
Illinois Journal of Mathematics
Volume 47, Number 1/2, Spring/Summer 2003, Pages 485–513
S 0019-2082

BAER SUBPLANES

HELMUT SALZMANN

Abstract. The real plane is a Baer subplane of the complex projective

plane in the following sense: each complex line contains a real point
and, dually, each complex point is on a real line. In the first part of this
survey main aspects of the general theory will be reviewed. The second

part is concerned with finite planes. Part 3 deals rather completely with
Baer subplanes of compact, connected topological projective planes.

Introduction

In the year 1946 Reinhold Baer [3] published a paper Projectivities with
fixed points on every line of the plane in the Bulletin of the AMS. (Today one
prefers to speak of collineations or automorphisms of a projective plane P
rather than of projectivities.) A collineation β 6= 1l with the property studied
by Baer (and, in particular, each involution) either fixes all points of some
line (which is then called the axis of β), or there is a quadrangle (four points
in general position) of fixed points and the fixed elements of β form a proper
subplane Fβ of P. In the latter case, β is said to be a Baer collineation.
According to Theorem 1 in Baer’s paper, β is then also a Baer collineation of
the dual plane. This motivates the following definition:

Definition. A proper subplane B of a (not necessarily Desarguesian) pro-
jective plane P is called a Baer subplane if each line of P contains a point in
B and, dually, each point of P is incident with a line in B.

A familiar example is the real plane considered as a subplane of the complex
projective plane PC. It is the fixed plane of the involution ι of PC induced
by complex conjugation of the coordinates. The complex plane is a compact,
connected topological projective plane, and continuity of ι implies that the
real plane is closed in PC. Note, however, that a Baer subplane does not
necessarily consist of the fixed elements of a collineation; cf. 3.10.
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A closed subplane B of an arbitrary compact projective plane P of positive
topological dimension 2` is a Baer subplane of P if, and only if, the point
space of B is `-dimensional. Such subplanes play an important rôle in the
study of compact, connected projective planes.

In the first part of this survey I will review main aspects of the general
theory. The second part is concerned with finite planes. Finally, I will deal
more completely with the topological situation.

Personal Remark. Reinhold Baer came to Frankfurt University on July
4, 1956, and he stayed there to the end of Summer 1967. From the very
first day until he left, I had the great privilege to belong to the ever-growing
group of young mathematicians whose mentor he became. In the fifties, Baer
had become more absorbed by group-theoretical questions than by geome-
try; nevertheless, he remained strongly interested in my problems concerning
compact projective planes, and constantly encouraged me to continue my
work. During those 11 years he guided me in a fatherly way, mathematically
and otherwise. Whatever I may have accomplished later at the University of
Tübingen, I could hardly have succeeded without what I have learned from
him. As homage to Reinhold Baer, I will describe here what has grown out
of one of his ideas.

1. Baer subplanes of general projective planes

In this section, P = (P,L) will always denote a projective plane with
point set P and line set L. Recall that in a projective plane any two distinct
points are joined by a unique line and any two distinct lines intersect in
a unique point. Though it somewhat obscures the notion of duality, lines
are usually considered as sets of points. The duals of lines are then pencils
Lp = {L ∈ L | p ∈ L}. See [68, Chap. 2] for a short summary of projective
planes or [36] for a fuller account; [22, Chap. 3] gives special emphasis to
finite planes. The incidence relation, i.e., the set of flags will be denoted by
z = {(p, L) ∈ P×L | p ∈ L}. The projective plane PF over a field F has as
points the 1-dimensional subspaces of the vector space F 3, and as lines the
2-dimensional subspaces or the kernels of linear forms.

1.1. Subplanes. A projective plane B = (B,B) is a subplane of P, in
symbols B ≤ P, if B ⊆ P and B = {L ∩B

∣∣ L ∈ L , 1 < |L ∩B|}. With
respect to B, a line L ∈ L is said to be an interior line if L ∩B ∈ B; otherwise
L is called an exterior line. Analogously, the points in B are called interior
points, and the others exterior points.

A proper subplane B of P is a Baer subplane, B<•P, if L ∩B 6= ∅ for each
line L ∈ L and, dually, each pencil Lp contains an interior line; cf. also [51].

The definition implies immediately:
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1.2. Lemma. If L is an interior line with respect to B <•P and if p ∈
LrB, then λp = (x 7→ px) : BrL→ Lpr{L} is a bijection.

1.3. Examples. If K = F (δ) is a quadratic extension of the field F , then
PF <•PK . In fact, an equation

∑3
ν=1 (aν+δbν)xν = 0 with aν , bν ∈ F has

always a non-trivial solution (xν)ν ∈ F 3. Hence any line of the plane PK
contains a point of PF and dually.

1.4. Maximality. Any Baer subplane B of P is a maximal subplane of P.

Proof. If B < S ≤ P, then S contains a full pencil of P by Lemma 1.2, and
hence S = P. �

Remark. The converse is not true: if K is a cubic extension of the (finite)
field F , then F is maximal in K and PF is maximal in PK , but PF is not a
Baer subplane; see 2.1.

The point set of a Baer subplane is a special example of a more general
notion; cf. 2.2–2.4:

1.5. Definition: Blocking sets. Let P = (P,L) be a projective plane.
A subset B ⊆ P is called a blocking set if, and only if, ∅ 6= B ∩L 6= L for each
line L ∈ L. Obviously, the complement of a blocking set is also a blocking set.

Assume now that B = (B,B) is a subplane of P. Then B<•P if, and only
if,

(i) B is a blocking set in P, and
(ii) B is a blocking set in the dual of P.

1.6. Proposition. In projective planes in general, even in Desarguesian
planes, conditions (i) and (ii) of 1.5 are independent.

(They are equivalent, however, in finite planes and in the topological case;
see 2.1, 2.2 and 3.9.)

Proof. According to [21, Theorems 5.9.1 and 5.9.2], there exist skew field
extensions K|F of any given characteristic such that the dimension of K as a
right vector space over F is [K:F ]r = 2, and as a left F -vector space K has
dimension [K:F ]l = s, where s is a prescribed number in the range 3 ≤ s ≤ ∞.
Consider the subplane PF = (B,B) of PK . As in Ex. 1.3 it follows that B
is a blocking set in PK . If a point p has coordinates xν ∈ K which are left
linearly independent over F , then p is on no interior line of PF , and B is not
a blocking set in the dual of PK . �

Baer subplanes play a crucial rôle in the so-called derivation process, one of
the most fruitful methods for constructing new projective planes, in particular
in the finite case. For finite planes this method is due to Ostrom [53], and in
the infinite case it is due to Johnson [38].
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1.7. Derivation. Let A = PW = (A=PrW, A=Lr{W}) be an affine
subplane of the projective plane P. A non-empty set D ⊂ W is called a
derivation set if for each pair of distinct points a, b ∈ A such that ab ∩W ∈ D
there is a Baer subplane 〈a, b,D〉<•P intersecting W exactly in D. In this
case, all these Baer subplanes and all lines in A which do not meet the set D
form the line set of a new (‘derived’) affine plane DA = (A, DA).

Proof. DA is indeed an affine plane: by construction and the maximality
of Baer subplanes, any two distinct points of A are on a unique line in DA.
Any ordinary line intersects each Baer subplane 〈a, b,D〉 in an affine point.
It remains to show that the parallel axiom holds for the new lines. Suppose
that B = 〈a, b,D〉 and Q = 〈p, q,D〉 have no affine point in common. Then
the interior line of B through p contains a point z ∈ D and hence is also an
interior line of Q. Moreover, all common interior lines pass through the same
point z. If there is an affine point x, however, which belongs both to B and
to Q, then all lines dx with d ∈ D are common interior lines of B and Q. It
follows that there exists a unique parallel 〈p, q,D〉 to B. �

Remarks. (1) Obviously, each automorphism of A which maps D onto
itself yields an automorphism of DA. In particular, DA is a translation plane
if A has a transitive group of translations with axis W .

(2) Coordinatize the affine plane A by K and identify W with K ∪ {∞} in
such a way that the common point at infinity of all lines of slope s corresponds
to the element s ∈ K ∪ {∞}. If K is a quadratic extension of the field F , then
D = F ∪ {∞} is a derivation set.

(3) In the situation (2), the derived plane DA is not Desarguesian: each
homology α of A with center a induces an automorphism of DA, but 〈a, b,D〉
need not be α-invariant, and the homology group of DA is not transitive.

(4) In the topological case, a sequence of points zν ∈ WrD may converge
to a point d ∈ D, but the lines azν do not converge to a Baer subplane.
Therefore, derivation of a topological plane cannot be expected to yield again
a topological plane.

(5) Algebraic aspects of the derivation process are described in [29, VII.5].

1.8. Theorem. If D is a derivation set as in 1.7, then all the Baer sub-
planes 〈a, b,D〉 are Desarguesian planes.

This has been proved in the finite case in [59]; the proof in the general
case (by representing the affine part of a Baer plane 〈a, b,D〉 as a plane in a
3-dimensional affine space) is due to Cofman [20]; see also [49, Th. 51.1]. �

1.9. Repeated derivation. The line at infinity of the derived plane DA
consists of the points in WrD and the set D̂ of the parallel classes of new
lines. By the proof of 1.7, each original line of A whose point at infinity
belongs to D is the point set of an affine Baer subplane of DA. Hence D̂ is a
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derivation set in DA, and D̂DA = A. (For the last result it is essential that
WrD̂ = WrD.)

More results related to derivation will be discussed in the next section. The
derivation process has been thoroughly investigated by Johnson in his book
Subplane covered nets [40].

The existence of many Baer subplanes forces the full plane to be nice. In
fact, the following has been proved in [19, Th. B]:

1.10. Theorem. The plane P is a Moufang plane (see 1.12), provided
there exists a family B of Baer subplanes such that:

(a) Any quadrangle of P is contained in a unique subplane B ∈ B.
(b) Whenever two subplanes B and B′ in B have 3 distinct points of a

line L of P in common, then B ∩L = B′ ∩L.

Coordinates from a so-called ternary field can be introduced in any affine
plane. This has first been done by M. Hall in 1943. As algebraic structures,
general ternary fields are hardly manageable, however. More useful are some
special types of ternary fields, most notably those defined next.

1.11. Quasi-fields. A structure (K,+, · , 0, 1) is called a quasi-field if,
and only if:

(a) (K,+) is a commutative group with neutral element 0.
(b) (a, b) 7→ a · b is a multiplication on K and 1 · x = x · 1 = x for each

x ∈ K r {0}.
(c) Each map x 7→ x · c with c 6= 0 is a bijection of K and 0 · c = 0.
(d) The left distributive law c · (a+ b) = c · a+ c · b holds.
(e) Each map x 7→ a · x− b · x with a 6= b is a bijection of K.

A quasi-field K which also satisfies the right distributive law is said to
be a semi-field or a division algebra; if multiplication in K is associative,
then K is a (planar) near-field . Both additional properties together obviously
characterize (skew) fields.

The relevance of quasi-fields is explained by the following definition:

1.12. Translation planes. An affine plane A is a translation plane, if
it admits a sharply point-transitive group of collineations which map each
line onto a parallel (translations). Equivalently, A can be coordinatized by a
quasi-field in such a way that the point set of A is K×K and the lines are
given by equations y = s · x + t or x = c. The translations are then of the
form (x, y) 7→ (x+a, y+b), and the properties of a quasi-field just reflect the
fact that this construction actually yields an affine translation plane. If, and
only if, K is a semi-field, the plane A is also a dual translation plane (with
translation center the infinite point on the vertical lines). A Moufang plane is
a projective plane such that each of its affine subplanes is a translation plane.
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Note. Some authors write the equation of a line of slope s in the form
y = x · s + t and consequently interchange all factors in the definition of a
quasi-field.

There exists a vast variety of quasi-fields and translation planes, even of
finite or locally compact, connected ones; cf. [49] or [44]. With regard to
Baer subplanes, near-fields play a special rôle. In contrast to quasi-fields in
general, the class of near-fields is much more restricted; see [30, XI.6] for a
short review, examples, and more references.

1.13. Kernel. The kernel K of a quasi-field Q consists of all elements
c ∈ Q such that

(x+ y) · c = x · c+ y · c and (x · y) · c = x · (y · c) for all x, y ∈ Q .

Obviously, K is a field or a skew field, and Q may be considered as a right
vector space over K.

Each near-field N with kernel K having (left and right) dimension 2 over
K yields a projective plane H with a Desarguesian Baer subplane D∼=PK such
that any translation of D extends to a translation of H. The finite planes of
this kind have been found in 1957 by Hughes [35]; the general construction is
due to Dembowski [23] and (in corrected form) Biliotti [8]. A plane H having
a Baer subplane with the property just mentioned will be called a Hughes
plane. Write Ṅ = (Nr{0}, · ) for the multiplicative group of the near-field
(N,+, · ). The additive group N3 has nearly the properties of a vector space.
This motivates the following construction:

1.14. Hughes planes. Let N be a near-field of dimension 2 over its kernel
K. The point set of H = HN consists of the classes 〈x〉 = Ṅ ·x , where
0 6= x = (x, y, z) ∈ N3, and the lines in the pencil through 〈(0, 1,−1)〉 are
given by an equation x · s + y + z = 0 or x = 0. All other lines are obtained
by applying the elements of the group Γ = GL3K to the vectors x ∈ N3 from
the right. The point set of the subplane D is D = {〈x〉 | 0 6= x ∈ K3}. (Planes
constructed in this way are also known as ‘Generalized Hughes planes’.)

A full proof that this construction in fact leads to a Hughes plane can be
found in [23] and [8] (interchange left and right!). Here, only some typical
arguments will be given:

(1) Because multiplication in N is associative, Γ maps points to points,
and DΓ = D.

(2) A line Ls with an equation x · s+ y + z = 0 intersects D in more than
one point (i.e., Ls is an interior line) if, and only if, s ∈ K. Therefore, Ls ∩D
is a point or an ordinary line of PK , and D ∼= PK . Moreover, Γ induces on D
the full projective linear group.
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(3) Any interior point is joined to each other point by a unique line, since
〈0, 1,−1〉 and 〈1, u, v〉 are on a unique line Ls.

(4) If h ∈ NrK, then K + h ·K = N because N has dimension 2. Conse-
quently, the orbit 〈0, 1, h〉Γ consists of all exterior points, i.e., the group Γ is
transitive on the set of all exterior points. Hence each point is incident with
an interior line.

(5) From (2) it follows that each line intersects the set D of interior points,
and D is a Baer subplane of H.

(6) The matrices
(
c a b

1
1

)
with c 6= 0 induce collineations of H with axis

L∞ given by x = 0. Therefore, each axial collineation of D is induced by an
axial collineation of H. Moreover, Γ acts even transitively on the set of all
exterior flags.

(7) It remains to be shown that H is indeed a projective plane, i.e., that
any two distinct lines intersect in a unique point and that any two exterior
points are joined by some line. This follows by elementary but more involved
calculations; see [23, 3.11] and [8]. �

1.15. Remark. With respect to any interior line L, a Hughes plane HN
is a semi-translation plane in the sense of [22, p. 136]. The properties of the
translation group T with axis L show immediately that each orbit aT 6= a is
the point set of an affine Baer subplane.

1.16. Transitivity of Hughes groups. Assume that each translation
(each axial collineation) of the Desarguesian Baer subplane B<•P is induced
by a translation (an axial collineation) of P. Then the global stabilizer B =
{β ∈ AutP | Bβ = B} of B is transitive on the set of all exterior flags (of
pairs of distinct exterior points on an exterior line).

Both assertions are immediate consequences of the assumptions. Sharper
results can be obtained in the finite and the topological case; cf. 2.16 and the
proof of 3.17 and 3.19.

The example of Remark (2) in 1.7 can be vastly generalized [28]:

1.17. Derivation sets in translation planes. Suppose that the quasi-
field Q is a 2-dimensional left vector space over its subfield K. If for each
q ∈ QrK and c ∈ Kr{0} the injective map (a, b) 7→ q(ac) + bc : K×K → Q
is bijective, then the set of all points at infinity on lines of slope k ∈ K ∪ {∞}
is a derivation set for the translation plane over Q.

1.18. Corollary ([28, Satz 3]). A proper Moufang plane is not derivable.

1.19. Baer groups. For a given Baer subplane B <•P, the group ΓB
consisting of all collineations of P which fix each element of B is called the
Baer group of B. The group ΓB is said to be transitive, if it acts transitively
on the set of exterior points of one (and then of every) interior line. Planes
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with a transitive Baer group have also been called tangentially transitive; cf.
[60]. Finite examples of transitive Baer groups are given in 2.8 ff. Biliotti and
Johnson [9] studied Baer groups of finite planes which leave a second Baer
subplane invariant. In the topological situation, Baer groups of closed Baer
subplanes are rather small; see 3.12 and 3.14. They are never transitive.

1.20. Definition. A translation plane with a transitive Baer group ΓB is
a generalized Hall plane if the translation axis is an interior line of B.

The name is motivated by results in 2.8–2.12. A detailed treatment can be
found in [43].

2. Baer subplanes of finite projective planes

All projective planes in this section will be assumed to be finite. If one
and hence every line of P carries n+1 points, then P is said to be a plane of
order n. Such a plane has exactly n2+n+1 points and equally many lines.

2.1. Baer subplanes. Assume that B ≤ P and that B is a plane of order
m. Then B<•P if, and only if, P has order m2.

Proof. If B is a Baer subplane, then Lemma 1.2 shows immediately that
n = m2. Conversely, λp (as defined in 1.2) is always injective, and n = m2

implies that λp is also surjective. Thus, L ∩B 6= ∅ whenever L contains a point
p on an interior line. Suppose now that q is not on an interior line. Then the
map (x 7→ qx) : B → Lq is again injective, but cardB > card Lq. �

2.2. Theorem. Let P be a projective plane of order m2. Each blocking
set B in P which consists of exactly m2 +m+ 1 elements is the point set of
a Baer subplane of P.

Proof. By the definition of a blocking set, the map λp = (x 7→ px) : B → Lp
is surjective for each point p /∈ B. Because |Lp| = m2 + 1, it follows that
each line L intersects B in at most m + 1 points. Choose a line L which
intersects B in a maximal number of points, and assume that |L ∩B| = k ≤ m.
This will lead to a contradiction by counting suitable interior flags in two
different ways as in [15]. Consider the set of flags ג = (B×X) ∩z, where
X = {X ∈ Lr{L}

∣∣ X ∩L /∈ B ∧ |X ∩B| > 1 } contains all interior lines
intersecting L in a point outside B, and z is the incidence relation in P. For
p ∈ LrB, the restriction of ג to the line pencil Lp shall be denoted by .pג
Then |pג| ≤ 2(m+1−k) because |X ∩ Lp| ≤ m+1−k and the number |pג| is
largest if |X ∩B| = 2 for each X ∈ X ∩ Lp. Thus one has the upper bound

|ג| =
∑
p∈LrB |pג| ≤ 2 (m+ 1− k) (m2 + 1− k).

To obtain a lower bound, let a ∈ BrL. Since at most k(k−1) of the m(m+1)
points of Br{a} are on lines in LarX, it follows that |X ∩ La| (k − 1) ≥



BAER SUBPLANES 493

m(m+ 1)− k(k − 1) = (m+ 1− k)(m+ k). Summing up over all a ∈ BrL,
one gets

|ג| (k − 1) ≥ (m+ 1− k) (m+ k) (m2 +m+ 1− k).

Hence (m+ k) (m2 +m+ 1− k) < 2k (m2 + 1− k). This contradiction shows
that k = m+1. Consequently, λp is bijective on BrL and X = ∅, so that each
line meets B only in one point or in exactly m+ 1 points, and B is indeed the
point set of a Baer subplane. �

2.3. A blocking set in a projective plane of order m2 contains a least
m2 +m+ 1 points.

Proof. Suppose that m2 +m+ 1− |B| = t > 0. As before, λp is surjective
and |L ∩B| ≤ m+ 1− t for each line L. Hence, a set of t collinear points may
be added to B to obtain a blocking set which is not the point set of a Baer
subplane. This contradicts Theorem 2.2. �

More generally, the following is proved in [16], [17], and [18]:

2.4. Theorem: Blocking sets. Each blocking set B in a projective plane
P of order n satisfies n+

√
n+ 1 ≤ b := |B| ≤ n2 −

√
n.

Proof. The upper bound follows from the first inequality by taking com-
plements. In the case n = 2, no triangle is a blocking set and hence no
blocking set exists. Suppose now that n > 2 and that b < n +

√
n + 1.

Then |L ∩B| <
√
n + 1 for each line L ∈ L (because |Lp| = n + 1). Put

kν =
∣∣{L ∈ L

∣∣ |L ∩B| = ν }
∣∣. Since B is a blocking set,∑

ν

kν = |L| = n2 + n+ 1,
∑
ν

νkν = |B×L ∩z| = b (n+ 1),

and ∑
ν

ν(ν − 1)kν =
∣∣{(a, b, L) | a, b ∈ B ∩L, a 6= b }

∣∣ = b (b− 1).

The assumption implies kν = 0 for ν ≥
√
n+ 1, and hence

h :=
∑
ν

(ν − 1)(ν −
√
n− 1)kν ≤ 0.

An easy calculation shows that

h = b (b− 1)− b (n+ 1)(
√
n+ 1) + (n2 + n+ 1)(

√
n+ 1)

= (n+
√
n+ 1− b) (n

√
n+ 1− b) > 0,

a contradiction. �
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More on blocking sets can be found in the survey [11] and in [75]. Homo-
geneous blocking sets are studied in [10].

We return to Baer subplanes. The next result should be compared with
3.24:

2.5. Disjoint Baer subplanes. If q is any prime power, the Pappian
plane P over the field F = Fq2 is a disjoint union of q2−q+1 Baer subplanes.

Proof. Identify the vector space F 3 with Fq6 , recall that the multiplicative
group F×q6 = 〈c〉 is cyclic, and write P = {xF | x ∈ 〈c〉 }. Then x 7→ xc induces
on P a collineation γ, and 〈γ〉 is a sharply transitive collineation group of P
of order q4 + q2 + 1, called a Singer cycle. The set B = {xF | x ∈ F×q3 } is
the point set of a Baer subplane coordinatized by Fq. The cyclic group F×q3

is generated by b = cq
3+1, and B is an orbit of 〈γq2−q+1〉. Because γ is a

collineation, the sets Bγν with 0 ≤ ν < q2 − q + 1 are pairwise disjoint point
sets of Baer subplanes; their union is P . See also [76]. �

2.6. The order of a finite derivable plane is a square prime power.

Proof. This is an immediate consequence of 1.8 and 2.1. �

In the finite case, the surjectivity condition in 1.17 is a consequence of
[Q:K]l = 2, and the criterion holds in a simpler form:

2.7. Derivable translation planes. If the quasi-field Q is a 2-dimensio-
nal left vector space over its subfield K ∼= Fq, then K ∪ {∞} corresponds to a
derivation set D of the translation plane A over Q.

This leads to many classes of finite derivable translation planes. There
exist also derivable dual translation planes and even derivable semi-translation
planes. A few examples shall be described in the following.

2.8. Derived Pappian planes. Assume in 2.7 that Q ∼= Fq2 is a field.
Then the derived plane DA has a transitive Baer group (cf. 1.19).

Proof. The line L of A with the equation x = 0 (and slope ∞) is the
common axis of all collineations of A of the form (x, y) 7→ (ax, y+bx) with
a, b ∈ Fq and a 6= 0. These collineations map the derivation set D consisting of
all slopes in Fq ∪ {∞} onto itself. Hence they yield a group Γ of automorphisms
of the derived plane DA (recall that A and DA have the same point set). By
1.9, the points of L are the affine points of a Baer subplane B of DA, and Γ
acts trivially on B. Therefore, Γ acts freely on the q(q − 1) exterior points of
any interior line. Obviously, Γ has order q(q − 1), and the claim follows. �
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2.9. Remark. The same conclusions can be drawn if Q is a semi-field of
order q2 with a subfield K ∼= Fq such that (xk)y = x(ky) holds for all k ∈ K
and x, y ∈ Q; see also [39].

Planes with a transitive Baer group can also be obtained by the following
construction [33]:

2.10. Hall quasi-fields. Let f be an irreducible quadratic polynomial over
a finite field K = Fq of order q > 2. Then there is a unique quasi-field Q of
order q2 with kernel K such that K is in the center of Q and f(x) = 0 for
each x ∈ QrK.

Proof. Choose a basis {1, j} of Q over K and write f(z) = z·z−rz+s. The
condition that f(a+bj) = 0 for b 6= 0 implies (a+bj)·j = −b−1f(a) + (r−a)j.
It can easily be verified that this determines the multiplication of a quasi-field
having the desired properties. �

Remark. Mäurer [50] has given the following elegant description of the
Hall quasi-fields: the set of left multiplications consists of the conjugacy class
in GL2K with characteristic polynomial f together with the scalar multiples
of the identity. Clearly, this set is sharply transitive.

2.11. Hall planes. The Hall planes are the translation planes over the
quasi-fields described in 2.10.

The center K of Q coordinatizes an affine Baer subplane; its Baer group
is transitive on the set of all points at infinity outside the Baer subplane.

Proof. Left multiplication in Q by an element c = a+bj ∈ QrK is a
linear map given by the matrix ĉ with left column (a, b)′ and right column
(−b−1f(a), r−a)′, determined by tr ĉ = r and det ĉ = s. Each regular matrix
H ∈ K2×2 which maps the unit element e = (1, 0)′ ∈ K onto itself induces an
automorphism of (Q,+, · ). In fact,

H(c · z) = HĉH−1Hz = d̂ Hz = Hc ·Hz

since conjugation preserves trace and determinant and d = d̂ e = HĉH−1e =
Hĉ e = Hc. These automorphisms fix K pointwise and are transitive on
QrK. They induce Baer collineations on the affine plane AQ, and they act
transitively on the points at infinity which do not belong to AK . �

The relations between the quasi-fields coordinatizing A and DA lead to
the following result due to Albert [1]:

2.12. Theorem. The Hall planes are exactly the derived Pappian planes.
A proof of the following sharper result can be found in [49, §52]:
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2.13. Theorem (Prohaska). Let D be a derivation set for the finite
affine plane A and put ∆ = {δ ∈ AutA | Dδ = D}. If the stabilizer ∆a

has exactly two affine point orbits besides {a}, then one of the planes A and
DA is Pappian and the other one is a Hall plane.

Let B = {β ∈ AutP | Bβ = B} denote the global stabilizer of a Baer
subplane B<•P. Whereas the Hall planes have the property that the kernel
ΓB of the action of B on B is as large as possible, the Hughes planes have a
very large induced group B/ΓB. Indeed, B is doubly transitive on B, and then
B is Desarguesian and B/ΓB contains all translations of B; cf. [56]. Moreover,
it is required that each translation of B is induced by a translation of P.

As has been shown in 1.14, near-fields can be used to construct Hughes
planes. All finite near-fields have been determined in [78]; cf. also [34, §20.7];
for an explicit description of the finite near-fields see, e.g., [22, §5.2].

2.14. Dickson near-fields. Let (Q,+, ) be a field, A its automorphism
group, and α : Q× → A a map. Define a new multiplication on Q by x ◦ y =
xyα(x). If α satisfies suitable conditions, then (Q,+, ◦) is a near-field. All
near-fields which can be obtained in this way are called Dickson near-fields.

2.15. Theorem (Zassenhaus). Each finite near-field is either a Dickson
near-field or one of seven exceptional near-fields of order p2, where p is one
of the primes 5, 7, 11, 23, 29, or 59.

Combined with the next result, this provides a complete classification of
all finite Hughes planes.

2.16. Theorem (Lüneburg). Assume that P is a non-Desarguesian fi-
nite Hughes plane (i.e., there is a Desarguesian Baer subplane B of order
q such that each translation of B is induced by a translation of P). Put
Γ = AutP and let ∆ denote the group generated by all translations. Then:

(a) BΓ = B and ∆ is transitive on the set of all exterior flags.
(b) Either ∆ ∼= PSL3 Fq or q = 7 and ∆ ∼= SL3 F7.
(c) There is a near-field N of order q2 such that P ∼= HN is a plane of

the kind constructed in 1.14.
(d) Each homology of B extends to a (unique) homology of P.

Notes on the proof. (1) If BΓ 6= B, then some interior line is mapped to an
exterior one and it is an easy consequence of 1.16 that Γ is flag-transitive on
P and then even doubly transitive on P . By [22, 4.4.10 or 4.4.20], the plane
P would be Desarguesian. Hence BΓ = B.

(2) As in 1.16, the group ∆ is transitive on the exterior flags. By an idea
of Freudenthal [27, §6], the exterior geometry E can be described as follows:
choose a line L in E and an exterior point p ∈ L, and let Π = ∆p and Λ = ∆L

denote the corresponding stabilizers in ∆. Identify pα and Lβ with the cosets
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Πα and Λβ, respectively. Incidence pα ∈ Lβ is then equivalent with the
condition Πα ∩Λβ 6= ∅. The interior elements can easily be adjoined. Thus,
it suffices to determine the triple (∆,Π,Λ) up to isomorphism.

(3) The kernel ΓB coincides with the centralizer CsΓ ∆: in fact, a given
γ ∈ ΓB fixes center and axis of each translation τ , and γ maps some point a
and its image aτ onto itself. Therefore, τγ = τ . The converse is obvious. In
particular, ∆ is a central extension of the simple group ∆∗ = ∆|B ∼= PSL3 Fq

induced by ∆ on B.
(4) The group ∆ is perfect , i.e., the commutator group ∆′ is equal to ∆.

This follows from the fact that all translations are conjugate (because ∆ is
transitive on quadrangles of B) and that some non-trivial translation can be
written as a commutator of two translations σ and τ such that the center of
σ is on the axis of τ .

(5) Perfect central extensions or coverings of a perfect group are discussed
in [2, §33]. A covering of a simple group L is said to be quasi-simple. If
L ∼= PSLn Fq and if Z is the center of a covering group of L, then the order d
of Z divides n and q−1; see [2, p. 251]. Thus, ∆ is simple or ∆ ∼= SL3 Fq.

(6) The number of pairs of exterior lines intersecting in an exterior point
is the same as the order of the group ∆ ∼= SL3 Fq. Based on all these facts,
it can be shown that each possible triple (∆,Π,Λ) is realized in one of the
planes HN , where N is a finite near-field. For the lengthy details and more
information see [48]. �

In the last proof, the groups Π and Λ play a symmetric rôle. This implies
[61]:

2.17. Corollary. Each finite Hughes plane is self-dual.

2.18. Hughes planes are derivable. If P and B are as in 2.16 and if
W is an interior line, then W ∩B is a derivation set.

The proof uses coordinate methods. It relies mainly on the fact that P is
of the form HN , where the near-field N has dimension 2 over its kernel; cf.
[8] or [22, 5.4.4].

2.19. Multiple derivations. If D and D′ are disjoint derivation sets for
an affine plane A, then D′ is also a derivation set for the derived plane DA,
and one may formD′DA = DD′A. The process can be extended to any family
of pairwise disjoint derivation sets. Multiply derived translation planes are
again translation planes.

2.20. Example: Pappian planes of odd order. The line W at infinity
of the affine plane A over the field Fq2 contains a family of q−1 pairwise
disjoint derivation sets.
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Proof. The projective line W over Fq2 may be considered as point set of
the Miquelian inversive plane M(q) whose circles are the projective line D =
Fq ∪ {∞} over Fq and all its images Dλ with λ ∈ Λ = PGL2 Fq2 . Each circle
is a derivation set for A since Λ is induced by a group of automorphisms of A.
In M(q) there exist ‘flocks’ of mutually disjoint circles covering all but two
points. This follows from an alternative description ofM(q) as the geometry
of plane sections of a non-ruled quadric O in the projective 3-space PG3 (q);
see [22, p. 257]. Two distinct tangent planes of O meet in a line L. All other
planes containing L intersect O in a circle, and these circles obviously form a
flock. �

Thus a finite Pappian plane yields several multiply derived translation
planes. The question which of these planes admit a group SL2 F5 is dealt
with in [13].

Finally, Baer subspaces should be mentioned. Recall that each finite pro-
jective space of dimension n ≥ 3 is a geometry PGn (q) over a field Fq (see
[22, 1.4.1–1.4.4]).

2.21. Baer subspaces. The injection Fq → Fq2 yields a canonical em-
bedding PGn (q) → PGn (q2). The Baer subspaces of the larger space are
all images PGn (q)γ , where γ is an automorphism of PGn (q2). Such Baer
subspaces have been studied in [6], [7], and [74].

3. Baer subplanes of compact, connected planes

Assume from now on that P and L are compact, connected Hausdorff spaces
and that join and intersection of distinct elements are continuous operations.
The projective plane P will then be called a topological plane for short; see [68,
Chap. 4] for basic properties of such planes. The point space of a topological
plane has a countable basis for the topology ([68, Theorem 41.8]). There
are several notions of dimension of a topological space; for a space X with
a countable basis most of the familiar dimensions agree, in particular the
inductive dimension indX and the covering dimension dimX; see [57] or [68,
§92]. One can speak, therefore, without ambiguity of the dimension of a
topological plane.

It has been conjectured that the dimension of any topological plane is
finite. In all known examples the lines are even topological manifolds, and
the topological properties of arbitrary finite-dimensional planes are quite close
to those of topological planes whose lines are manifolds; cf. [68, Chap. 5].

The classical planes are the Pappian planes PR and PC, the Desarguesian
plane PH over the locally compact, connected quaternion skew field H, and
the projective closure PO of the affine plane over the octonion algebra O.
(In fact, PO is the only compact proper Moufang plane; see [30, XI.7.9].)
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The coordinate spaces K of these planes are homeomorphic to R` with `
dividing 8, and the lines are one-point compactifications of K, hence they are
homeomorphic to S`. A detailed treatment of the classical planes can be found
in [68, Chap. 1]. Examples of other topological planes will be given in 3.1.

The automorphism group Σ = AutP of a topological plane P consists of
all continuous collineations. There is a canonical topology to be used on
Σ: the compact-open topology. It coincides with the topology of uniform
convergence on P because P is compact. Equipped with this topology, Σ
becomes a topological transformation group of P ; cf. [68, 96.3–96.7]. If P is
a classical plane, then the connected component of Σ is a simple Lie group of
dimension 8, 16, 35, or 78, respectively.

3.0. Finite-dimensional planes: Review. Let P = (P,L) be a topolo-
gical projective plane with a compact, connected point space P of finite topo-
logical dimension dimP = d. Then:

(a) Each line L is homotopy equivalent to a sphere S`, where dimL = ` | 8
and d = 2`.

(b) P and L are homology manifolds, and the (singular) homology of P
coincides with that of the point space of the classical plane with the
same dimension.

(c) Each automorphism fixes a point and a line, and each involution is a
reflection or a Baer involution.

(d) Taken with the compact-open topology, Σ is a locally compact group,
and dim Σ <∞.

(e) Any closed subset A of X ∈ {L,P} such that dimA = dimX has a
non-void interior.

(f) If the lines are manifolds, then they are homeomorphic to a sphere S`.
(g) If d ≤ 4, then the lines of P are spheres.
(h) If the lines are spheres, then the spaces P and L are homeomorphic.

Proof. (a) [68, (54.11)]; (b) [68, (54.10) and (52.13)]; (c) [68, (55.19)
and (55.29)]; (d) [68, (44.3)]; (e) [68, (51.21a)]; (f) [68, (52.3)]; (g)
[68, (53.7)]; (h) [45]. �

Throughout this chapter, it will be assumed that the dimension
of P is finite. In order to avoid topological subtleties, one may always imag-
ine the lines to be manifolds. Many examples can be obtained by some slight
modification of the multiplication or the addition of a classical coordinate sys-
tem. In the 2-dimensional case, there are also easy geometric constructions;
see, e.g., [52] or [68, Chap. 3]. It suffices to describe an affine plane or its
coordinate structure K. If the latter is locally compact and connected and
if all relevant operations are continuous, then K yields a compact, connected
topological projective plane PK ; see [62, Th. 7.15] or [68, (43.5)]. More pre-
cisely, the affine plane AK has the point space K×K, the lines of finite slope
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a are written in the form y = τ(a, x, b), and the properties of the ternary field
(K, τ) reflect the axioms of an affine plane. PK is then the projective closure
of AK . If AK has a transitive group of ‘vertical’ translations, then τ(a, x, b)
can be expressed as a ◦ x + b; see [30, XI Part A] or [68, Chap. 2] for more
details; cf. also 1.11 and 1.12. In the case K ≈ R`, continuity of τ : K3 → K
suffices for PK to be a topological plane ([68, Th. 43.6]).

3.1. Topological planes: Examples.
(a) If f : R → R is a differentiable function such that f ′ is a homeomor-

phism of R, then the verticals {c}×R and all curves in R2 with an equation
y − b = f(x− a) are the lines of a 2-dimensional topological affine plane, the
so-called shift plane Ef .

(b) Let ρ be a homeomorphism of R which is the identity on [0,∞). Instead
of the usual multiplication of C = R

2 define a new multiplication by

(a, b) ◦ (x, y) = (ax− bρy, bx+ ay).

An easy calculation shows that left and right multiplications in (Cr{0}, ◦) are
bijective. Hence Cρ = (C,+, ◦) is a topological quasi-field. It coordinatizes
a 4-dimensional topological translation plane; cf. [68, (64.13)]. The elements
(x, 0) form a closed subfield of Cρ, which obviously is isomorphic to R and
coordinatizes a Baer subplane.

(c) Similarly, define a new multiplication on K ∈ {H,O} as follows: choose
a fixed real number t > 1/2 and put c ◦ z = t· cz+ (1−t)·zc. For t 6= 1, the so-
called mutation Kt = (K,+, ◦) of K is a non-associative topological division
algebra, and distinct parameters yield non-isomorphic planes; see [68, (87.7)
and (82.21)].

In the topological setting, the adequate notion of a substructure is that of
a closed subplane. However, arbitrary subplanes will also be considered. By
definition, S = (S,S) is a closed subplane of P if, and only if, S ≤ P and S
is a closed subspace of P .

3.2. Closure of a subplane. If S = (S,S) is any subplane of P, then
S is the point space of a closed subplane 〈S〉 (proof by an easy convergence
argument). More generally, if S is an arbitrary subset of P and if S contains
a quadrangle, then 〈S〉 is the intersection of all closed subplanes of P whose
point set contains S.

3.3. The real plane. The classical plane PR has no Baer subplane what-
soever.

Proof. Assume that B<•PR. Then B = PS , and R is a quadratic Galois
extension of the field S, but AutR = 1l. �

Though Baer subplanes are maximal, they need not be closed:
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3.4. Baer collineations of the complex plane PC. A transcendency
basis T of C over Q has cardinality cardT = cardC = ℵ. Each bijection of
T extends to an automorphism α ∈ Γ = AutC, and card Γ = 2ℵ. Denote the
fixed field of α by Fα, and write again ι = z 7→ z for the usual conjugation.
If ρ ∈ Γ is an involution, then Fρ is a real-closed field and carries a unique
ordering (by the Artin–Schreier theory). In particular, Fι = R, and from
AutR = 1l it follows that 〈ι〉 is its own centralizer. Consequently, ι has 2ℵ

distinct conjugates in Γ. If ρ = ια 6= ι, then Fρ ∼= R and Fρ is dense in
C. Applied to the coordinates, ρ induces a Baer collineation of PC. The
corresponding Baer subplane is everywhere dense in the topological plane PC.

For detailed information on AutC see [41] or [71]; cf. also [4].

3.5. More on Baer collineations of PC. By a theorem of Steinitz [73,
§23], an algebraically closed field A of characteristic 0 is isomorphic to C if,
and only if, cardA = ℵ. Let F \ denote the algebraic closure of the field F .
Choose a transcendency basis T ⊆ R of C over Q, and map T bijectively onto
a proper subset S ⊂ T . Then C1 = Q(S)\ < Q(T )\ = C2 and C1

∼= C ∼= C2.
(a) If C2 is identified with C, then the ordinary conjugation of C induces on

C1 an involution whose fixed field does not contain the elements of T rS, and
which is, therefore, not complete with respect to its unique ordering. Hence
PC has (many) Baer subplanes which are isomorphic to proper subplanes of
PR.

(b) If, on the other hand, C1 is identified with C, then, under the isomor-
phism C ∼= C2, the usual conjugation of C yields an involution of C2 with a
fixed field which properly contains R and thus is a non-Archimedian ordered
field. Consequently, PC has also many non-Archimedian Baer subplanes.

Remark. Phenomena like those described in 3.4 and 3.5 are rare. In fact,
of all the topological planes that have been studied so far, only the complex
plane admits discontinuous collineations; see also [68, (55.22)] and [69].

3.6. Closed Baer subplanes of the classical planes. For K = C,H, or
O, each closed Baer subplane B<•PK is the fixed plane of a Baer involution
induced by an automorphism β of K, and B ∼= PF, where F = R,C, or H,
respectively. In the first case, β is complex conjugation. In the other cases, β
is conjugate to the map (z 7→ zi = ızi) of H or the map η = (x, y) 7→ (x,−y)
of the octonion algebra O = H×H.

Proof. Choose coordinates with respect to a quadrangle e in B. The sub-
plane 〈e〉 (as defined in 3.2) is isomorphic to the real plane.

(a) If K = C, then 〈e〉 = B is indeed the fixed plane of complex conjugation.
(b) There is a closed subfield S < H such that B = PS , and S = 〈R, h〉

for some quaternion h with h2 = −1. The group AutH consists of all inner
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automorphisms of H and is transitive on the 2-sphere {c ∈ H | c2 = −1}; see
[68, Prop. (11.29)] or [24, Chap. 7].

(c) The octonion algebra O can be described as H×H with the usual ad-
dition and the multiplication (a, b) (x, y) = (ax − yb, ya + bx). Its automor-
phism group G2 = AutO fixes the center R of O and acts transitively on
{ (u, v) ∈ O2 | u2 = v2 = −1 ∧ uv + vu = 0 } and, hence, also on the set of all
quaternion subfields of O; see [68, (11.30)]. Each collineation of PO is contin-
uous, and the group E = AutPO is known to be transitive on quadrangles; cf.
[68, Th. 17.6]. From these results it follows that E is transitive on the set of
all closed Baer subplanes. Obviously, η is an involution of O with fixed point
field H = H×{0}. �

The topological version of 1.2 is noteworthy:

3.7. Lemma. Let B = (B,B) be a closed Baer subplane of the topological
plane P. If p is an exterior point of the interior line L, then the map λp =
(x 7→ px) : BrL ≈ Lpr{L} is a homeomorphism.

Proof. Being a restriction of the continuous join map, λp is continuous.
Suppose, conversely, that the lines Lν = pxν (ν ∈ N) converge to a line H 6=
L. Because B is compact, the xν accumulate at a unique point c = B ∩H.
Therefore, λ−1

p is also continuous. �

3.8. Theorem. Assume that B = (B,B) is a closed subplane of the topo-
logical plane P = (P,L), and that dimP = 2` <∞. Then B<•P if, and only
if, dimB = `.

Proof. If B is a Baer subplane, then Lemma 3.7 immediately implies that
dimB = dim Lp = `. The converse is proved in full generality in [68, (55.5)]. If
the lines of P are manifolds, then the pencil Lp is homeomorphic to S`, and the
proof reduces to the following arguments: suppose that dimB = ` and that no
interior line passes through the point p. Then ϕ = (x 7→ px) : B → Lp maps
the compact space B homeomorphically onto its image. From dimBϕ = `
it follows that Bϕ contains interior points of Lp; see [68, (92.14)] or [37,
Th. IV 3]; cf. also 3.0(e). Consequently, B is an `-dimensional manifold.
By domain invariance, the map ϕ is open and Bϕ is open in Lp. Because
Lp is connected, ϕ : B ≈ Lp is a homeomorphism, but the homology H∗B
is different from H∗S`; see [68, (52.14c)]. Hence each point p ∈ P is on an
interior line and, dually, each line L ∈ L contains an interior point. �

3.9. Corollary. Suppose that B = (B,B) is a proper closed subplane of
a finite-dimensional topological plane P. If each line L ∈ L contains a point
of B, then each point of P is incident with an interior line. In other words,
one of the two dual conditions suffices for B to be a Baer subplane.
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Proof. If no interior line passes through the point p, then ϕ = (x 7→ px) :
B → Lp would be a homeomorphism, but this is impossible, as stated at the
end of the last proof. �

Most of the non-classical topological planes that have been described ex-
plicitly have fairly large automorphism groups, and these groups are used in
the construction of the planes. For this reason, Baer subplanes of these planes
are often the fixed planes of continuous Baer collineations. There are other
examples, however.

3.10. Closed Baer subplanes which are not fixed planes of auto-
morphisms.

(a) Consider Example 3.1(b) with bρ = b3 for b < 0. The reals x =
(x, 0) coordinatize a closed Baer subplane B. Assume that B = Fβ for some
automorphism β of the plane. Then β corresponds to an automorphism α of
Cρ which fixes exactly the reals. Put j = (0, 1) and note that

√
−1 = ±j in

Cρ. Hence jα = −j and (0, t)α = (0,−t), but t > 1 implies (0, t) ◦ j = −t and
(0,−t) ◦ (−j) = −t3. This contradicts α ∈ AutCρ.

(b) Another example is the complex shift plane Ef with lines y−b = f(x−a)
and {c}×C, where

f(w) =

{
w2 (v ≥ 0)
w2 + γv2 (v < 0)

for w = u+ iv and γ = α+ iβ, 4α < −β2, β > 0; see [68, (74.30)]. Restriction
to real coordinates yields a closed Baer subplane. The group Aut Ef is con-
nected (loc. cit.). Now use 3.14(a) and note that Ef has no Baer involution
by [68, (55.21c)].

(c) The semi-nuclear division ring S = (C2,+, ◦) with the multiplication

c ◦ z = (a, b) ◦ (x, y) = (ax− by, bx+ ay + iby)

yields an 8-dimensional example: note that S has no zero-divisors. This is
obvious for by = 0. If by 6= 0, then c ◦ z = 0 implies aa+ bb+ iab = 0. With
|ab−1| = t it follows that t2 +1 = t, but this equation has no positive solution.
Since multiplication in S is R-linear, (S,+, ◦) is in fact a division ring. The
map x 7→ (x, 0) : C→ S is an embedding, and C coordinatizes a closed Baer
subplane of PS . By 3.12 below, the group

Γ = {γ ∈ AutS | γ|C = 1l}
is compact. Put j = (0, 1) and jγ = (u, v) for γ ∈ Γ. Then jγ

ν

= (uν , vν),
and compactness of Γ shows that vv = 1. From

(iu− 1, iv) = (j ◦ j)γ = jγ ◦ jγ = (u2 − vv, (u+ u)v + ivv)

it follows that u(u − i) = 0 and u + u = i (1 − v), and then u + u = 0 and
v = 1. Hence jγ = u + j and jγ

ν

= ν·u + j. Now compactness of Γ gives
u = 0 and γ = 1l. �
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3.11. Continuity. If a collineation γ of the topological plane P fixes each
element of a closed Baer subplane B < •P, then γ is continuous, i.e.,
γ ∈ AutP.

Proof. Let p be an exterior point. By Lemma 3.7, the pencil Lp is mapped
homeomorphically onto Lpγ . Continuity of γ on P is an immediate conse-
quence. �

3.12. Compactness. Let P be a topological plane and Σ = AutP its
locally compact automorphism group. If B = (B,B) is a closed Baer sub-
plane of P, then the corresponding Baer group, the pointwise stabilizer ΓB :=⋂
x∈B Σx , is a compact subgroup of Σ.
The proof uses Lemma 3.7 and the Arzela-Ascoli theorem. For the some-

what technical details see [68, Th. 83.6].

3.13. Baer groups of the classical planes. Consider a closed `-dimen-
sional Baer subplane B of a 2`-dimensional classical plane, ` ∈ {2, 4, 8}.

(a) If ` = 2, then ΓB ∼= Z2.
(b) If ` = 4, then ΓB ∼= SO2 R.
(c) If ` = 8, then ΓB ∼= SU2 C.

Proof. The coordinate system of P is an extension of the coordinate (skew)
field of B.

(a) This follows from the fact that AutR C is generated by complex conju-
gation.

(b) As mentioned in 3.6 (see [24, Chap 7, §3]), each automorphism of H is
of the form γ = (z 7→ c−1zc) with cc = 1, and γ fixes C elementwise if, and
only if, c ∈ C.

(c) Representing O as in the proof of 3.6(c), it is not difficult to see that
all automorphisms of O which induce the identity on H×{0} have the form
(a, b) 7→ (a, bq) with qq = 1, hence they form a group homeomorphic to S3. �

Baer groups of other topological planes tend to be smaller than those of
the classical planes of the same dimension. Examples are provided by the
16-dimensional Hughes planes discussed below.

3.14. Baer groups of 4- and 8-dimensional planes.
(a) Any Baer group Γ of a 4-dimensional topological plane has order at

most 2.
(b) A Baer group of an 8-dimensional topological plane is at most 1-

dimensional.

Proof. (a) Because of 3.0(g), an interior line L is homeomorphic to S2. The
interior points on L form a circle S. By the Schoenflies theorem, LrS is a
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union of 2 disks D and D′. The elements of Γ which map D onto itself form a
subgroup ∆ of index at most 2, and ∆ acts freely on D ≈ R2; moreover, the
action of ∆ on D is orientation preserving. According to Brouwer’s translation
theorem (see [31] or [26]) each orbit x∆ 6= x in D is unbounded, but ∆ is
compact and hence ∆ = 1l.

(b) If the 8-dimensional plane P has a Baer subplane, then it follows from
3.7, 3.8, and 3.0 that each line of P is homeomorphic to S4. Let ∆ denote
the connected component of the given Baer group Γ. All compact, connected
effective groups on S4 having an orbit of dimension > 1 have been determined
by Richardson; cf. [68, Th. 96.34]. None of these groups fixes a 2-sphere
pointwise. Hence dim Γ = dim p∆ ≤ 1. �

Satisfactory results on Baer groups of arbitrary 16-dimensional planes have
been obtained only for Lie groups. These results depend on the following
theorem:

3.15. Uniqueness of Baer involutions. Let α and β be commuting in-
volutions of a topological plane. If α and β have the same subplane of fixed
elements, then α = β.

It is not known whether or not this is true without the assumption that
αβ = βα.

Proof. Suppose that Γ = 〈α, β〉 is a Baer group of order 4 with fixed plane
B = (B,B). If L is an interior line, then Γ fixes L ∩B pointwise and Γ acts
freely on the complement LrB. Because of 3.0(a), the line L has the (integer)
cohomology of a sphere S`, and 3.14 implies that ` ∈ {4, 8}. Moreover, L ∩B
has the cohomology of a sphere Sk, and ` = 2k by Theorem 3.8. A theorem
of Smith [70, p. 407] asserts that Γ has k-periodic cohomology: Hq+k(Γ,Z) ∼=
Hq(Γ,Z) for all q ≥ 0, but then Γ must be cyclic. In fact, the Künneth formula
gives H2q(Z 2

2 ,Z) ∼= Z
q+1
2 ; see, e.g., [25, p. 18]; cf. also [68, (55.27)]. �

3.16. Baer groups of 16-dimensional planes. Assume that Γ is a con-
nected Baer group of a 16-dimensional topological plane P.

(a) If Γ is a Lie group, then Γ ∼= SU2 C or Γ ∼= SO2 R or Γ = 1l.
(b) In any case, dim Γ < 8. If the lines of P are manifolds, then

dim Γ ≤ 5.

Proof. (a) Being a compact connected Lie group, Γ is a product of a central
torus group and a semi-simple Lie group, and Γ does not contain a 2-torus
by 3.15. Hence Γ is either almost simple without two commuting involutions,
and then Γ ∼= SU2 C

∼= Spin3 R, or Γ is a torus group of dimension at most 1.
(b) Denote the point set of the Baer subplane by B and let L be an interior

line. Each x ∈ LrB has a compact orbit xΓ ≈ Γ. If dim Γ = dimL, then
xΓ contains a non-empty open subset of L by 3.0(e). Being homogeneous,
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xΓ would be open in L, but LrB is connected and not compact. Hence
dim Γ < 8. Assume now that L ≈ S8 and dim Γ ≥ 6. Then Γ is a Lie group
by [14, Th. 10 and 11], and (a) would imply dim Γ ≤ 3. �

As in the finite case, interesting results hold in the so-called Hughes situ-
ation: some Baer subplane B<•P is left invariant by a fairly large group ∆
of automorphisms of P. For topological planes, only closed subgroups ∆ ≤ Σ
will be considered. The dimension dim ∆ is a very good measure for the size
of ∆. Because the connected component ∆1 has the same dimension as ∆,
one may always assume ∆ to be connected.

3.17. Theorem. Suppose that ∆ leaves a Baer subplane B of a 4-dimen-
sional topological plane P invariant. If dim ∆ ≥ 7, then ∆ ∼= PSL3 R and P
is the classical complex plane.

Proof. Write ∆|B = ∆/Φ for the group induced by ∆ on B. Here, the
kernel Φ has order at most 2 by 3.14(a). Since ∆ is connected and since a
Baer involution of a 4-dimensional plane reverses the orientation of each fixed
line, the kernel is trivial; see [68, (55.21bc)]. From the results in [68, §38] it
follows that B is classical and that ∆ ∼= PSL3 R. Hence dim ∆ = 8. If K and
L are exterior lines intersecting in an exterior point p, then ∆K,L fixes also
the interior elements incident with K, L, and p and thus 3 collinear interior
points. Therefore, each δ ∈ ∆K,L induces on B an axial collineation and fixes
all interior lines through its center. Because ∆ contains no Baer collineations,
∆K,L = 1l and ∆ is transitive on the set of all such pairs {K,L} by [68,
(96.11)]. In particular, ∆ is flag-transitive on the subgeometry E consisting of
the exterior elements. It can be shown that the pair of stabilizers ∆p and ∆L

is unique up to conjugation. Hence E is isomorphic to the exterior geometry
in the complex plane; cf. [27, §6]. Details are given in [64] or [68, (72.3)]. �

3.18. Remark: Affine Hughes groups of 4-dimensional planes. As-
sume in 3.17 that dim ∆ = 6 instead of dim ∆ ≥ 7. Then ∆ is isomorphic to
the group R2· GL+

2 R of orientation preserving affine maps of the real plane
(cf. [68, (33.6 and 33.8)] or [62, 4.3]). All 4-dimensional planes admitting
such a group have been determined explicitly in two long papers [46] and [42].
Incidentally, this work completes the classification of 4-dimensional compact
planes P satisfying dim AutP ≥ 6.

The Hughes situation in 8- and 16-dimensional planes can be treated in
a way similar to 3.17. However, the pair of stabilizers of an exterior line L
and an exterior point p ∈ L is not unique up to conjugation, and one obtains
one-parameter families of topological Hughes planes. A full account of these
planes can be found in [68, §86].
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3.19. Eight-dimensional Hughes planes. Suppose that ∆ leaves a Baer
subplane B of an 8-dimensional topological plane P invariant. If dim ∆ ≥ 14,
then B is classical, and the commutator group ∆′ ∼= SL3 C induces on B the
full projective linear group. For each r ≥ 0 there exists a unique plane Hr ad-
mitting such an action. The plane H0 is isomorphic to PH. If r > 0, then Hr
is a proper Hughes plane, and its full automorphism group is 17-dimensional.

Sketch of proof. (1) Write ∆∗ = ∆|B = ∆/Φ. The kernel Φ of this action
is at most 1-dimensional by 3.14(b), and dim ∆∗ > 12. Consequently, B is
classical; see [68, (72.8)]. From [68, (71.4) and (71.8)] it follows that ∆∗ ∼=
PSL3 C is simple. Since dim ∆ ≤ 17, a maximal semi-simple subgroup of ∆
is 16-dimensional, and one may assume that the simply connected covering
group of ∆ is isomorphic to A := SL3 C.

(2) The group A acts on P, possibly with a kernel of order 3. If S is an
interior line, then AS has a subgroup Υ ∼= SU2 C. The theorem of Richarson
[68, (96.34)] shows that the central involution of Υ acts trivially on S and
hence is a reflection. All involutions of A being conjugate, there are no Baer
involutions in A.

(3) Let K and L be exterior lines intersecting in an exterior point p. The
stabilizer Ψ = AK,L fixes the interior points a ∈ K and b ∈ L, the interior line
M through p and the intersection ab ∩M . Because B is classical, Ψ induces
on B a group of axial collineations with axis ab, and each ψ ∈ Ψr{1l} has
in B some center z ∈ M . Since ψ fixes all interior lines through z, the fixed
elements of ψ form a Baer subplane, and ψ is contained in a compact subgroup
of Ψ by 3.12. Since the commutator of two homologies with distinct centers
and the same axis in PC is an elation, it follows that all elements in Ψ|B have
the same center c /∈ ab and that Ψ is a Baer group.

(4) According to step (2), the compact Lie group Ψ does not contain an
involution. Hence dim Ψ = 0 and Ψ is finite. With [68, (96.11)] it follows that
A is transitive on the set of all admissible pairs {K,L} and, dually, on the set
of all pairs of exterior points with exterior join. The space of interior lines
is simply connected, and so is the space of exterior points on a given interior
line. Repeated application of [68, (94.4)] shows that Ap and Ψ are connected.
Hence Ψ = 1l and ∆ ∼= A; moreover, ∆L is sharply transitive on the set of
pairs of exterior points on L.

(5) By a well-known theorem of Tits [77], there is a near-field (H,+, ◦r),
where r ≥ 0 and

a ◦r x = a |a|−irx |a|ir,
such that the action of ∆L on Lr{a} ≈ R4 is equivalent to the group of linear
maps x 7→ a ◦r x + b of H; see also [68, (64.19–23)]. If r > 0, then (H,+, ◦r)
has kernel C (because x ∈ C implies a ◦r x = ax). As in 1.14, the near-field
yields a projective plane Hr with points 〈x〉 = H

×◦r x, 0 6= x = (x, y, z) ∈ H3.
The lines through 〈0, 1,−1〉 are given by an equation x ◦r s + y + z = 0 or
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x = 0, and the other lines are obtained by applying the group GL3 C from
the right. If r 6= r′ then Hr 6∼= Hr′ .

(6) It can be verified that each Hughes plane Hr as described in step (5) is
indeed an 8-dimensional topological plane. Because of the distinction between
interior and exterior elements, the proof of the continuity properties is not so
easy; see [68, §86] for details.

(7) Obviously, H0 is the classical Desarguesian quaternion plane. In all
other cases, GL3 C induces onHr the full automorphism group Σ, and dim Σ =
17. �

3.20. Remark. The Hughes planes are the only 8-dimensional topological
planes with an automorphism group of dimension at least 17 which are not
translation planes or dual translation planes ([67]).

There are 16-dimensional analoga of the planesHr even though correspond-
ing near-fields do not exist ([30, XI.8.8]):

3.21. Sixteen-dimensional Hughes planes. If B is a ∆-invariant closed
Baer subplane of P and if dim ∆ > 30, then ∆ has a subgroup Γ ∼= SL3H

and dim ∆ ≤ 38. For each r ≥ 0 there is a unique 16-dimensional topological
plane Or admitting a non-trivial (and then even effective) action of Γ. The
element β 6= 1l in the center of Γ is a Baer involution. O0 is the classical
Moufang plane; in all other cases, dim AutOr = 36.

Proof. From dim ∆ > 26 it follows that ∆ is a Lie group; see [58, Th. L].
Write again ∆∗= ∆|B = ∆/Φ for the group induced on B. By 3.16(a), the
kernel Φ has dimension dim Φ ≤ 3, and dim ∆∗ > 27. As shown in [68,
(83.26)], the stabilizer of a point or a line in AutB is at most 27-dimensional,
and [68, Th. 84.27] implies that B is classical and that ∆∗ ∼= PSL3H

∼= Γ/〈β〉.
In particular, Γ acts non-trivially on P. Now the claim is a consequence of
[68, (86.31) and (86.34–37)]. Originally, the proof is due to Hähl [32]. �

Remark. Each reflection of B is induced by a reflection of Or, and Or is
a semi-translation plane; cf. 1.15.

Proof. By [68, (55.40)] there is no non-trivial action of SO5 R on any topo-
logical plane. Hence the central involution σ of a subgroup U2H

∼= Spin5 R

of Γ is a reflection of Or, and each reflection of B extends to a conjugate of σ.
Because the product of different reflections with the same axis is a translation,
each translation of B is induced by a translation of Or. �

For related characterizations of the 16-dimensional Hughes planes see [67].
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3.22. Corollary. If again B∆ = B<•P and if dim ∆ = 38, then P ∼= PO
is classical.

A direct proof of this result is given in [65, Th. 1].
In contrast to 2.5, closed Baer subplanes of a topological plane are never

disjoint. This is a consequence of the following result by Löwen:

3.23. Theorem. If B is a closed Baer subplane of P and if Lx denotes the
unique interior line through the exterior point x, then the map
π = (x 7→ Lx) : PrB → B is a locally trivial fibering which does not ad-
mit a cross section.

A proof can be found in [47]. It uses the version of Lefschetz duality given
in Bredon’s book on sheaf theory and will not be reproduced here. If the
point space B of B is a manifold, the ordinary Lefschetz duality theorem [72,
6.2.19] suffices.

3.24. Corollary. Two distinct closed Baer subplanes of a topological plane
have least one point in common. Dually, there is also a common interior line.

Proof. (1) Assume that B and B′ are closed Baer subplanes of P with
disjoint point sets B and B′, respectively. If the subplanes have no interior
line in common, then each line S with S ∩B ∈ B intersects B′ in a unique
point x = σ(S) and π(x) = S. Thus π◦σ = 1l and σ would be a cross section
for π : PrB → B. Therefore, the planes B and B′ have a common interior
line, if their point sets are disjoint.

(2) If two Baer subplanes B and B′ have a common interior line L but no
common point, then each point x ∈ BrL would lie on a unique interior line
with respect to B′ and this would set up a homeomorphism BrL ≈ B′r{L},
but the first space is contractible ([68, (51.4)]), while the second is not; see
3.0(a) together with [68, (51.26)]. �

The possibilities for the intersection B ∩ B′ are known only in the following
case:

3.25. Intersections. Let α and β be distinct commuting continuous Baer
involutions of a topological plane P, and put Fβ = B = (B,B). Then either
Fα ∩Fβ<•B and αβ is a Baer involution, or αβ is a reflection of P with axis
L and center c and the point set of Fα ∩Fβ is exactly (L ∩B) ∪ {c}.

Proof. By 3.15 and 3.0(c), the collineation α induces on B either a Baer
involution or a reflection. In the first case αβ is also a Baer involution. In
the second case α fixes in B the points of a line L and one additional point c,
moreover, α and β act freely on LrB. As in the proof of 3.15, it follows that
α|L = β|L. Hence αβ has axis L. �
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[48] H. Lüneburg, Characterizations of the generalized Hughes planes, Canad. J. Math. 28

(1976), 376–402. MR 53#3874



512 HELMUT SALZMANN

[49] , Translation planes, Springer-Verlag, Berlin-New York, 1980. MR 83h:51008
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[78] H. Zassenhaus, Über endliche Fastkörper, Abh. Math. Sem. Univ. Hamburg 11 (1935),
187–220.

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-
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