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ON DEVIATION IN GROUPS

A. V. TUSHEV

Abstract. The main result of the paper states that a metabelian group

G has deviation for normal subgroups if and only if it has a finite series
of normal subgroups each of whose factor meets the maximal or the
minimal condition for G-invariant subgroups.

1. Introduction

Let Ω be a set of subgroups of a group G. The group G is said to satisfy the
minimal (maximal) condition Min-Ω (Max-Ω) for subgroups from Ω if G has
no infinite descending (ascending) chain of subgroups from Ω, and the weak
minimal (maximal) condition Min-∞-Ω (Max-∞-Ω) for subgroups from Ω if
|Hi : Hi+1| <∞ (|Hi+1 : Hi| <∞) for almost all i for any infinite descending
(ascending) chain {Hi} of subgroups from Ω. If Ω is the set of all subgroups
of G, then Ω is usually omitted from these notations. The weak minimal and
maximal conditions were introduced by R. Baer and D. I. Zaitsev.

By a result of S. N. Černikov (see [10, 5.4.23]) a soluble group G has Min
if and only if G is a finite extension of a direct product of finitely many
of quasicyclic groups; nowadays such groups are called Černikov groups. A
soluble group G has Max if and only if it is polycyclic, that is, if G has a finite
subnormal series with cyclic factors (see [10, 5.4.12]).

A group G is said to be minimax if it has a finite subnormal series each
of whose factors has either Min or Max. It follows from the above mentioned
description of soluble groups with Min and Max that a soluble group G is
minimax if and only if it has a finite subnormal series each of whose factors is
either cyclic or quasicyclic. Minimax groups were introduced by R. Baer [1]
and investigated by R. Baer [2], D. J. S. Robinson [8], [9] and D. I. Zaitsev
[14], [15].

In [14] D. I. Zaitsev proved that a locally soluble group G has Min-∞ or
Max-∞ if and only if G is a soluble minimax group. The fact that such
different chain conditions as Min-∞ and Max-∞ lead to the same algebraic
structure suggests that there is another chain condition which generalizes both
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Min-∞ and Max-∞. In the present paper we consider what probably is the
most general (but still fruitful) chain condition, which involves the notion of
deviation.

Let Ω be a partially ordered set (poset for short). For any elements a, b ∈ Ω
we put a/b = {x ∈ Ω | a ≤ x ≤ b}. By [6, 6.1.2], the deviation of Ω, dev Ω, is
defined as follows:

(1) If Ω is trivial, then dev Ω = −∞.
(2) If Ω has the minimal condition, then dev Ω = 0.
(3) For a general ordinal β, dev Ω = β if

(i) dev Ω 6= α < β, and
(ii) in any descending chain {ai} of elements of Ω all but finitely

many factors ai/ai+1 have deviation less than β.

We should note that there exist posets without deviation.
Let R be a ring. If Ω is the set of all submodules of an R-module M , then

dev Ω is called the Krull dimension of M and denoted by KR(M). The Krull
dimension of the right module RR is called the Krull dimension of the ring R
and denoted by K(R). The notion of Krull dimension was introduced in [7]
and plays a very important role in the theory of rings and modules. Thus it
is desirable to extend this notion to the theory of groups. If G is a group and
Ω is a set of subgroups of G, then devΩG denotes the deviation of Ω, which
is a poset with respect to inclusion. If Ω is the set of all subgroups of G, then
we put devΩG = devG. If Ω is the set of all normal subgroups of G, then we
call devΩG the Krull dimension of G and denote it by K(G).

Evidently, if a group G has Min-∞-Ω, then devΩG ≤ 1. The arguments
of the proof of [6, 6.1.8] show that if a group G has Max-∞-Ω, then devΩG
exists. Thus, the condition of existence of devΩG generalizes both Min-∞-Ω
and Max-∞-Ω. However, Lemma 4.4 below shows that a soluble group has
devG if and only if G is minimax. A group G is said to be G-minimax if it has
a finite series of normal subgroups each of whose factors satisfies either the
minimal or the maximal condition for G-invariant subgroups. It follows from
[17, Theorem 4.2] that any metabelian group with the weak minimal condition
for normal subgroups (Min-∞-G) is G-minimax. But there exist G-minimax
metabelian groups which do not have Min-∞-G. Our main result, Theorem
4.5, states that a metabelian group G has Krull dimension if and only if it is
G-minimax.

A module is said to be minimax if it has a finite series of submodules each
of whose factors is either artinian or Noetherian. The main theorem follows
from Theorem 4.3 which states that if a group G is abelian minimax, then
a ZG-module has Krull dimension if and only if it is minimax. The proof
of Theorem 4.3 in turn depends strongly on Theorem 3.4, which deals with
commutative domains generated by minimax groups of units. Methods and
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ideas for studying such domains were introduced in [12] and further developed
in [13].

2. Module theoretic lemmas

Let R be a ring and let M be a nonzero R-module with Krull dimension.
The module M is said to be critical if KR(M/N) < KR(M) for any nonzero
submodule N of M .

Lemma 2.1. Let R be a commutative ring and let M be a critical R-
module. Then:

(i) AnnR(x) is a prime ideal of R for any element 0 6= x ∈M .
(ii) AnnR(x) = AnnR(y) = AnnR(M) for any nonzero elements x, y ∈M .

Proof. (i) Suppose that there is an element 0 6= x ∈ M such that I =
AnnR(x) is not prime. Then L = R/I ∼= xR is a critical L-module. Let a be a
zero divisor of L. Then N = AnnL(a) 6= 0 and aL ∼= L/N . Since L is critical,
KL(aL) = KL(L) and KL(L/N) < KL(L), but this contradicts aL ∼= L/N .

(ii) If AnnR(x) 6= AnnR(y) for some nonzero elements x, y ∈M , then there
is an element α ∈ R such that 0 6= AnnM (α) 6= M . The map ϕ : M → M
given by ϕ : x→ xα is a nonzero endomorphism and Kerϕ = AnnM (α) 6= 0,
but this contradicts [6, 6.2.13]. �

Lemma 2.2. Let R be a commutative ring and let {Bi | i = 1,m} be a
finite set of prime ideals of R. Let A be a prime ideal of R such that A 6⊂ Bi
for any i. Then:

(i) There is an element a ∈ A \
⋃m
i=1Bi.

(ii) If M is an R-module with an ascending chain

0 = M0 ≤M1 ≤ · · · ≤Mα ≤Mα+1 ≤ · · · ≤Mγ ≤Mγ+1,

whose factors are n-critical, AnnR(Mα+1/Mα) ∈ {Bi | i = 1,m} if
α + 1 ≤ γ, and AnnR(Mγ+1/Mγ) = A, then M has an n-critical
submodule whose annihilator coincides with A.

Proof. (i) If Bi ⊆ Bj for some i and j, then the ideal Bi can be omitted
in the union

⋃m
i=1Bi. Thus we can assume that Bi 6⊂ Bj for any i and j.

Let X =
⋂m
i=1Bi and let D be the image of A in the quotient ring L = R/X

and Ci the image of Bi in L. Then it is sufficient to show that there is an
element b ∈ D \

⋃m
i=1 Ci. Since 0 =

⋂m
i=1 Ci, we have L ≤

⊕m
i=1 Li, where

Li = L/Ci ∼= R/Bi and Ci = (
⊕

j 6=i LJ) ∩ L. As D is not contained in any
Ci, we have PrLi(D) 6= 0 for each i. Since the Ci are prime ideals of L,
the relation (

∏
j 6=i Cj) ≤ Ci implies that Cj ≤ Ci for some i and j, but this

is impossible because Bi 6⊂ Bj for any i and j. Thus, there is an element
xi ∈ (

∏
j 6=i Cj) \ Ci, and hence Dxi = Fi ≤ D ∩ Li 6= 0, and we can put

b =
∑m
i=1 bi, where 0 6= bi ∈ Fi.
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(ii) By (i), there is an element a ∈ A\
⋃m
i=1Bi. The map ϕ : Mγ+1 →Mγ+1

given by ϕ : x 7→ xa is an endomorphism. Since a ∈ A \
⋃m
i=1Bi, it is easy

to see that Kerϕ ∩Mγ = 0. If Kerϕ 6= 0, then AnnR(Kerϕ) = A and Kerϕ
is an n-critical submodule. If Kerϕ = 0, then N = ϕ(Mγ+1) ∼= Mγ+1 and
hence N contains a submodule T such that N/T is an n-critical R-module
and AnnR(N/T ) = A. On the other hand, as N ≤ Mγ , N has an ascending
chain {Ni} with n-critical factors whose annihilators coincide with some Bi.
Let β be the maximal ordinal such that Nβ ≤ T . Then (Nβ+1 + T )/T 6= 0 is
isomorphic to a quotient module of Nβ+1/Nβ . Since N/T and Nβ+1/Nβ are
n-critical modules, this implies that (Nβ+1 + T )/T ∼= Nβ+1/Nβ . But this is
impossible because A 6= Bi for all i. Thus a contradiction is obtained. �

Let R be a ring and let M be an R-module. The module M is said to
have finite uniform dimension if it contains no direct sum of infinitely many
of submodules. By [6, 2.2.9], if the module M has finite uniform dimension,
then there exists a positive integer n such that M contains no direct sum
of more than n submodules; the minimal n with this property is called the
uniform dimension of M and denoted by u-dimM .

Let R be a ring and let M be an R-module with Krull dimension. For
any ordinal α the submodule τα(M) =

∑
{A | A ≤ M,KR(A) ≤ α} is

called the α-torsion submodule of M and, by [6, 6.2.18], KR(τα(M)) ≤ α.
Suppose that KR(M) = n is an integer and τn−1(M) = 0. Let L be an
n-critical submodule of M and let N = τn−1(M/L). Then it is easy to see
that N is a maximal n-critical submodule of M . By [6, 6.2.6], the module
M has finite uniform dimension and hence, by [6, 2.2.8], M has an essential
submodule U =

⊕m
i=1 Ui, where the Ui are uniform submodules. Evidently,

the submodules Ui can be chosen to be n-critical.

Lemma 2.3. Let R be a commutative ring and let M be an R-module with
finite Krull dimension n such that τn−1(M) = 0. Let U =

⊕m
i=1 Ui be an

essential submodule of M , where the Ui are n-critical submodules, and let
Bi = AnnR(Ui). Let M0/U be the (n− 1)-torsion submodule of M/U . Let

M0 ≤M1 ≤ · · · ≤Mα ≤Mα+1 ≤ · · · ≤Mγ = M

be an ascending chain of submodules of M such that Mα+1/Mα is a maximal
n-critical submodule of M/Mα and let Aα = AnnR(Mα+1/Mα). Then:

(i) Each Aα coincides with some Bi.
(ii) If γ is an infinite ordinal, then there is a submodule L ≤ M with an

ascending chain {Li | i ∈ N} such that L =
⋃
i∈N Li, Li+1/Li is a

maximal n-critical submodule of L/Li and AnnR(Li+1/Li) = B for
each i, where B is a prime ideal of R.

Proof. (i) The proof is by transfinite induction on γ. Evidently, we can
assume that γ is a non-limit ordinal and that the assertion holds for Mγ−1.
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Suppose that Aγ−1 6= Bi for any i. By Lemma 2.2(ii), there is an n-critical
submodule V ≤ M such that AnnR(V ) = Aγ and hence U ∩ V = 0, but this
is impossible because the submodule U is essential.

(ii) It follows from (i) that M has an ascending chain {Mα} of submodules
such that Mα+1/Mα is a maximal n-critical submodule of M/Mα and each
Aα coincides with some Bi, where Aα = AnnR(Mα+1/Mα) and {Bi | i =
1,m} is a finite set of prime ideals of R. Evidently, there is an ideal B ∈
{Bi | i = 1,m} such that infinitely many of the Ai coincide with B. Put
L1 = 0, and let t be the first index such that At = B. Then it follows
from Lemma 2.2(ii) that Mt+1 has an n-critical submodule whose annihilator
coincides with B. Therefore Mt+1 has a maximal n-critical submodule L2

whose annihilator coincides with B. The arguments of the proof of [6, 6.2.21]
show that the quotient module Mt+1/L2 has a finite series of submodules with
n-critical factors whose annihilators coincide with ideals from {Bi | i = 1,m}.
Passing to the quotient module M/L2 and repeating the above arguments,
the assertion follows. �

Let R be a ring and let G be a group. An RG-module is said to be faithful
if CG(M) = 1.

Lemma 2.4. Let k be a finite field of characteristic p, let G be an abelian
Černikov group and let M be a faithful kG-module with Krull dimension. Then
|M | <∞ and |G| <∞ if one of the following conditions holds:

(i) G has a p-subgroup P of finite index.
(ii) M = kG.

Proof. (i) Suppose that |M | = ∞. It follows from [6, 6.2.10] that the
module M has an ascending chain {Mi} of submodules whose factors are
critical and hence, by Lemma 2.1, annihilated by prime ideals of kG. Since
kP has a unique augmentation prime ideal, all factors of the chain {Mi} are
centralized by P . Then it follows from Maschke’s theorem that each factor of
the chain {Mi} is a direct sum of finite simple submodules, and by [6, 6.2.6] all
factors of the chain {Mi} are finite. Thus the module M contains an infinite
submodule N which has ascending chain {Ni | i = N} with finite factors.
Since the group G is Černikov, it contains a divisible subgroup H ≤ P of
finite index. As H has no proper subgroups of finite index, the submodule
N is centralized by H. Therefore |P : CP (N)| < ∞, and hence N has a
finite chain {Li} of submodules whose factors are centralized by P . As N is
infinite, the chain {Li} has an infinite factor which, by Maschke’s theorem, is
a direct sum of finite simple submodules, but this contradicts [6, 6.2.6]. Thus,
|M | <∞ and hence |G| <∞.

(ii) Suppose that the group G is infinite. Since kG has Krull dimension,
kF also has Krull dimension for any subgroup F ≤ G. Therefore, there is
no harm in assuming that G is a quasicyclic p-group. If p = char k, then
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the assertion follows from (i). If p 6= char k, then it follows from Maschke’s
theorem that kG does not have finite uniform dimension, but this contradicts
[6, 6.2.6]. �

3. Krull dimension in commutative domains generated by
minimax groups of units

A finite series of ideals of a commutative ring R is said to be a composition
series if all its factors are simple R-modules. Let G be an abelian minimax
group; the spectrum Sp(G) consists of primes p such that G has an infinite
p-quotient group. If the group G is torsion, then π(G) denotes the set of prime
divisors of orders of elements of G.

Lemma 3.1. Let f be a field of characteristic zero and let T be a Černikov
subgroup of the multiplicative group of f . Let K be a subring of f generated
by T and let n be a positive integer whose prime divisors do not belong to
Sp(T ). Then the quotient ring K/Kn has a composition series.

Proof. Since the additive group of the ring K is torsion-free, the quotient
ring K/nK has a finite series of ideals each of whose factors is isomorphic
to the quotient ring K/pK for some prime divisor p of n. Therefore, it is
sufficient to consider the case where n = p is a prime.

Let D be a finite subgroup of T containing primitive roots of 1 of degree
q2 for all q ∈ Sp(T ) and such that π(T/D) = Sp(T ). By [13, Lemma 7],
K = U

⊗
ZD ZT , where U is a subring of f generated by D. Since the

quotient ring U/Up is finite, it has a finite series of ideals each of whose
factors is isomorphic to the quotient ring L = U/P for some maximal ideal
P of U containing pU . Then K/pK has a finite series of ideals each of whose
factors is isomorphic to F = (U/P )

⊗
ZD ZT . It follows from the choice of

n and D that the Sylow p-subgroup Tp of T is contained in D. Since L is a
field of characteristic p, Tp centralizes L and hence also F . Therefore we can
assume that p 6∈ π(T ).

Since the group T is locally cyclic, D = 〈x〉, where x is a primitive root
of 1 of degree m = |D|. We now show that the image y of x in the quotient
ring L = U/P is a primitive root of 1 of degree m. It is sufficient to show
that yt 6= 1 for any proper divisor t of m. Suppose that yt = 1. Then y is a
root of a polynomial Xt − 1 ∈ Fp[X], where Fp = Z/pZ. Let A(X) ∈ Z[X]
be the cyclotomic polynomial of degree m and let P (X) be the image of
A(X) in Fp[X]. Then y is a root of P (X). The polynomial Xm − 1 ∈ Fp[X]
may be written in the form Xm − 1 = (Xt − 1)P (X)Q(X), where Q(X) is a
polynomial in Fp[X]. Then, as y is a root of the polynomials Xt−1 and P (X),
the polynomial Xm − 1 has repeated roots. On the other hand, as p is not a
divisor of m, the derivative mXm−1 of Xm − 1 does not have common roots
with Xm− 1 and hence the polynomial Xm− 1 does not have repeated roots.
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This contradiction shows that y is a primitive root of 1 of degree m. Let J/Kp
be a maximal ideal of K/Kp containing P/Up. Since y is a primitive root of 1
of degree m, it follows from [13, Lemma 7] that L/J = (U/P )

⊗
ZD ZT = F .

Hence F is a simple ZT -module. �

A ring is said to be Hilbert if each of its prime ideals is an intersection
of maximal ideals. A ring is said to be absolutely Hilbert if it is commuta-
tive, Noetherian and Hilbert, and all its field images are locally finite. The
dimension of a ring is the maximal length of a chain of prime ideals.

Lemma 3.2. Let f be a field of characteristic zero, let T be a Černikov
subgroup of the multiplicative group of f and let Q be a subring of f consisting
of fractions whose denominators are products of powers of primes from Sp(T ).
Let L be a subring of f generated by T and Q. Then the ring L is

(i) Noetherian,
(ii) critical and satisfies K(L) = 1,
(iii) absolutely Hilbert of dimension 1.

Proof. Let R be a subring of L generated by T . Then L = R
⊗
Z
Q and

the additive group of L is p-divisible for any p ∈ Sp(T ). Let I be a proper
ideal of L. Then there is a positive integer n ∈ I. As the additive group of L
is p-divisible for any p ∈ Sp(T ), prime divisors of n do not belong to Sp(T ).
Since π(L/R) ⊆ Sp(T ), it is not difficult to see that L/nL ∼= R/nR. Then it
follows from Lemma 3.1 that the quotient ring L/nL has a finite composition
series. This implies that for any proper ideal I of L the quotient ring L/I
is Noetherian and K(L/I) = 0. Therefore, the ring L is Noetherian, critical
and satisfies K(L) = 1.

If J is a maximal ideal of K, then K/J is an elementary abelian group
and hence the field K/J is locally finite. As for any nonzero ideal I of K the
quotient ring K/I has a finite composition series, it follows from [3, Chap IV,
§2, Proposition 9] that any prime ideal of K is maximal. Therefore, K is an
absolutely Hilbert ring of dimension 1. �

Let I be an ideal of a group ring RG. We denote by I† the normal subgroup
(I + 1) ∩G of G.

Lemma 3.3. Let f be a field of characteristic zero and let G be a subgroup
of the multiplicative group of f such that G = T × H, where H is a finitely
generated free abelian group and T is a Černikov group. Let K be a subring
of f generated by G. Then the ring K has Krull dimension if and only if one
of the following conditions holds:

(i) The additive group of K is p-divisible for any p ∈ Sp(T ).
(ii) K is a Noetherian ring, and K(K) ≤ r(H) + 1.
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Proof. Suppose that the additive group of K is p-divisible for any p ∈
Sp(T ). Then K contains a subring Q consisting of fractions whose denom-
inators are products of powers of primes from Sp(T ). Let L be a subring
of K generated by Q and T . By Lemma 3.2, the ring L is Noetherian and
K(L) = 1. It is not difficult to see that K is a quotient ring of the group ring
LH. By [4, Theorem 1], LH is a Noetherian ring and hence so is K. Then,
by [6, 6.2.3], K has Krull dimension and, by [6, 6.6.1], K(K) ≤ r(H) + 1. If
the ring K is Noetherian, then, by [6, 6.2.3], it has Krull dimension.

Suppose now that the ring K has Krull dimension and that for some p ∈
Sp(T ) the additive group of K is not p-divisible. By [13, Lemma 5], there
is a finitely generated subgroup D ≤ G such that H ≤ D, π(G/D) = Sp(T )
and K = U

⊗
ZD ZG, where U is a subring of K generated by D. Evidently,

the additive group of U is not p-divisible and hence there is a maximal ideal
J of U such that U/J is a p-group. It follows from [5, Theorem 3.1] that
|U/J | < ∞ and hence |D/J†| < ∞. As p ∈ Sp(T ), there is a subgroup F
of G such that D ≤ F and F/D is an infinite p-group. Hence F/J† is an
infinite Černikov group which contains a p-subgroup of finite index. Then
K = V

⊗
ZF ZG, where V is a subring of K generated by F . Thus the ring V

has Krull dimension. As V = U
⊗
ZD ZF , we have V/JV = (U/J)

⊗
ZD ZF .

Therefore V/JV is an infinite Fp(F/J†)-module with Krull dimension, but
this contradicts Lemma 2.4(i). �

Theorem 3.4. Let f be a field and let G be a minimax subgroup of the
multiplicative group of f . Let K be a subring of f generated by G. The ring
K has Krull dimension if and only if one of the following conditions holds:

(i) G = T ×F , where T is a torsion group and F is a free abelian group,
and if char f = 0, then the additive group of K is p-divisible for any
p ∈ Sp(T ).

(ii) The ring K is Noetherian and satisfies K(K) ≤ r(F ) + 1.

Proof. Suppose that the ring K has Krull dimension. Put π = Sp(G) \
char f and let K1 be the ring obtained by adding to K the primitive roots of
1 of degree p2 for all p ∈ π. Then K1 is a finitely generated K-module and,
as the ring K has Krull dimension, it follows from [6, 6.2.5] that the ring K1

also has Krull dimension. Thus there is no harm in assuming that K = K1.
The group G can be presented in the form G = T × F , where T is a torsion
group and F is a torsion-free group. Then it follows from [13, Lemma 7] that
there is a dense subgroup H ≤ G such that H = A × B, where A is a finite
subgroup of T , B ≤ F , Sp(B) ⊆ {char f}, π(F/B) ⊆ Sp(F ) \ char f and
K = R

⊗
ZH ZG, where R is a subring of K generated by H.

If char f = 0, then H is finitely generated. Suppose that char f = p and
that the subgroup H is not finitely generated. As K = R

⊗
ZH ZG, the ring

R has Krull dimension. Let S be a subring of K generated by B. By [13,
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Lemma 5], there is a finitely generated dense subgroup C ≤ B such that
|S/S(1 − C)| = ∞. The ring R is obtained by adding the primitive roots
of 1 to S and, as 1 is the leading coefficient of any cyclotomic polynomial,
it is not difficult to show that the ring R can be presented in the form R =
S
⊕

(
⊕t

i=1 Sai), where ai ∈ R. Therefore, R(1−C)∩S = S(1−C) and hence
|R/R(1−C)| =∞. As H/C is a Černikov group having a p-subgroup of finite
index and R/R(1− C) is an infinite Fp(H/C)-module with Krull dimension,
we obtain a contradiction to Lemma 2.4. Hence the subgroup H is finitely
generated.

Suppose that B 6= F . Let X = A × F . Then K = Y
⊗
ZX ZG, where

Y is a subring of K generated by X and hence Y has Krull dimension. By
[13, Proposition 1], there is a maximal ideal I of S such that π(B/I†) ∩
π(F/B) = ∅. As Y = R

⊗
ZH ZX, we have Y = R

⊗
ZB ZF and hence

Y/IY = (R/IR)
⊗
ZB1

ZF1, where B1 = B/I† and F1 = F/I†. Since
π(B/I†)∩ π(F/B) = ∅, there is a subgroup F2 ≤ F1 such that F1 = F2 ×B1.
The relation Y/IY = (R/IR)

⊗
ZB1

ZF1 shows that Y/IY = (R/IR)F2 is
a group ring with Krull dimension, but this contradicts Lemma 2.4(ii) be-
cause F2 is an infinite Černikov group. Thus the subgroup F = B is finitely
generated.

If char f = 0, then, by Lemma 3.3, the ring K is Noetherian, satisfies
K(K) ≤ r(F )+1, and the additive group of K is p divisible for any p ∈ Sp(T ).

If char f = p > 0, then the subring L of K generated by T is a field and
the ring K can be presented as a quotient ring of the group ring LF . Then it
follows from [4, Theorem 1] that the ring K is Noetherian and, by [6, 6.6.1],
K(K) ≤ r(F ).

If the ring K is Noetherian, then, by [6, 6.2.3], it has Krull dimension. �

4. Modules over abelian minimax groups and metabelian groups
with Krull dimension

LetG be a soluble group of finite rank. Evidently, there exists a unique min-
imal characteristic subgroup P (G) of G such that the quotient group G/P (G)
is free abelian.

Lemma 4.1. Let G be a minimax abelian group and let M be a ZG-module
with Krull dimension. Then:

(i) Any cyclic critical submodule L of M is Noetherian and K(L) ≤
r(G/P (G)) + 1.

(ii) K(M) ≤ r(G/P (G)) + 1.

Proof. (i) Since L ∼= K = ZG/AnnZG(K), where K is a domain generated
by a minimax group G/(AnnZG(K))†, it follows from Theorem 3.4 that the
ring K is Noetherian and K(L) ≤ r(G/P (G)) + 1.
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(ii) It follows from [6, 6.2.10] that the module M has an ascending chain
{Mi} whose factors are cyclic critical and ∪Mi = M . Then (ii) follows from
(i) and [6, 6.2.17]. �

Lemma 4.2. Let G be a minimax abelian group and let M be a non-
artinian minimax ZG-module. Then the module M has a maximal submodule.

Proof. Since the module M is minimax, it is sufficient to consider the case
where M has a non-artinian critical cyclic submodule N such that M/N is an
artinian module and τ0(M) = 0. It follows from Lemma 2.3 that the module
M has an ascending chain of submodules N = M0 ≤ M1 ≤ · · · ≤ Mα ≤
Mα+1 ≤ · · · ≤Mγ = M such that Mα+1/Mα is a simple submodule of M/Mα

and Aα = AnnR(Mα+1/Mα) coincides with some Bi, where (Bi | i = 1,m) is
a finite set of maximal ideals of ZG.

It follows from Theorem 3.4 and Lemma 3.2 that N can be considered as
an LF -module, where L is an absolutely Hilbert ring of dimension at most 1
and F is a finitely generated abelian group. Then it follows from [11, Main
Theorem (2nd version)] that the submodule N is residually simple. Therefore,
there is a maximal submodule T of N such that B = AnnZG(N/T ) 6= Bi
for any i. By Lemma 2.2, there is an element a ∈ B \ (

⋃m
i=1Bi). The

map ϕ : M/T → M/T given by ϕ : x 7→ xa is an endomorphism. Since
a ∈ B \ (

⋃m
i=1Bi), it is easy to see that Kerϕ = (N/T ) and hence ϕ(M/T ) ∼=

M/N . As ϕ(M/N) = M/N , this implies that M/T = N/T ⊕ ϕ(M/T ) and
the assertion follows. �

Theorem 4.3. Let G be a minimax abelian group and let M be a ZG-
module. The module M has Krull dimension if and only if it is minimax. If
the module M has Krull dimension, then KZG(M) ≤ r(G/P (G)) + 1.

Proof. If the module M is minimax, then it follows from [6, 6.2.3] that it
has Krull dimension. By Lemma 4.1 we have KZG(M) ≤ r(G/P (G)) + 1 and
we can use induction on KZG(M). If KZG(M) = 0, then the module M is
artinian.

Suppose that KZG(M) = n > 0. Then by the induction hypothesis the
(n − 1)-torsion submodule τn−1(M) of M is minimax. So, passing to the
quotient module M/τn−1(M) we can assume that τn−1(M) = 0. Then it
follows from Lemma 2.2 that M has an ascending chain {Mα} of submodules
such that Mα+1/Mα is a maximal n-critical submodule of M/Mα and each Aα
coincides with some Bi, where Aα = AnnZG(Mα+1/Mα) and {Bi | i = 1,m}
is a finite set of prime ideals of ZG. Each factor Nα = Mα+1/Mα has a cyclic
n-critical submodule Fα such that KZG(Nα/Fα) ≤ n − 1. By Lemma 4.1(i),
Fα is a Noetherian module and, by the induction hypothesis, the quotient
module Nα/Fα is minimax. Thus, it is sufficient to show that the chain {Mα}
is finite.
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Suppose that the chain {Mα} is infinite. Then, by Lemma 2.3(ii), there
is a submodule L ≤ M with an ascending chain {Li | i ∈ N} such that L =⋃
i∈N Li, Li+1/Li is a maximal n-critical submodule of L/Li and

AnnZG(Li+1/Li) = B for each i, where B is a prime ideal of ZG. By Lemma
4.2, the submodule L2 has a maximal submodule T2 and, by [16, Theorem
2.4], the quotient group G/CG(L2/T2) is torsion and L2/T2 is an elementary
abelian p2-group.

Suppose that r((G/B†)/P (G/B†)) ≥ 1. Then there is an element z2 ∈
G \ B† such that L2(1 − z2) ≤ T2 and A2 ∩ L2 = L2(1 − z2), where A2 =
M(1− z2). Putting Ai = M , we see that L2 ∩ A1 6⊂ L1 + A2, where L1 = 0.
As {Li ∩ A2 | i ∈ N} is an ascending chain with n-critical factors, the above
arguments show that there are a maximal ideal T3 of (L3∩A2) and an element
z3 ∈ G\B† such that (L2∩A2) ≤ T3, L3(1−z3) ≤ T3 and A3∩L3 = L3(1−z3),
where A3 = A2(1 − z3). It easily follows that L3 ∩ A2 6⊂ L2 + A3. Hence,
by moving up the chain {Li | i ∈ N} we can construct a descending chain
{Ai | i ∈ N} such that Li+1 ∩ Ai 6⊂ Li + Ai+1 for each i. But, by [6, 6.2.16],
in this case the module M has no Krull dimension and a contradiction is
obtained.

If r((G/B†)/P (G/B†)) = 0, then it follows from Theorem 3.4 that n = 1
and the quotient group Li+1/Li is torsion-free for each i. Then, putting
A1 = M and A2 = Mp2 we see that L2 ∩ A1 6⊂ L1 + A2. By Lemma
2.3, there are a maximal ideal T3 of (L3 ∩ A2) and a prime p3 such that
(L2 ∩ A2) ≤ T3, L3p3 ≤ T3 and A3 ∩ L3 = L3p3, where A3 = A2p3, and
hence L3 ∩ A2 6⊂ L2 + A3. Hence, as in the above case, we can construct a
descending chain {Ai | i ∈ N} and obtain a contradiction. �

Lemma 4.4. Let G be a soluble group. Then devG exists if and only if
the group G is minimax. Furthermore, if devG exists, then devG ≤ 1, and
devG = 0 if and only if the group G is Černikov.

Proof. Evidently, by using induction on the solvability length of G, we can
assume that the group G is abelian. Then the group G can by considered
as a Z-module and, as G has Krull dimension, it follows from [6, 6.2.6] that
u-dimG < ∞. Therefore r(G) < ∞ and hence there is a finitely generated
dense subgroup H of G. The above arguments show that u-dim(G/H) <∞,
which implies that the quotient group G/H is Černikov and hence the group
G is minimax.

If G is a minimax group, then it satisfies Min-∞ and hence devG ≤ 1.
Moreover, devG = 0 if and only if G satisfies Min and hence the group G is
Černikov. �

Theorem 4.5. A metabelian group G has Krull dimension if and only
if it is G-minimax. If the group G has Krull dimension, then K(G) ≤
r(G/P (G)) + 1.
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Proof. The derived subgroup M of G can be considered as a Z(G/M)-
module, where G/M acts on M by conjugation. Then the assertion follows
from Lemma 4.4 and Theorem 4.3. �
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