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GENERALIZED DIVISORS AND BILIAISON

ROBIN HARTSHORNE

Abstract. We extend the theory of generalized divisors so as to work
on any scheme X satisfying the condition S2 of Serre. We define a gen-
eralized notion of Gorenstein biliaison for schemes in projective space.
With this we give a new proof in a stronger form of the theorem of
Gaeta, that standard determinantal schemes are in the Gorenstein bili-
aison class of a complete intersection.

We also show, for schemes of codimension three in Pn, that the
relation of Gorenstein biliaison is equivalent to the relation of even strict
Gorenstein liaison.

0. Introduction

In this paper we generalize further the theory of generalized divisors in-
troduced in [6] by partially removing the Gorenstein hypotheses. This, we
feel, puts the theory in its natural state of generality. The main difference is
that instead of requiring the sheaves of ideals defining a generalized divisor
to be reflexive, we require only the condition S2 of Serre. If a scheme X
satisfies G1 and S1, then a coherent sheaf is reflexive if and only if it satisfies
S2 [6, 1.9]. Here we show that if X satisfies S1 only, then a coherent sheaf
satisfies S2 if and only if it is ω-reflexive: this means that the natural map
F → Hom(Hom(F , ω), ω) is an isomorphism, where ω is the canonical sheaf.
With this weaker condition we are able to establish a theory of generalized
divisors on schemes X satisfying only the condition S2.

We apply this theory to define a notion of generalized biliaison for schemes
in projective space. Let D be a (generalized) divisor on an ACM scheme X
in Pn

k . If D′ ∼ D + mH, meaning D′ is linearly equivalent to D plus m
times the hyperplane section H of X, we say D′ is obtained by an elementary
biliaison from D. We call biliaison the equivalence relation generated by the
elementary biliaisons.

If we do biliaisons using only complete intersection schemes X in Pn, the
resulting notion of biliaisons is equivalent to even complete intersection liaison
(CI-liaison) [6, 4.4]. If we do biliaisons using an ACM scheme X satisfying
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G0, we will show (3.5) that any such biliaison (called G-biliaison) is an even
Gorenstein liaison. We do not know if the converse is true. If we use arbitrary
ACM schemes X, we obtain a notion of biliaison that is possibly more general
than G-biliaison. Note that even this more general type of biliaison preserves
the Rao modules up to shift (3.2).

As an application we give a new proof (4.1) of the theorem of KMMNP–
Gaeta [11, Sec. 3] using biliaisons. I would like to thank Marta Casanellas
for explaining the old proof and helping to discover the new proof. Since this
paper was written in 2003, the theorem of Gaeta and the proof given here
have been further generalized by E. Gorla [3], to include all determinantal
schemes.

Examining the proof of (3.5) we see that the Gorenstein linkages there are
all of a special kind: they use only arithmetically Gorenstein schemes of the
form M + mH on some ACM scheme satisfying G0 (cf. 3.3). These we call
strict Gorenstein linkages, and so (3.5) actually tells us that every G-biliaison
is an even strict Gorenstein liaison. In Section 5 we prove a partial converse:
Every even strict Gorenstein liaison of codimension 3 subschemes of Pn is a
Gorenstein biliaison (5.1).

1. ω-reflexive modules

We will need some well-known results about the canonical module, or du-
alizing module as it is sometimes called, of a ring or scheme. We restrict our
attention to equidimensional embeddable noetherian rings and schemes. For
a ring A, this means that it is a quotient of a regular ring. For a scheme X,
it means that it can be embedded as a closed subscheme of a regular scheme.
This includes all quasiprojective schemes over a field, which will be our most
common application.

An equidimensional embeddable ring or scheme always has a canonical
module or sheaf unique up to isomorphism. It is finitely generated (resp.
coherent). Its formation commutes with localization, and with completion
of a local ring. If the ring A is a quotient of a regular ring P , and r is the
difference of dimensions, then the canonical module ω of A can be obtained as
ω = Extr

P (A,P ), and similarly for a closed subscheme X of a regular scheme
P . If A is a Cohen–Macaulay ring, then ω is a Cohen–Macaulay module
of the same dimension as A, and for any maximal Cohen–Macaulay module
M , the natural map M → HomA(HomA(M,ω), ω) is an isomorphism. For
references see [10] for the case of Cohen–Macaulay rings; [4, II.7] for the case
of projective schemes; and see also [1].

We will expand these results somewhat by weakening their hypotheses to
suit our situation. We define a module M over a ring A (as above) to be ω-
reflexive if the natural map M → HomA(HomA(M,ω), ω) is an isomorphism.
Sometimes we will denote by Mω the module HomA(M,ω), and call it the
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ω-dual of M . We say an A-module M satisfies the condition Sr of Serre if
depth Mp ≥ min(r, dim Ap) for all prime ideals p ⊆ A.

Lemma 1.1. If A is a local ring of dimension 0, every finitely generated
module M is ω-reflexive.

Proof. Since A is Cohen–Macaulay, this follows from [10, 6.1]. It also
follows from the local duality theorem, which says in this case that Mω is the
dual of H0

m(M) = M , so that Mωω is the double dual, which is isomorphic to
M . Here m denotes the maximal ideal of A. �

Lemma 1.2. For any local ring A, the canonical module ωA satisfies the
condition S1 of Serre.

Proof. Write A as a quotient of a regular local ring P of codimension r.
Then ωA = Extr

P (A,P ). By reason of dimension and local duality on P , the
functor Extr

P (·, P ) is contravariant and left-exact on A modules. If dim A = 0,
there is nothing to prove. If dim A ≥ 1, let x ∈ mA be an element such that
dim A/xA < dim A. Then from the sequence

A
x→ A → A/xA → 0

we obtain
0 = Extr

P (A/xA,P ) → ωA
x→ ωA.

Thus ωA has depth at least 1. Since formation of ω commutes with localiza-
tion, we conclude that ωA satisfies S1. �

Lemma 1.3. If a local ring A satisfies S1, then ωA satisfies S2.

Proof. Write A as a quotient of a regular local ring P of codimension r, as
before. Let x ∈ mA be a non-zero-divisor so that B = A/xA has dimension
one less. Then from the exact sequence

0 → A
x→ A → B → 0

and (1.2) we obtain

0 → ωA
x→ ωA → Extr+1

p (B,P ) = ωB .

Since ωB satisfies S1 by (1.2), we see that if dim A ≥ 2, then ωA has depth
≥ 2. Hence ωA satisfies S2. �

Lemma 1.4. Let A be a one-dimensional local Cohen–Macaulay ring.
Then a finitely generated module M is ω-reflexive if and only if it has depth 1.

Proof. Since ω has depth 1 (1.2) so does the ω-dual of any module. If M
is reflexive, it is the ω-dual of Mω and so has depth 1. The converse is [10,
6.1]. �
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Proposition 1.5. Let A be a local ring satisfying S1. A finitely generated
module M is ω-reflexive if and only if it satisfies S2.

Proof. First we show that the ω-dual of any module N will satisfy S2.
Write N as a cokernel of a map of free modules

L1 → L0 → N → 0.

Taking ω-duals and the image of the second map, we obtain

0 → Nω → Lω
0 → K → 0

where K is a submodule of Lω
1 . Now Lω

0 and Lω
1 are direct sums of copies

of ω, so satisfy S2 by (1.3). Hence K satisfies S1, and then from the exact
sequence it follows that Nω satisfies S2. In particular, any ω-reflexive module
satisfies S2.

Conversely, suppose M satisfies S2. The map α : M → Mωω is an iso-
morphism in codimension 0, by (1.1), so the kernel of α must have support of
codimension ≥ 1. Since M satisfies S1, there is no kernel. Thus we can write

0 → M
α→ Mωω → R → 0.

Now, since α is an isomorphism in codimension 1, by (1.4), the module R
must have support of codimension ≥ 2. Since both M and Mωω satisfy S2,
this is impossible (cf. proof of [6, 1.9]), so R = 0 and α is an isomorphism. �

Corollary 1.6. Let the local ring A satisfy S1. The ω-dual of any mod-
ule is ω-reflexive.

Proof. This follows from the first step of the proof of (1.5). �

Corollary 1.7. If the local ring A itself satisfies S2, then the natural
map A → HomA(ω, ω) is an isomorphism.

Remark 1.8. Let X be a scheme satisfying S1. Using the same arguments
as in [6, 1.11,1.12] we see that if F is a coherent sheaf satisfying S2 then F is
normal in the sense of Barth [5, 1.6], namely for any open set U and any closed
subset Y ⊆ U of codimension ≥ 2, the restriction map F(U) → F(U − Y ) is
bijective. In fact this condition characterizes S2, if we assume S1.

If F is a coherent sheaf satisfying S1 only, then it is easy to see that the set
Y of points of X where it does not satisfy S2 is a closed subset of codimension
≥ 2, and that the double ω-dual Fωω can be identified with j∗(F|X−Y ) where
j : X − Y → X is the inclusion. Thus the double ω-dual can be regarded as
the S2-ification of the sheaf.

It also follows naturally that for Y ⊆ X closed of codimension ≥ 2, the
category of coherent sheaves satisfying S2 on X is equivalent by restriction to
the analogous category on X − Y .
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Remark 1.9. To see the connection between the properties reflexive and
ω-reflexive, note that the proof of [6, 1.9] shows that a reflexive module over
a ring A satisfying S2 also satisfies S2. So we see that if A satisfies S2, then a
reflexive module is also ω-reflexive. The converse is not true without the G1

hypothesis. For example, if X is the union of the three coordinate axes in A3,
a scheme that satisfies G0 but not G1, the canonical sheaf ω is ω-reflexive by
(1.4), but is easily seen not to be reflexive. On the other hand, the proof of
[6, 1.9] does show that if X satisfies S2, and F satisfies S2 and is reflexive in
codimension ≤ 1, then F is reflexive.

Note also that if A satisfies S2, then the proofs of [6, 1.8,1.9] show that the
dual of any module M satisfies S2, and hence is ω-reflexive.

2. Generalized divisors

Let X be a noetherian, equidimensional, embeddable scheme satisfying the
condition S2 of Serre. We develop the theory of generalized divisors as in [6,
§2], noting the differences in our more general setting.

Let KX be the sheaf of total quotient rings on X [6, 2.1]. A fractional
ideal is a subsheaf I ⊆ KX that is a coherent sheaf of OX -modules. It is
nondegenerate if for each generic point η ∈ X, Iη = KX,η.

Definition. Let X be a scheme (as above) satisfying S2. A generalized
divisor on X is a nondegenerate fractional ideal I satisfying the condition S2

as a sheaf of OX -modules. It is effective if I ⊆ OX . We say the generalized
divisor I is principal if I = (f) for some global section f of KX . We say it is
Cartier if I is an invertible OX -module. We say it is almost Cartier if there
exists a closed subset Z ⊆ X of codimension ≥ 2 so that I|X−Z is Cartier.
We say it is reflexive if I is a reflexive OX -module.

Note that I is Cartier if and only if it is locally principal [6, 2.3]. Note that
an almost Cartier divisor is reflexive (1.9) and that the sheaf I being reflexive
implies the condition S2.

Proposition 2.1. With X satisfying S2, as above, the effective general-
ized divisors are in one-to-one correspondence with closed subschemes Y ⊆ X
of pure codimension one with no embedded points.

Proof. Let Y be a closed subscheme of X, defined by a sheaf of ideals I,
so that we have an exact sequence

0 → I → OX → OY → 0.

To say that I is nondegenerate is equivalent to saying Y has codimension
≥ 1. Since X satisfies S2, to say that I satisfies S2 is equivalent to saying
that every associated prime of Y has codimension 1 (cf. [6, 1.10]), i.e., that Y
is of pure codimension 1 with no embedded points. �



88 ROBIN HARTSHORNE

Definition. Let X satisfy S2. For any coherent sheaf F of OX -modules,
let us denote F∼ its double ω-dual, so that F∼ satisfies S2, where ω is the
canonical sheaf on X (1.8). If I ⊆ KX is a fractional ideal, then naturally
I∼ is also a fractional ideal, and will satisfy S2. We may often denote a
generalized divisor I by a letter D, and call I the ideal of D. Given two
(generalized) divisors D1 and D2, with corresponding ideal sheaves I1, I2, we
define the sum D1 + D2 by the fractional ideal (I1 · I2)∼. We define the
negative −D by (I−1)∼, where I−1 is the sheaf of local sections f of KX

for which f · I ⊆ OX locally (cf. [6, 2.2]). We denote the divisor with ideal
I = OX by 0.

Proposition 2.2. Let X satisfy S2.
(a) Addition of divisors is associative and commutative.
(b) D + 0 = D for all D.
(c) −(−D) = D if and only if D is reflexive.
(d) D + (−D) = 0 if and only if D is almost Cartier.
(e) If D is any divisor, and E is almost Cartier, then −(D+E) = (−D)+

(−E).

Proof. (a) and (b) are obvious. For (c), first note that I−1 ∼= I∨ =
Hom(I,OX) by [6, 2.2]. But by (1.9), I∨ is ω-reflexive, so in fact the defining
sheaf of −D is just I∨. For (d) we follow the proof of [6, 2.5], noting that at
a point of codimension 1, every ideal is ω-reflexive (1.4), so that the condition
says I · I−1 = OX , which implies I reflexive there [6, 2.3]. For (e) it is the
same proof as [6, 2.5]. �

Corollary 2.3. The set of almost Cartier divisors forms a group, con-
taining the subgroups of Cartier divisors and of principal divisors. This group
acts on the set of all divisors.

Definition. We say two divisors are linearly equivalent if one is obtained
from the other by adding a principal divisor. We denote the equivalence
classes by the group Pic X = Cartier divisors mod linear equivalence; the
group APic X = almost Cartier divisors mod linear equivalence, and the set
GPic X = generalized divisors mod linear equivalence.

Proposition 2.4. Two divisors D1 and D2 are linearly equivalent if and
only if their ideal sheaves I1 and I2 are isomorphic as OX-modules. Every
coherent OX-module that satisfies S2 and is locally free of rank 1 at every
generic point of X is isomorphic to the ideal of some divisor.

Proof. Indeed, an isomorphism ϕ : I1 → I2 of sheaves of OX -modules
extends to I1 ⊗ KX → I2 ⊗ KX . Each of these is isomorphic to KX , so the
map is given by multiplication by a global section f of KX . If F is coherent
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satisfying S2 and locally free of rank 1 at every generic point, then F ⊗
KX

∼= KX and the natural map F → F ⊗KX makes F into a nondegenerate
fractional ideal. �

Warning 2.5. The usual theory of the sheaf L(D) = I−1 associated to a
divisor D [6, 2.8] does not extend to divisors that may not be reflexive. How-
ever, we can get an analogue of [6, 2.10] using the sheaf M(D) = Hom(I, ω).
Note that M(D) is ω-reflexive by (1.6) and therefore satisfies S2.

Proposition 2.6. Let X be a Cohen–Macaulay scheme with canonical
sheaf ω, and for any divisor D, corresponding to an ideal sheaf I, let M(D) =
Hom(I, ω). If D is an effective divisor, denoting also by D the associated
closed subscheme, there are two natural exact sequences

0 → I → OX → OD → 0

and
0 → ωX →M(D) → ωD → 0.

Proof. The first is the defining sequence of D. The second is obtained by
applying Hom(·, ωX) to the first and noting (since X is Cohen–Macaulay)
that ωD

∼= Ext1OX
(OD, ωX). �

Definition–Remark 2.7. Even though X has a canonical sheaf ωX , it
may not have a canonical divisor. By canonical divisor we mean a generalized
divisor K whose ideal satisfies I−1

K
∼= ωX . Since the ideal of any divisor is

locally free at the generic points, the existence of a canonical divisor implies
that X satisfies G0. In this case we see also that ωX must be reflexive, by
[6, 1.8]. Since there are schemes satisfying G0 and S2 on which ω is not
reflexive (1.9), we conclude that G0 and S2 are not sufficient conditions for
the existence of a canonical divisor.

However, if X satisfies G0 and S2, then ωX is locally free of rank 1 at
every generic point, so is isomorphic to a fractional ideal. We choose and
fix an embedding ωX ⊆ KX , and call the corresponding divisor MX the
anticanonical divisor. As a divisor it depends on the choice of embedding
ωX ⊆ KX , but is unique up to linear equivalence. If X satisfies in addition
G1, then ω is invertible in codimension 1, so we can define a canonical divisor
K = −M , which will be an almost Cartier divisor.

Definition. For any two divisors D1, D2, we define D1(−D2) to be the
divisor whose sheaf of ideals is Hom(I2, I1)∼. In general, this operation may
not be well-behaved, but we do have the following.

Proposition 2.8. The operation D1(−D2) has the following properties.
(a) 0(−D2) = −D2 and D1(−0) = D1.
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(b) If E is almost Cartier, (D1 + E)(−D2) = D1(−(D + (−E))) =
D1(−D2) + E.

(c) In particular, if either D1 or D2 is almost Cartier, then D1(−D2) =
D1 + (−D2).

(d) If X satisfies G0, and D1 ∼ M + E, where M is the anticanonical
divisor and E is almost Cartier, then D1(−D1(−D2)) = D2 for any
D2.

Proof. (a), (b), (c) are immediate, since an almost Cartier divisor is invert-
ible in codimension 1, and equality of divisors can be tested in codimension
1. (d) corresponds to the fact that any divisor has an ideal sheaf satisfying
S2, and hence is ω-reflexive (1.5). �

Remark 2.9. We take this opportunity to point out an error in [6, 2.9].
Assuming that X satisfies G1 and S2 as in that paper, it is true that every
nondegenerate section s ∈ Γ(X,L(D)) gives rise to an effective divisor D′ in
the complete linear system |D|, and all D′ arise in this way. Two sections
s1 and s2 give rise to the same divisor D′ if and only if they differ by an
isomorphism of L(D). If D is almost Cartier, the isomorphisms of L(D) are
given by sections of Γ(X,O∗X) as stated there. So in the familiar case of X
integral projective, Γ(X,O∗X) = k∗ and |D| is simply the projective space
associated to the vector space Γ(X,L(D)).

Suppose, however, that D is not almost Cartier. Then there may be more
isomorphisms of L(D) and the statement of [6, 2.9] is not correct. For example,
let X = L1 ∪ L2 be the union of two lines in P2 meeting at a point P , and
let D be the divisor P . Then one can verify that dim Γ(X,L(D)) = 2, and
Isom(L,L) = k∗ ⊕ k∗, so that the complete linear system |D| consists just of
the single divisor D, as we expect. (Cf. [6, 3.3] for a relevant calculation.)

How does this discussion extend to the case of the present paper, where
X is only assumed to satisfy S2? We cannot use the sheaf L(D). Instead,
for each effective divisor D′ ∼ D, we take ω-duals of ID′ ⊆ OX to get ωX ⊆
Hom(ID′ , ωX) ∼= M(D), and this gives a section s of the sheaf N (D) =
Hom(ωX ,M(D)). Conversely, nondegenerate sections of N (D) give effective
divisors D′ ∼ D by reversing the process. The ambiguity of s is again in
Isom(N (D),N (D)) ∼= Isom(ID, ID).

3. Biliaison

In this section we generalize the notion of biliaison introduced in [6, §4]
and [12, §5.4]. Note that the word biliaison is not a synonym for even liaison.
We also generalize the results of [11, §5] so as to remove the G1 hypotheses.
In fact, it was the attempt to put those results in a more natural context
that led to this paper. A scheme X in Pn is arithmetically Cohen–Macaulay
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(ACM) if its homogeneous coordinate ring SX is a Cohen–Macaulay ring. It
is arithmetically Gorenstein (AG) if SX is a Gorenstein ring.

Definition. Let V1 and V2 be equidimensional closed subschemes of di-
mension r of Pn

k . We say that V2 is obtained by an elementary biliaison of
height h from V1 if there exists an ACM scheme X in Pn, of dimension r + 1,
containing V1 and V2, and so that V2 ∼ V1 +hH as generalized divisors on X,
where H denotes the hyperplane class. The biliaison is ascending if h ≥ 0; de-
scending if h ≤ 0. The equivalence relation generated by elementary biliaisons
will be called biliaison.

If we restrict the schemes X in the definition all to be complete intersection
schemes, we will speak of CI-biliaison. If we restrict the schemes X to be ACM
schemes satisfying G0, will speak of Gorenstein biliaison or G-biliaison.

Remark 3.1. As was shown in [6, 4.4], the relation of CI-biliaison is
equivalent to even CI-liaison in the usual sense.

Proposition 3.2. Suppose V2 is obtained from V1 by an elementary bil-
iaison of height h on X, with dim V1 = dim V2 = r.

(a) Then reciprocally, V1 is obtained from V2 by an elementary biliaison
of height −h.

(b) The higher Rao modules M i
V = Hi

∗(IV,Pn) are related as follows:

M i
V2
∼= M i

V1
(−h) for 1 ≤ i ≤ r.

(c) The Hilbert polynomials are related by

χ(OV2(m)) = χ(OX(m))− χ(OX(m− h)) + χ(OV1(m− h)).

Proof. (a) If V2 ∼ V1 + hH then V1 ∼ V2 − hH.
(b) and (c) have the same proof as [6, 4.5] since only the ACM property of

X was used there. �

Lemma 3.3. Let X be an ACM scheme satisfying G0 in Pn. Let Y ⊆ X
be an effective divisor, Y ∼ M + mH, where M is the anticanonical divisor
and H is the hyperplane divisor. Then Y is an arithmetically Gorenstein
(AG) scheme in Pn.

Proof. Let X be of dimension r+1 so that Y is of dimension r. If dim Y ≥ 1,
to show that Y is AG is equivalent to showing that Y is ACM and ωY

∼= OY (`)
for some ` ∈ Z.

First to show Y is ACM, we must show Hi
∗(IY,Pn) = 0 for 1 ≤ i ≤ r. From

the exact sequence

0 → IX,Pn → IY,Pn → IY,X → 0

and the fact that X is ACM, so that Hi
∗(IX,Pn) = 0 for 1 ≤ i ≤ r + 1, it

is equivalent to show Hi
∗(IY,X) = 0 for 1 ≤ i ≤ r. Now Y ∼ M + mH by
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hypothesis, so IY,X
∼= ωX(−m). By Serre duality on X, Hi

∗(ωX(−m)) is dual
to Hr+1−i

∗ (OX(m)). These latter are 0 for 1 ≤ i ≤ r since X is ACM. Hence
Y is ACM.

To study the canonical sheaf ωY , we use the second exact sequence of (2.6),
namely

0 → ωX →M(Y ) → ωY → 0.

Now since IY,X
∼= ωX(−m), we have ωX

∼= IY,X(m) and M(Y ) =
Hom(IY,X , ωX) ∼= OX(m). Thus ωY

∼= OY (m) and Y is arithmetically
Gorenstein.

If dim Y = 0, it is automatically ACM. To show it is AG, we must show
that its graded canonical module ΩY is isomorphic to SY (m). This follows
from the graded module analogue of the argument just given using (2.6). �

Remark 3.4. An algebraic version of this result was given in [11, 5.2],
and a geometric version with the added hypothesis G1 in [11, 5.4].

Definition. Two subschemes V1 and V2 of Pn, equidimensional of the
same dimension and without embedded components are linked by a scheme
Y if Y contains V1 and V2 and IVi,Y

∼= Hom(OVj ,OY ) for i, j = 1, 2, i 6= j.
If Y is a complete intersection, it is called a CI-linkage; if Y is arithmetically
Gorenstein, it is a Gorenstein linkage. If Y is an arithmetically Gorenstein
scheme of the form M + mH on some ACM scheme X satisfying G0 (as in
(3.3) above), then we will say it is a strict Gorenstein linkage. (This is a slight
generalization of the terminology of [7, §1], where we required that X should
satisfy G1.)

The equivalence relation generated by CI-linkages is CI-liaison, by Goren-
stein linkages, Gorenstein liaison, and by strict Gorenstein linkages, strict
Gorenstein liaison. If the liaison can be accomplished by an even number of
linkages, then it is an even CI-liaison (resp. Gorenstein liaison, resp. strict
Gorenstein liaison).

Theorem 3.5. Suppose that V2 is obtained from V1 by an elementary
biliaison on an ACM scheme X satisfying G0. Then V2 can be obtained from
V1 by two strict Gorenstein linkages.

Proof. The proof is almost the same as [6, 4.3], transposed into our context.
We assume that V2 ∼ V1 + hH. Thus there is a principal divisor (f) such
that V2 = V1 +hH +(f). Taking M to be the anticanonical divisor and using
(2.8), we can write

M(−V1) = M(−V2) + hH + (f).

Now by [6, 2.11], which still holds in our case, we can find an effective Cartier
divisor E ∼ mH such that W = E + M(−V1) = (M + E)(−V1) is effective.
Now let Y = M + E. Then Y is an effective divisor that is arithmetically
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Gorenstein by (3.4), and I claim that V1 and W are Gorenstein linked by
Y . Indeed, the same argument as in the proof of [6, 4.1] shows that IW,Y

∼=
Hom(OV1 ,OY ). Since by (2.8) we also have V1 = (M + E)(−W ), we obtain
the reverse isomorphism IV1,Y

∼= Hom(OW ,OY ), so V1 and W are linked by
Y .

We also have W = E + M(−V2) + hH + (f), so if we let Y ′ = E + M +
hH + (f), then Y ′ will also be an effective divisor that is an arithmetically
Gorenstein scheme, and as above, we see that W and V2 are linked by Y ′.
Thus V2 is obtained from V1 by two strict Gorenstein linkages. �

Corollary 3.6. Every Gorenstein biliaison is an even strict Gorenstein
liaison.

Remark 3.7. This theorem was proved for a trivial elementary biliaison
V2 = V1 + hH (with no linear equivalence) in [11, 5.10], and with the extra
hypothesis G1 in [11, 5.14].

Remark 3.8. In Section 5 below we will prove a converse to this theorem
in codimension 3.

Example 3.9. Let P be a point in P3, and let X be the union of three
non-coplanar lines through P . Then X satisfies G0 but not G1. If H is a
hyperplane section of X containing P , then V = P + H is the divisor defined
by the square of the ideal of P . Thus P and V are related by one G-biliaison,
and hence are evenly G linked. Cf. [11, 4.1], where this was proved by a
different method.

4. The theorem of Gaeta

To illustrate the theory of biliaison, we give a new proof the theorem of
KMMNP–Gaeta [11, 3.6]. The statement given there is that every standard
determinantal scheme is glicci. We prove a slightly stronger result.

Theorem 4.1. Every standard determinantal scheme in Pn can be ob-
tained from a linear variety by a finite number of ascending Gorenstein bili-
aisons. In particular, it is glicci by (3.3).

Proof. We follow the terminology and notation of [11, 3.6]. Let V ⊆ Pn be
a standard determinantal scheme, i.e., a scheme of codimension c + 1 whose
ideal IV is generated by the t× t minors of a t× (t + c) homogeneous matrix
A for some t > 0. Let B be the matrix obtained by omitting the last column
of A. Then V is contained in the determinantal scheme S defined by the t× t
minors of B. By Step I of the proof of [11, 3.6], S is good determinantal.
Hence it is generically a complete intersection [11, 3.2], and so satisfies G0.

Let A′ be the matrix obtained by omitting the last row of B. Then V ′,
defined by the (t − 1) × (t − 1) minors of A′, is also contained in S. We
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will show that V ∼ V ′ + mH on S for some m > 0, so that V is obtained
by an ascending elementary Gorenstein biliaison from V ′. Continuing in this
manner, after a finite number of G-biliaisons, we reduce to the case t = 1,
when V is a complete intersection. From these one can perform descending
CI-biliaisons to a linear variety.

Let R be the homogeneous coordinate ring of Pn, and let RS = R/IS be
the homogeneous coordinate ring of S. The ideal of V in S is generated by
the images in RS of the t× t minors of A that include the last column. The
t × t minors that do not include the last column are just the generators of
IS . On the other hand, the ideal of V ′ in S is generated by the images of the
(t−1)× (t−1) minors of A′. So there is a one-to-one correspondence between
generators N of V in S and generators N ′ of V ′ in S, obtained by omitting
the last row and column of the corresponding t× t matrix. We will show that
the quotient N/N ′ of corresponding generators is an element of H0(KS(m)),
independent of the choice of N , where KS is the sheaf of total quotient rings
of S, and m is the difference in degrees of N and N ′. This will show that
IV,S

∼= IV ′,S(−m), and so we have the desired biliaison. Note that m is the
degree of the element in the lower right-hand corner of the original matrix A.

To show that N/N ′ is independent of the choice of N( mod IS), it will
be sufficient to compare two such that differ by one column only. So let M
be a t × t minor of B, let N1 be obtained by deleting the first column of M
and adding the last column of A; let N2 be obtained by deleting the second
column of M and adding the last column of A. Then N1 and N2 are two
generators of IV , and the corresponding generators N ′

1, N
′
2 of IV ′ are just Mt1

and Mt2, where Mij denotes the minor of M obtained by deleting the ith row
and the jth column. We need to show that N1/N

′
1 = N2/N

′
2 mod IS . By

making general row and column operations on A at the beginning, we may
assume that all the N ′

i are non-zero-divisors in RS . So we must show that
N1N

′
2 −N2N

′
1 ∈ IS .

Let the last column of A be u1, . . . , ut. We will expand N1 and N2 along this
last column. The coefficient of ut in N1N

′
2−N2N

′
1 is just N ′

1N
′
2−N ′

2N
′
1 = 0.

For i 6= t, the coefficient of ui is Mi1Mt2 − Mi2Mt1. The proof is then
completed by the following identity among determinants, since M ∈ IS . �

Lemma 4.2. Let M be the determinant of a t× t matrix, let Mij denote
the minor obtained by deleting the ith row and the jth column; let Mik,jl

denote the minor obtained by deleting the ith and kth rows and the jth and
lth columns. Then the determinants satisfy

Mij ·Mkl −Mil ·Mkj = ±Mij,kl ·M.

Proof. [13, p. 132ff]. �
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Example 4.3. The 4× 4 minors of a general 4× 6 matrix of linear forms
in P4 define an irreducible smooth curve C of degree 20 and genus 26 which,
according to the theorem, can be obtained by ascending Gorenstein biliaisons
from a line. However these curves are not general in the Hilbert scheme, and
it is known that a general smooth curve of degree 20 and genus 26 is ACM,
but cannot be obtained by ascending biliaisons from a line. It is unknown
whether it is glicci [7, 3.9].

5. Strict Gorenstein liaison

The main result of this section is a converse to (3.6) in codimension 3.

Theorem 5.1. For subschemes of codimension 3 in Pn (equidimensional
and without embedded components), any even strict Gorenstein liaison is a
Gorenstein biliaison.

Proof. Suppose V and V ′ of codimension 3 in Pn are related by even strict
Gorenstein liaison. Then there is a sequence

V = V0, V1, V2, . . . , V2k = V ′

for some k, where each Vi is related to Vi+1 by a strict Gorenstein linkage. By
composition of biliaisons, it will be sufficient to treat the case k = 1, i.e., when
there is just one intermediary scheme Z, and V to Z is a strict Gorenstein
linkage by Y of the form M + mH on an ACM scheme X satisfying G0, and
Z to V ′ similarly is linked by a Y ′ of the form M ′+m′H ′ on an ACM scheme
X ′ satisfying G0.

Since X and X ′ are both ACM of codimension 2 in Pn, they are in the
same CI-biliaison class, by the classical Gaeta’s theorem [12, 6.1.4]. Thus we
can apply Lemma 5.2 (below) and find a chain

X = X0, X1, . . . , Xr = X ′

of ACM schemes satisfying G0 and each containing Z, such that each Xi is
directly CI-linked to Xi+1, and Xi and Xi+1 have no common components.

Now for each i = 1, . . . , r, let Di = Xi−1 ∩Xi. By Lemma 5.3 (below), Di

is an AG scheme of the form M + mH on Xi−1 and on Xi. Since the Xi all
contain Z, so do the Di. For each i = 1, . . . , r, let Wi be the scheme linked
to Z by Di. We consider the chain of strict Gorenstein linkages

V = W0, Z, W1, Z,W2, Z, . . . ,Wr, Z, V ′ = Wr+1.

Here, for each i = 0, . . . , r, the two links Wi, Z, Wi+1 are both strict Gorenstein
links on the same ACM scheme Xi. Now, as in the proof of [6, 4.1] we
see that Wi being linked to Z by M + mH on Xi is equivalent to saying
Z ∼ (M +mH)(−Wi) on Xi. Similarly, Z linked to Wi+1 by M +m′H on Xi

says Wi+1 ∼ (M + m′H)(−Z). Substituting the first expression for Z in the
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second expression for Wi+1, we find using (2.8) that Wi+1 ∼ Wi +(m′−m)H
on Xi, which is a single Gorenstein biliaison.

Thus V is joined to V ′ by the chain of Gorenstein biliaisons

V = W0,W1, . . . ,Wr,Wr+1 = V ′. �

Lemma 5.2. Suppose given X, X ′ locally Cohen–Macaulay subschemes of
codimension 2 in Pn, both satisfying G0, and both containing a given closed
subscheme Z of codimension at least 3 in Pn, and with X, X ′ in the same
CI-liaison class in Pn. Then there exists a chain

X = X0, X1, . . . , Xr = X ′

of locally Cohen–Macaulay subschemes of Pn, each containing Z, such that
each Xi+1 is obtained by a single geometric CI-linkage from Xi. In particular,
Xi and Xi+1 will have no common components, so each will be generically
locally complete intersection and therefore will satisfy G0.

Proof. Note first that the hypothesis G0 implies that X and X ′ are gener-
ically locally complete intersection, since they are in codimension 2. If X to
X ′ is an odd liaison, we can make a single general geometric liaison from X ′

to a new X ′′ also containing Z, and thus reduce to the case of an even liaison.
Then, since X and X ′ are in the same even liaison class, by Rao’s theorem,
they have N -type resolutions with stably equivalent sheaves Ni up to twist.
By adding dissocié sheaves, we can write N -type resolutions

0 → L → N → IX(a) → 0
0 → L′ → N → IX′(a′) → 0

with the same locally free sheaf N in the middle, and L,L′ dissocié.
Now we will follow the plan of the proof of [2, 3.1] to obtain a chain

X = X0, X2, X4, . . . , X2k = X ′

of locally Cohen–Macaulay subschemes containing Z, such that for each i, X2i

and X2i+2 have no common components and are related by a single elementary
CI-biliaison on a hypersurface Si.

Write L = ⊕Li with Li invertible, i = 1, . . . , t. Since X is generically
locally complete intersection, the rank of the map

L(ξ) → N (ξ)

is t− 1 for each generic point ξ of X. Thus, reordering if necessary, we define
F by

0 →
⊕
i≥2

Li → N → F → 0

and F will be torsion-free of rank 2, and locally free at each generic point ξ of
X. Now choose b � 0 so that IZ ⊗N (b) is generated by global sections and
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take s1 ∈ H0(IZ ⊗N (b)) a sufficiently general section. Let Y1 be defined by

0 → O(−b) s1→ F → IY1(a1) → 0.

Then Y1 contains Z, and Y1 has no component in common with X, and Y1 is
obtained from X by a single CI-biliaison [2, 3.3]. Furthermore, we can lift s1

to N in such a way that s1(ξ1) 6= 0 in N (ξ1) for each generic point of Y1. In
terms of N we now have

0 → O(−b)⊕
⊕
i≥2

Li → N → IY1(a1) → 0.

We repeat this process with each Li in turn, obtaining a sequence of bili-
aisons X, Y1, Y2, . . . , Yt, each one containing Z and having no components in
common with its neighbors.

We do the same thing with X ′, obtaining a similar sequence X ′, Y ′
1 , . . . , Y ′

t .
Then we observe that one can take the same b in both cases, and since the
sections s1, . . . , st, s

′
1, . . . , s

′
t are all sufficiently general, we can take si = s′i for

each i, and thus Yt = Y ′
t . This connects X and X ′ by biliaisons, all containing

Z. Now just relabel Yi and Y ′
i as X2j to get the sequence of biliaison above.

To conclude, let X2 and X4 for example be a biliaison on a hypersurface S,
where X2, X4 both contain Z and have no common component. Then X2 and
X4 are both generically Cartier divisors on S. When we link them both to a
divisor X3 on S, as in the proof of (3.5), we can take X3 to have no component
in common with X2 and X4, and by adding a complete intersection on S
containing Z if necessary, we may assume X3 contains Z. Thus the sequence
of biliaisons connecting X and X ′ can be filled in to a sequence of geometric
liaisons as required. �

Lemma 5.3. Let X1, X2 be ACM schemes in Pn that have no common
component and are directly linked by an AG scheme S. Then D = X1 ∩X2

is arithmetically Gorenstein; moreover, it is of the form M + `H on each of
X1, X2, where ` is the integer for which ωS

∼= OS(`).

Proof. (cf. [12, 4.2.1]). The fact that D is ACM follows from the exact
sequence

0 → OS → OX1 ⊕OX2 → OD → 0.

Since S is AG, its dualizing sheaf ωS is isomorphic to OS(`) for some ` ∈ Z.
Because of the linkage, IX1,S

∼= Hom(OX2 ,OS). Note that IX1,S = ID,X2

by a standard isomorphism theorem for ideals. Since ωX2 = Hom(OX2 , ωS),
we find that ID,X2

∼= ωX2(−`). This says D ∼ M + `H on X2. The same
argument shows that D ∼ M + `H on X1 also. �

6. Conclusion

If we reflect on the outstanding problem whether every ACM subscheme
of Pn is glicci, we can appreciate the usefulness of the extended notion of
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generalized divisors in this paper. It has allowed us to prove the theorem
of KMMNP–Gaeta in a strengthened form, namely that any standard deter-
minantal scheme in Pn can be obtained by ascending Gorenstein biliaisons
from a linear space. This also makes clear the special nature of determinantal
schemes, since there are known examples of other ACM schemes that can-
not be obtained by ascending Gorenstein biliaisons from a linear space, even
though it is still unknown whether they are glicci or not (for curves in P4, see
[7, 3.9], and for points in P3 see [9, 7.2]).

We also observe that in most known proofs that some class of ACM schemes
is glicci (such as the theorem of KMMNP–Gaeta discussed here) the proof
could be accomplished using Gorenstein biliaisons, hence using only strict
Gorenstein liaisons. Since there are AG schemes in Pn not of the special form
M + mH on some ACM scheme of one dimension higher (for curves in P4,
see [8, 3.6, 3.11] and for points in P3 see [9, 3.4, 6.8]), this suggests that it
would be worthwhile to investigate more deeply what kind of G-liaisons can
be accomplished using AG schemes not of this special form.
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