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FINE BEHAVIOR OF SYMBOLIC POWERS OF IDEALS

MELVIN HOCHSTER AND CRAIG HUNEKE

This paper is written in appreciation of the many contributions of Phil Griffith to
commutative algebra.

Abstract. A fundamental property connecting the symbolic powers
and the usual powers of ideals in regular rings was discovered by Ein,
Lazarsfeld, and Smith in 2001, and later extended by Hochster and
Huneke in 2002. In this paper we give further generalizations which
give better results in case the quotient of the regular ring by the ideal
is F-pure or F-pure type. Our methods also give insight into a con-
jecture of Eisenbud and Mazur concerning the existence of evolutions.
The methods used come from tight closure and reduction to positive
characteristic.

1. Introduction

All given rings in this paper are commutative, associative with identity,
and Noetherian. In [3], L. Ein, R. Lazarsfeld, and K. Smith discovered the
following remarkable fact about the behavior of symbolic powers of ideals in
affine regular rings of equal characteristic 0: if c is the largest height1 of an
associated prime of I, then I(cn) ⊆ In for all n ≥ 0. Here, if W is the comple-
ment of the union of the associated primes of I, I(t) denotes the contraction
of ItRW to R, where RW is the localization of R at the multiplicative system
W . Their proof depended on the theory of multiplier ideals (see [1], [16],
[17], [23], and [24] for background), including an asymptotic version, and, in
particular, needed resolution of singularities as well as vanishing theorems.

Stronger results were obtained in [11, Theorem 1.1] with proofs by methods
that were, in some ways, more elementary. The results of [11] are valid in
both equal characteristic 0 and in positive prime characteristic p, but depend
on reduction to characteristic p. The paper [11] used tight closure methods
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and, in consequence, needed neither resolution of singularities nor vanishing
theorems that may fail in positive characteristic.

In this paper we use ideas related to those of [11] to prove further results
in this direction that are more subtle.

E.g., in the local case the conclusion may be that a certain symbolic power
of I is contained in the product of the maximal ideal with a certain other
symbolic power of I. It appears to be very difficult to establish these theorems
without tight closure theory or some correspondingly intricate method: we
do not know whether the techniques of [3] can be used to obtain the main
theorems here even in equal characteristic 0.2

The papers [2], [12], and [13] study the existence of evolutions, which is
equivalent to the question of whether, for a prime P in a regular local ring
(R,m), P (2) ⊆ mP . Eisenbud and Mazur [2] ask whether this is always true
in a regular local ring of equal characteristic 0. Kunz gave a counterexam-
ple in characteristic 2 which is extended to all positive characteristics in [2]:
these counterexamples are codimension three primes in regular local rings of
dimension four.3 Our Theorems 3.5 and 4.2 prove that in a regular local ring
containing a field, if P is a prime of codimension three, then P (4) ⊆ mP . In
dimension 3 regular local rings, codimension 2 primes are in the linkage class
of a complete intersection (this is true in regular local rings of any dimension
whenever the quotient by the codimension two ideal is Cohen-Macaulay), and
the fact that P (2) ⊆ mP is established for primes in the linkage class of a
complete intersection in [2]. Our Theorems 3.5 and 4.2 prove that in a reg-
ular local ring of arbitrary dimension containing a field, if P is a prime of
codimension two, then P (3) ⊆ mP . In general we are able to prove that if
P is a prime of codimension c in a regular local ring containing a field, then
P (c+1) ⊆ mP (see Theorem 3.5).

We note that to prove the most basic form of our results, all that we need
to know about tight closure is the definition and the fact that, in a regular
ring, every ideal is tightly closed. The results of Section 4 require more of the
theory, and we refer the reader to [7]–[10], [14], and [22] for further background
on tight closure theory.

Although all of our proofs initially take place in positive characteristic, rel-
atively standard methods show that whenever, roughly speaking, the state-
ments “make sense,” corresponding results hold for rings containing a field of
characteristic 0. We need a definition before stating our results.

2Since we finished this research, Shunsuke Takagi [26] has announced that he can obtain
similar results, and in some cases stronger results, using an interpretation of multiplier
ideals via tight closure.

3Specifically, map K[[x1, x2, x3, x4]] � K[[t]] by sending x1, x2, x3, x4 to ta, tb, tc, td

resp. Let P be the kernel. If K has characteristic p > 0 and the values of a, b, c, d are

p2, p(p+1), p(p+1)+1, and (p+1)2, resp., then f = xp+1
1 x2−xp+1

2 −x1xp
3+xp

4 ∈ P (2)\mP .
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Discussion 1.1. Our results are typically expressed in terms of a number
associated with I which we call the key number of I. We shall give here
several possible definitions of this term: the reader may choose any one of
them. Our reason for proceeding in this way is that the results are sharpest
for a rather technical version of “key number” based on analytic spread, but
are correct and a lot less technical if one simply uses instead the largest number
of generators after localizing at an associated prime of the ideal (or the largest
height of an associated prime of the ideal). We note that all of the definitions
that we give agree for radical ideals in regular rings.

Thus, in the sequel, the reader may use any of the following as the definition
of the key number of I: the number obtained will, in general, depend on which
definition is used, but the theorems will be correct for any of these numbers
(or any larger number).

(1) The key number of the ideal I is the largest number of generators of
IRP for any associated prime P of I.

(2) The key number of the ideal I is the largest height (or codimension)
of any associated prime P of I, where the height of P is the Krull
dimension of RP .

(3) The key number of the ideal I is the largest analytic spread4 of IRP

for any associated prime P of I.
Because the analytic spread of I in a local ring R is bounded both by the

Krull dimension of R and by the least number of generators of I, the notion
of key number given in (3) is never larger than either of the other two. As
already mentioned, the three notions coincide in the case of a radical ideal of
a regular ring.

We note that by the main results of [11], if c is the key number for I, then
I(cn) ⊆ In for all nonnegative integers n: see Theorem 2.1 of Section 2. On
first perusal of this paper the reader may well want to focus on the case where
I is radical or even prime.

It is a natural question to ask whether the result that I(cn) ⊆ In for all
n ≥ 1 can be improved, perhaps by assuming more about the singularities of
R/I. The following example, which we learned from L. Ein, shows that one
will not be able to improve this result too much.

Example 1.2. In K[x1, . . . , xn], consider the primes (xi, xj) for j 6= i. Let
I denote their intersection, which is generated by all monomials consisting of

4For a discussion of analytic spread and related ideas we refer the reader to [25], and
[19]. A summary of what is needed here is given in [11], §2.3. We note that when I ⊆ (R, m)
with (R, m) local, the analytic spread of I is the same as the Krull dimension of the ring
(R/m)⊗R grI R, where grI R = R/I⊕ I/I2⊕ I2/I3⊕· · · is the associated graded ring of R
with respect to the I-adic filtration. When R/m is infinite, this is the same as the smallest
number of generators of an ideal J ⊆ I such that I is contained in the integral closure of
the ideal J .
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products of n−1 of the variables. This is a radical ideal of pure height 2 with
key number c = 2.

For every integer k, xk
1 · · · xk

n ∈ I(2k), but if k < n − 1, it is not in Ik+1:
since each generator omits one variable, for a product of k +1 < n generators
there must be some variable that occurs in all k +1 factors, and that variable
will have an exponent of at least k + 1 in the product. Note that the main
result of [11] implies that I(2k) ⊆ Ik.

In giving proofs in Section 3 we first give the argument in the case where
the key number c is defined as in (1). We then later explain the modifications
in the arguments needed for case (3). The point in case (3) is that by the
introduction of an additional fixed multiplier, we can, in essence, replace I,
in certain localizations, by an ideal with c generators on which it is integrally
dependent. We do not need to give an argument for the case where the key
number is defined as in (2), since the number defined in (3) is never larger.

The result that follows, Theorem 1.3, is a composite of Theorems 3.5, 3.6,
and 4.2 containing our main results.

Theorem 1.3. Let (R,m) be a regular local ring containing a field and let
I be a proper ideal of R with key number c.

(1) For every s ≥ 1, I(cs+1) ⊆ mI(s).
(2) If R is characteristic p and R/I is F -pure, then I(rc−1) ⊆ II(r−1).

We shall also discuss a version of part (2) for local rings of finitely generated
algebras over a field of characteristic 0 in Section 3: one needs to replace the
notion of “F -pure” by a suitable characteristic 0 notion (“F -pure type”).

We do not know how to prove (1) or (2) by elementary means, even when
(R,m) is local and has dimension 3, s = 1, and I = P is a prime of codimension
2: in that case (1) gives that P (3) ⊆ mP .

Our results take a simpler form when s = 1 (in (1)) or r = 2 (in (2))
because I(1) = I, and we make this explicit:

Theorem 1.4. Let (R,m) be a regular local ring containing a field and let
I be a proper ideal of R with key number c.

(1) I(c+1) ⊆ mI.
(2) If R is characteristic p and R/I is F -pure, then I(2c−1) ⊆ I2.

In the next section we recall the main results of [11]. Section 3 contains
the proofs of our results for regular rings in positive prime characteristic, and
Section 4 contains the equal characteristic 0 versions of our results.

2. Prior comparison results

The main results of [11] in all characteristics are summarized in the fol-
lowing theorem. Note that I∗ denotes the tight closure of the ideal I. The
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characteristic zero notion of tight closure used in this paper is the equational
tight closure of [10] (see, in particular, Definition (3.4.3) and the remarks in
(3.4.4) of [10]). This is the smallest of the characteristic zero notions of tight
closure, and therefore gives the strongest result.

Theorem 2.1. Let R be a Noetherian ring containing a field. Let I be
any ideal of R, and let c be the key number5 of I.

(1) If R is regular, I(cn+kn) ⊆ (I(k+1))n for all positive n and nonnegative
k. In particular, I(cn) ⊆ In for all positive integers n.

(2) If I has finite projective dimension, then I(cn) ⊆ (In)∗ for all positive
integers n.

(3) If R is finitely generated, geometrically reduced (in characteristic 0,
this simply means that R is reduced) and equidimensional over a field
K, and locally I is either 0 or contains a nonzerodivisor (this is au-
tomatic if R is a domain), then, with J equal to the Jacobian ideal of
R over K, for every nonnegative integer k and positive integer n, we
have that JnI(cn+kn) ⊆ ((I(k+1))n)∗ and Jn+1I(cn+kn) ⊆ (I(k+1))n.
In particular, we have that JnI(cn) ⊆ (In)∗ and Jn+1I(cn) ⊆ In for
all positive integers n.

The following result is implicit but not explicit in [11].

Theorem 2.2. Let R be a regular ring of positive prime characteristic p.
Let I be an ideal of R.

(1) Let c be the largest number of generators of I after localizing at an
associated prime of I. Then I(cnq) ⊆ (I(n))[q] for every n ∈ N and
q = pe.

(2) Let c be the key number of I in any of the senses of Discussion 1.1.
Then there is a positive integer s such that IsI(cnq) ⊆ (I(n))[q] for
every n ∈ N and q = pe.

Proof. Let W be the multiplicative system that is the complement of the
union of the associated primes of I. The elements of W are not zerodivisors on
any symbolic power of I, by construction of the symbolic powers, nor on any
bracket power of a symbolic power of I, since the Frobenius endomorphism
is flat: see, for example, Lemma 2.2(d) of [11] (and [5], [15], [20] for several
related results).

(1) Thus, it will suffice to show that I(cnq)RW ⊆ (I(n))[q]RW , i.e., that
IcnqRW ⊆ (In)[q]RW . Since RW is semilocal, it suffices to show this after
localizing at a maximal ideal, and this will be a (maximal) associated prime
P of I. Thus, we need only show that (IP )cnq ⊆

(
(IP )n

)[q]. Since IP has
at most c generators, say f1, . . . , fc (we may take some of these to be 0), by

5See Discussion 1.1.
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definition of c, any monomial of degree cnq in these must be such that at least
one of the fj has exponent ≥ nq, which means that it is in

(
(IP )n

)[q], and the
result follows.

(2) We replace R by R[t], where t is an indeterminate, and I by its ex-
pansion to this ring. The new associated primes of I are the expansions of
the original associated primes. The crucial effect of this trick is that now
the localization of the ring at any associated prime of the ideal has infinite
residue field. We go back to our original notation and call the ring R. Then
for each associated prime P of I we may choose an ideal J of RP with c
generators such that IRP is integral over J . Then there is an integer sP such
that IsP INRP ⊆ JN for every N ∈ N. Choose s to be at least the maximum
of these finitely many sP . We shall show that IsI(cnq) ⊆ (I(n))[q]. Since no
element of W is a zerodivisor on (I(n))[q], it suffices to show this after local-
izing at W and hence after localizing at each of the associated primes P of
I. We replace R by RP and I by IRP . But then all we need to show is that
IsIcnq ⊆ (In)[q], and we have that IsIcnq ⊆ Jcnq ⊆ (Jn)[q] (exactly as in part
(1), since J has c generators), and this is contained in (In)[q]. �

3. The main results for characteristic p regular rings

Let R be a regular domain of positive characteristic p > 0, let I be an ideal
of R, let c be the key number for I, and let r be an integer with r ≥ 2. We
define a sequence of ideals as follows:

Definition 3.1. Fix an integer k, 0 ≤ k ≤ r(c − 1). Set I0,k = I, and
inductively set In,k =

(
In−1I

(r−1) : I(rc−k)
)
. Set Jk =

⋃
j Ij,k. We will

usually simplify notation when k is fixed and write In = In,k.

Observe that Ij form an increasing sequence of ideals (depending on k).
Since k ≤ r(c − 1) it follows that rc − k ≥ rc − r(c − 1) = r and thus
In−1I

(rc−k) ⊆ In−1I
(r−1), and In−1 ⊆ In−1I

(rc−k) : I(r−1) = In. Hence
Jk = IN for all large N .

Theorem 3.2. Let R be a regular domain of positive characteristic p > 0,
let I be an ideal of R, let c be the key number for I, and let r be an integer
with r ≥ 2. For all q = pe, and any integer k, 0 ≤ k ≤ r(c− 1),

I(q((n+1)k−nc)) ⊆ I
[q]
n+1.

Proof. We first assume that key number is defined as in Discussion 1.1(1)
and prove the case n = 0. We need to prove that

I(kq) ⊆
(
II(r−1) : I(rc−k)

)[q]
.

Since we are in a regular ring,(
II(r−1) : I(rc−k)

)[q] = (II(r−1))[q] : (I(rc−k))[q].
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Suppose that u ∈ I(qk) and v ∈ I(rc−k). It will suffice to show that uvq ∈
(II(r−1))[q]. Evidently, we may assume that v 6= 0.

Say b ≥ rc − k. Fix any power Q of p. We shall show that vb(uvq)Q

∈
(
(II(r−1))[q]

)[Q]. Since b is independent of Q, this shows that uvq

∈
(
(II(r−1))[q]

)∗ (the tight closure), and since R is regular, this will establish
that uvq ∈ (II(r−1))[q].

By the division algorithm, qQ = (a− 1)(rc− k) + ρ, where a− 1 ∈ N and
0 ≤ ρ < rc− k. Then ρ + b ≥ rc− k. Clearly

(∗) a(rc− k) ≥ qQ.

Then

vb(uvq)Q = uQvb+qQ ∈ (uQvacva
(
(r−1)c−k

)
) = (vac)(uQva((r−1)c−k)).

Now, since v ∈ I(rc−k), we have that

vac ∈ I((rc−k)ac) ⊆ I(qQc) ⊆ I [qQ]

by Theorem 2.2, and since u ∈ I(qk), we find that

uQva((r−1)c−k) ⊆ I(qQk+(rc−k)a((r−1)c−k)),

and, using (∗), the exponent is ≥ qQk + qQ
(
(r−1)c−k

)
= qQ(r−1)c. Thus,

uQva((r−1)c−k) ⊆ I(qQ(r−1)c) ⊆ (I(r−1))[qQ]

by Theorem 2.2. Multiplying, we have that

vb(uvq)Q ∈ I [qQ](I(r−1))[qQ] = (II(r−1))[qQ] =
(
(II(r−1))[q]

)[Q]
,

as required.
We next describe the changes needed in the argument in the case where

the key number is defined as in Discussion 1.1(3). If I = (0), there is
nothing to prove. If not, choose s as in Theorem 2.2(b) and let y be any
nonzero element of I. The argument is almost the same, but we show in-
stead that y2svb(uvq)Q ∈

(
(II(r−1))[q]

)[Q] for all Q, which again allows us
to conclude that uvq ∈ (II(r−1))[q])∗. In the final paragraph of the argu-
ment we get that ysvac ⊆ ysI(qQc) ⊆ I [qQ] by Theorem 2.2(b), and, similarly,
that ysuQva((r−1)c−k) ⊆ I(qQ(r−1)c) ⊆ (I(r−1))[qQ] by Theorem 2.2(b). We
can multiply: the argument is otherwise unchanged. This completes the case
n = 0.

We now assume the result for n − 1 and prove it for n. This induction
works for every choice of key number as defined in Discussion 1.1.

We need to prove that

I(q((n+1)k−nc)) ⊆ I
[q]
n+1 = (InI(r−1) : I(rc−k))[q].

Suppose that u ∈ I(q((n+1)k−nc) and v ∈ I(rc−k). It will suffice to show
that uvq ∈ (InI(r−1))[q]. Evidently, we may assume that v 6= 0.
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First suppose that c ≤ k. Then (n + 1)k − nc = k + n(k − c) ≥ k and the
result follows from the case n = 0, since by that case

I(q((n+1)k−nc)) ⊆ I(qk) ⊆ (II(r−1) : I(rc−k))[q] ⊆ (InI(r−1) : I(rc−k))[q].

We can therefore assume that c > k. Fix any power Q of p. By the division
algorithm,

(c− k)qQ = (a− 1)(rc− k) + ρ,

where a − 1 ∈ N and 0 ≤ ρ < rc − k. We shall show that vρ(uvq)Q ∈(
(InI(r−1))[q]

)[Q] for all Q. Since ρ is independent of Q, this shows that
uvq ∈

(
(InI(r−1))[q]

)∗ (the tight closure), and since R is regular, this will
establish that uvq ∈ (InI(r−1))[q]. Note that a(rc−k) ≥ (c−k)qQ. We break
the product into two terms:

vρ(uvq)Q = (uQva) · vρ+qQ−a.

Now, since v ∈ I(rc−k), we have that

va ∈ I((rc−k)a) ⊆ I((c−k)qQ)

and hence

uQva ∈ I((c−k)qQ)I(qQ((n+1)k−nc)) ⊆ I(qQ(nk−(n−1)c) ⊆ I [qQ]
n .

The last step follows from our induction.
Observe that

(ρ + qQ− a)(rc− k) ≥ qQ(rc− k)− ((a− 1)(rc− k) + ρ))

= qQ(rc− k)− (c− k)qQ = qQ(r − 1)c,

so that
vρ+qQ−a ∈ I((r−1)cqQ) ⊆ (I(r−1))[qQ]

by Theorem 2.2.
Hence

vρ(uvq)Q = (uQva) · vρ+qQ−a ∈ (InI(r−1))[qQ],

which proves that uvq ∈ (InI(r−1))∗ and finishes the proof of the theorem. �

Corollary 3.3. Let (R,m) be a regular local ring of positive character-
istic p > 0, let I be an ideal of R, and let c be the key number.6 Then either
I(rc−1) ⊆ II(r−1) for every r ≥ 2 or I(q) ⊆ m[q] for every q = pe.

Proof. Take k = 1 and apply Theorem 3.2 to the ideal I1. Either I1 = R,
in which case I(rc−1) ⊆ II(r−1), or else it is a proper ideal, in which case
I(q) ⊆ I

[q]
1 ⊆ m[q]. �

6See Discussion 1.1.
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Remark 3.4. The second of the alternative conclusions is a very strong
form of the Zariski-Nagata theorem7, which asserts that P (N) ⊆ mN for every
prime of the regular local ring (R,m). For q = pe, m[q] tends to be quite a bit
smaller than mq. Note that the second of the alternate conclusions does imply
that the Zariski-Nagata theorem holds even when N is not a power of p. For
suppose u ∈ P (N). For any q ≥ N we have q = aN + b, where a = b q

N c and
0 ≤ b < N . Then ubua ∈ P (q) ⊆ mq, which shows that (b+a) ordm u ≥ Na+b
for all q ≥ N , and so ordm u ≥ (Na + b)/(b + a) = (N + b

a )/(1 + b
a ). Since

b < N while a−→∞ as q−→∞, this is > N − 1 for q � 0. Thus, ordm u ≥ N ,
i.e., u ∈ mN .

Theorem 3.5. Let (R,m) be a regular local ring of positive characteristic
p, let I be an ideal of R, and let c be the key number for I. For all s ≥ 1,

I(cs+1) ⊆ mI(s).

Proof. We claim that Jc−1 = R. By Theorem 3.2,

I(q((n+1)(c−1)−nc)) ⊆ I
[q]
n+1

for all n. But for all large n, (n + 1)(c− 1)− nc = c− n + 1 < 0, and hence
In+1 = R. Since In+1 ⊆ Jc−1 we obtain Jc−1 = R.

Choose n least with the property that In = R (for k = c − 1). Note that
I0 = I 6= R, so that In−1 6= R. But then R = In = In−1I

(r−1) : I(rc−c+1)

implies that

I(rc−c+1) ⊆ In−1I
(r−1) ⊆ mI(r−1).

Setting s = r − 1 gives the conclusion of the theorem. �

Theorem 3.6. Let R be a regular ring of positive characteristic p > 0, let
I be a proper ideal of R, let r ≥ 2 be an integer, and let c be the key number
for I. If R/I is F -pure, then I(rc−1) ⊆ II(r−1).

Proof. The proof reduces at once to the local case, so we may assume
that (R,m) is a regular local ring. If I(c−1) ⊆ II(r−1) we are done, since
rc− 1 ≥ c− 1. Thus, we may assume that I(c−1) * II(r−1).

By Fedder’s criterion for F -purity (cf. [4]), I [q] : I * m[q]. If I(rc−1) *
II(r−1), then we may set k = 1 in Theorem 3.2. But then I(kq) = I(q) ⊆
(II(r−1) : I(rc−1))[q] ⊆ m[q], a contradiction, for then I(q) ⊆ m[q], while I [q] :
I * m[q]. �

7The theorem is equivalent to Theorem 1 of [6], where Zariski’s proof is given; for
Nagata’s proof see [18, p. 143].
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4. The main results in characteristic 0

In this section we give the extensions of the various positive characteristic
results to the equal characteristic case. As mentioned in Section 2, the notion
of tight closure that we use here is that of equational tight closure from [10,
Sections 3.4.3–4]. The main results of this section are contained in Theo-
rem 4.2 below. We need to do some groundwork before we can prove that
theorem, however. The proof of the main results depends on three steps: one
is to localize and complete, the second is to descend from the complete case
to the affine case, and the third is to use reduction to positive characteristic
in the affine case. We follow the same path as was done in detail in [11]. To
state the main theorem we need the definition of F -pure type.

Definition 4.1. Let R be a ring which is finitely generated over a field
k of characteristic 0. The ring R is said to be of F -pure type if there exists
a finitely generated Z-algebra A ⊆ k and a finitely generated A-algebra RA

which is free over A such that R ∼= RA ⊗A K and such that for all maximal
ideals µ in a Zariski dense subset of Spec(A), with κ = A/µ, the fiber rings
RA ⊗A κ are F-pure.

Theorem 4.2. Let R be a regular ring containing a field of characteristic
0, and let I be a proper ideal of R with key number c.

(1) If R is local with maximal ideal m, then for all s ≥ 1,

I(cs+1) ⊆ mI(s).

(2) If R is of finite type over a field of equal characteristic 0 and R/I is
of F -pure type, then I(rc−1) ⊆ II(r−1).

Proof. We prove a stronger statement to prove (1), which does not require
the ring to be local. Recall the definition of Ij , which makes sense in all
characteristics: Fix an integer k, 0 ≤ k ≤ r(c−1). Set I0 = I, and inductively
set In =

(
In−1I

(r−1) : I(rc−k)
)
. Set Jk =

⋃
j Ij .

Recall that Ij form an increasing sequence of ideals (depending on k), since
In−1I

(rc−k) ⊆ In−1I
(r−1) as k ≤ (r − 1)c, so that rc− k ≥ rc− r(c− 1) = r.

Hence Jk = IN for all large N .
We replace (1) by

(1′) Jc−1 = R.

We first prove that (1′) implies (1). Assume (1′) and assume that R is
local with maximal ideal m. The proof is entirely similar to the proof of
Theorem 3.5 in positive characteristic. We let k = c − 1, and consider the
ascending chain of ideal {Ij}. By (1′), for some large n, In = R. Choose n
least with this property. Note that I0 = I 6= R, so that In−1 6= R and is a
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proper ideal. But then R = In = In−1I
(r−1) : I(rc−c+1) implies that

I(rc−c+1) ⊆ In−1I
(r−1) ⊆ mI(r−1).

Setting s = r − 1 gives (1).
We prove (1′) for finitely generated algebras over a field K of characteristic

0, and at the same time prove (2). Assume there is a counterexample in
either of these cases. We use the standard descent theory of Chapter 2 of
[10] to replace the field K by a finitely generated Z-subalgebra A, so that
we have a counterexample in an affine algebra RA over A with RA ⊆ R and
R ∼= K⊗A RA. In particular, RA will be reduced. In doing so we descend I to
an ideal IA of RA as well as the ideals and their prime radicals in its primary
decomposition. We define the ideals IjA and JkA in a similar manner. In case
(1′), we have the stable ideal JkA, which is the union of the ideals IjA, and
we are assuming that 1 /∈ J(c−1)A. In case (3) we have an element uA that
fails to satisfy the containment we are trying to prove. Since R is regular, we
can localize at a nonzero element of A to make RA smooth over A. In either
case, we can localize at a nonzero element of A to make A smooth over Z.

For variable maximal ideals of A, we denote the residue field by κ. Notice
that as we pass to fibers κ−→Rκ = RA⊗Aκ we may assume that each minimal
prime PA of IA becomes a radical ideal whose minimal primes in Rκ are all of
the same height as the original. Thus, in the fiber, the primary decomposition
of Iκ may have more components, but each of these will be obtained from the
image of one of the original components by localization. The biggest analytic
spread after localizing at an associated prime will not change. The ring Rκ

will be regular, and in part (2) we know that for a dense set of maximal ideals
of A, the fiber Rκ/Iκ is F-pure. Both (2) and (1′) now follow since both
results hold in characteristic p for a dense set of closed fibers.

We now consider the general case for (1). The problem reduces to the local
case, and then it suffices to prove the required containment after completion.
Although IR̂ may have more associated primes, Discussion 1.1 shows that the
biggest analytic spread as one localizes at these cannot increase.

Since R is regular, note that for all integers j, Î(j) = I(j)R̂, so that (Î(j))n =
(I(j))nR̂. (The associated primes of R̂/I(j)R̂ are among those associated to
R̂/P R̂ for some associated prime P of I, by Proposition 15 in IV B.4 of [21],
since any associated prime of I(j) must be an associated prime of I, and
by another application of Proposition 15 in IV B.4 of [21] these in turn are
associated primes of IR̂.) Thus,

I(cs+1) ⊆ Î(cs+1) ⊆ m̂Î(s) ∩R = mI(s)R̂ ∩R = mI(s),

as required, by the faithful flatness of R̂ over R.
We may now use Theorem 4.3 of [11] to descend to a suitable affine algebra

over a coefficient field for the complete local ring, and the results follow from
what we have already proved in the affine case. This reduction is entirely
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similar to the reduction done in [11], and we refer the reader to that paper
for full details. �

Remark 4.3. We still do not know the best possible conclusion, even
in codimension two. For example, in K[x, y, z], for homogeneous primes
P1, . . . , Ps of height two, we do not know whether or not (P1 ∩ · · · ∩ Ps)(3) ⊆
(P1 ∩ · · · ∩ Ps)2. All evidence suggests this is always true, but we have not
been able to extend our methods to decide this question.

It is also possible that for regular local rings (R,m) in all characteristics
I(cs) ⊆ mI, where c is the key number for I. If so, this would prove the
Eisenbud-Mazur conjecture (even in positive characteristic) for prime ideals
of codimension two. It would also show that the counterexamples in positive
characteristic are sharp.
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