal to {si(x)sj(y)}∞

i,j=1 as a set considering multiplicity and each
eigenspace is finite-dimensional. We give the product set N × N an order ≺
by

(m1, n1) ≺ (m2, n2) ⇐⇒

⎧⎪⎨⎪⎩
m1 + n1 < m2 + n2

or
m1 + n1 = m2 + n2 and m1 > m2.

For each eigenvalue α of x ⊗ y with index k, let Iα be the finite sequence
{(m1, n1), . . . , (mk, nk)} in N × N such that smi(x)sni(y) = α and (mi, ni) ≺
(mi+1, ni+1). If sj+1(x ⊗ y) = · · · = sj+k(x ⊗ y) = α, for all i = 1, . . . , k we
have

sj+i(x ⊗ y) = smi(x)sni(y)
and j + i ≥ mini. Hence,

‖x ⊗ y‖p,q =

( ∞∑
j=1

sj(x ⊗ y)q

j1−q/p

)1/q

≤
( ∞∑

i,j=1

si(x)qsj(y)q

(ij)1−q/p

)1/q

=

( ∞∑
j=1

sj(x)q

j1−q/p

)1/q( ∞∑
j=1

sj(y)q

j1−q/p

)1/q

= ‖x‖p,q ‖y‖p,q. �
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Remark 5.3. In [4, p. 253], it is shown that for the Lorentz function space
Lp,q (1 < p < ∞,1 ≤ q ≤ ∞), we have M(Lp,q) = Lp,min(p,q).
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[5] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer Verlag, 1973.
[6] R. Bhatia, Matrix analysis, Springer, New York, 1997. MR 1477662

[7] R. Bhatia and F. Kittaneh, Norm inequalities for partitioned operators and an appli-
cation, Math. Ann. 287 (1990), 719–726. MR 1066826

[8] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia
Math. 24 (1964), 113–190. MR 0167830

[9] E. Effros and Z. J. Ruan, Operator spaces, Oxford Univ. Press, 2000. MR 1793753
[10] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint

operators, Transl. Math. Monographs, vol. 18, 1969. MR 0246142
[11] M. Junge, Embedding of the operator space OH and the logarithmic ‘little Grothendieck

inequality’, Invent. Math. 161 (2005), 225–286. MR 2180450
[12] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, II. Function spaces,

Springer, Berlin/New York, 1979. MR 0540367
[13] D. B. Mathes, Characterizations of row and column Hilbert space, J. Lond. Math. Soc.

(2) 50 (1994), 199–208. MR 1277763

[14] D. B. Mathes and V. I. Paulsen, Operator ideals and operator spaces, Proc. Amer.
Math. Soc. 123 (1995), 1763–1772. MR 1242095

[15] Z. J. Ruan, Subspaces of C∗-algebras, J. Funct. Anal. 76 (1988), 217–230. MR 0923053
[16] G. Pisier, Completely bounded maps into certain Hilbertian operator spaces, Int. Math.

Res. Notes 74 (2004), 3983–4018. MR 2103799
[17] G. Pisier, Introduction to operator space theory, London Math. Soc. Lec. Note Ser.,

vol. 294, 2003. MR 2006539
[18] G. Pisier, The operator Hilbert space OH , complex interpolation and tensor norms,

Memoirs Amer. Math. Soc., vol. 122, 1996. MR 1342022
[19] Q. Xu, A Description of (Cp[Lp(M)],Rp[Lp(M)])θ , Proc. Roy. Soc. Edinburgh Sect. A

135 (2005), 1073–1083. MR 2187225
[20] Q. Xu, Embedding of Cq and Rq into noncommutative Lp-spaces, 1 ≤ p < q ≤ 2, Math.

Ann. 335 (2006), 109–131. MR 2217686

Takahiro Ohta, Department of Mathematics, Graduate School of Science, Kyoto

University, Kyoto 606-8502, Japan

E-mail address: ohta@math.kyoto-u.ac.jp

http://www.ams.org/mathscinet-getitem?mr=0328553
http://www.ams.org/mathscinet-getitem?mr=0516764
http://www.ams.org/mathscinet-getitem?mr=1602623
http://www.ams.org/mathscinet-getitem?mr=1994772
http://www.ams.org/mathscinet-getitem?mr=1477662
http://www.ams.org/mathscinet-getitem?mr=1066826
http://www.ams.org/mathscinet-getitem?mr=0167830
http://www.ams.org/mathscinet-getitem?mr=1793753
http://www.ams.org/mathscinet-getitem?mr=0246142
http://www.ams.org/mathscinet-getitem?mr=2180450
http://www.ams.org/mathscinet-getitem?mr=0540367
http://www.ams.org/mathscinet-getitem?mr=1277763
http://www.ams.org/mathscinet-getitem?mr=1242095
http://www.ams.org/mathscinet-getitem?mr=0923053
http://www.ams.org/mathscinet-getitem?mr=2103799
http://www.ams.org/mathscinet-getitem?mr=2006539
http://www.ams.org/mathscinet-getitem?mr=1342022
http://www.ams.org/mathscinet-getitem?mr=2187225
http://www.ams.org/mathscinet-getitem?mr=2217686
mailto:ohta@math.kyoto-u.ac.jp

	Introduction
	Preliminaries
	Basic properties of the m.c.n. space H(Phi,Psi)
	Completely bounded mappings between H(Phi, Psi)s
	Multiplicator in operator ideals
	Acknowledgment
	References
	Author's Addresses

