
Illinois Journal of Mathematics
Volume 47, Number 1/2, Spring/Summer 2003, Pages 345–360
S 0019-2082

DIAGONAL LIMITS OF FINITE ALTERNATING GROUPS:
CONFINED SUBGROUPS, IDEALS, AND POSITIVE

DEFINITE FUNCTIONS

FELIX LEINEN AND ORAZIO PUGLISI

In memory of Reinhold Baer on the occasion of the hundredth anniversary of his birth.

Abstract. A non-finitary group G is said to be an lA-group if it is
a direct limit of finite alternating groups Gi = Alt(Ωi) (i ∈ I) such

that each Gi has only trivial or natural orbits on the sets Ωj (j > i).
We determine the confined subgroups of lA-groups and relate them
naturally to the ideals in the group algebra KG over any field K of
characteristic zero. Moreover, we show that the non-trivial ideals in CG
can be related to normalized positive definite class functions f : G→ C

if and only if the number of Gi-orbits in Ωj (j > i) is asymptotically a
linear function of |Ωj | for all i.

1. Introduction

In recent years many authors have studied the structure of simple locally
finite groups, that is, simple groups which are direct limits of finite groups.
These investigations were pursued in several directions; a good account of this
area of research can be found in B. Hartley’s survey article [2]. An interesting
subject is the study of the lattice of (two-sided) ideals in group algebras of
simple locally finite groups. Over fields of characteristic zero, the ideals are
closely related to the asymptotic character theory of finite groups, as well as
to certain issues arising in the theory of C∗-algebras. For more information
we refer the reader to A. E. Zalesskǐı’s survey article [11].

One of the central problems in Zalesskǐı’s survey is to determine those sim-
ple locally finite groups G, for which the complex group algebra CG (or more
generally KG, where K denotes a field of characteristic zero) is augmentation
simple, that is, admits only the three trivial ideals: 0, CG, and the aug-
mentation ideal. This problem has now been solved with the contribution of
several authors – see [6] for the last step. On the other hand, when the ideal

Received December 11, 2001.
2000 Mathematics Subject Classification. Primary 20C07, 20F50. Secondary 16S34,

20B22, 20C30, 20E32, 20F69, 42A82.

c©2003 University of Illinois

345



346 FELIX LEINEN AND ORAZIO PUGLISI

lattice of KG is non-trivial, its structure is known in just a few cases (see
[10], [3], [6]).

When G is a locally finite group and K is a field of characteristic zero, the
existence of non-trivial ideals in KG is reflected in the subgroup lattice of G.
A subgroup X of G is said to be confined in G if there exists a finite subgroup
F ≤G such that F ∩Xg 6= 1 for every g ∈G. In their remarkable paper [4],
Hartley and Zalesskǐı proved that in the presence of non-trivial ideals there are
proper confined subgroups in G. It follows from [5] and [6] that the converse
also holds. Nevertheless it is still unclear how to relate a particular proper
confined subgroup to a non-trivial ideal. A reasonable conjecture is that, if
X is a proper confined subgroup in G, and if Ω the set of right cosets of X in
G, then the annihilator in KG of the permutation module KΩ is a non-trivial
ideal. This holds, for example, when G is a finitary transvection group [3].

In [8] and [5], the confined subgroups in finitary simple locally finite groups
were determined. In the present paper, we shall describe the confined sub-
groups in diagonal limits of finite alternating groups (lA-groups for short). To
be precise, an lA-group shall be a non-finitary group G which is a direct limit
of finite alternating groups Gi = Alt(Ωi) (i∈ I) such that each Gi has only
trivial or natural orbits on the sets Ωj (j > i). A non-trivial transitive per-
mutation representation of G on a set Ω is said to be natural, if every Gi has
only trivial or natural orbits on Ω. Our classification of confined subgroups is
as follows.

Theorem A. Let X be a proper subgroup of the lA-group G.

(a) If X is the intersection of finitely many point stabilizers of natural
permutation representations of G, then every overgroup of X in G is
confined in G.

(b) If X is confined in G with respect to the finite subgroup F , then X
contains a simple normal subgroup N , which is an intersection of point
stabilizers as in part (a), and whose index in X is finite and bounded
by a function of |F |.

As with finitary simple locally finite groups, the confined subgroups of
lA-groups are closely related to the action on certain structures which are
naturally associated to the groups. When we first approached our problem,
we were under the impression that it should be possible to find, for any given
confined subgroup X in the lA-group G, a natural permutation representa-
tion of G in such a way that the normal subgroup N in part (b) becomes
the pointwise stabilizer of a finite subset in that representation. As it turns
out, this is not always possible. Example 3.1 will illustrate this somewhat
unpleasant behaviour.

It follows from Theorem A that every lA-group of cardinality ℵ has 2ℵ

confined subgroups (Theorem 3.3), a behaviour which we met already in the
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context of finitary simple locally finite groups. In view of the link between
confined subgroups and ideals, this fact may come as a surprise, since the
group algebras of lA-groups have just countably many ideals [10] (which
form a descending chain of length ω+1). Nevertheless, along the lines of
the above mentioned conjecture, we can still relate confined subgroups of the
lA-group G naturally to ideals in KG.

Theorem B. Let G be an lA-group, and let K be a field of charac-
teristic zero. Suppose that the confined subgroup X in G contains a sim-
ple normal subgroup of finite index which is the intersection of d pairwise
distinct point stabilizers of natural permutation representations of G. Then⋂
g∈G(Xg−1)KG is the dth non-trivial ideal in the descending chain of ideals

in KG.

We shall finally consider the question of when non-trivial ideals in the com-
plex group algebra CG of an lA-group G are definable in terms of normalized
positive definite class functions f : G → C. The way in which an ideal J(f)
is obtained from such a function f is detailed in Section 5. In [11, Section
5], Zalesskǐı gave two examples of lA-groups G for which the largest non-
trivial ideal in CG is not of the form J(f). These examples now illustrate the
following general result.

Theorem C. Let G be an lA-group, which is the diagonal limit of sub-
groups Gi = Alt(Ωi) (i∈I).

(a) If some non-trivial ideal in CG is of the form J(f) for a normalized
positive definite class function f : G → C, then the number of non-
trivial Gi-orbits in Ωj (j > i) is asymptotically a linear function of
|Ωj | for every i∈I.

(b) Conversely, if for some i ∈ I the number of non-trivial Gi-orbits in
Ωj (j>i) is asymptotically a linear function of |Ωj |, then every non-
trivial ideal in CG is of the form J(f) for some normalized positive
definite class function f : G→ C.

Quite surprisingly, Theorem C singles out a particular class of diagonal lim-
its of finite alternating groups. Amongst them are the strictly diagonal limits
of finite alternating groups Gi, that is, lA-groups where each Gi fixes no point
in any Ωj (j>i). Note that the number of non-trivial Gi-orbits in Ωj (j>i) is
always bounded by the linear function |Ωj |/|Ωi|. Therefore the linear growth
asserted in Theorem C is maximal. Sublinear growth is equivalent to saying
that the ratio |fixΩjGi|/|Ωj | tends to 1 for j � i (Proposition 5.1). We shall
close by showing that every lA-group has at least 2ℵ0 indecomposable nor-
malized positive definite class functions (Theorem 5.2). A detailed description
of these extremal characters will be the topic of a subsequent paper by the
authors.
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2. Classification of confined subgroups

Let K be a field of characteristic zero, and let G be a direct limit of finite
alternating groups. The group algebra KG has non-trivial ideals if and only
if G is an lA-group or an alternating group [10]. Since the alternating groups
have been dealt with in [8], we shall only consider lA-groups in the sequel.

Throughout this section, we shall use the following notation. G will be a
non-finitary group which has a local system of finite simple alternating groups
Gi = Alt(Ωi) (i∈I) such that each Gi has only trivial or natural orbits on the
sets Ωj (j>i). Moreover X will denote a proper confined subgroup in G with
respect to the finite subgroup F . By enlarging F and passing to a subsystem
of the local system we may always assume that F is a finite alternating group
of some degree n, which is contained in every Gi and which has only trivial
or natural orbits on each of the sets Ωi. This implies, in particular, that
Xi = X ∩ Gi is confined in Gi with respect to F for every i. We may also
assume that I contains a unique minimal index which we denote by 0. In
general F will be a proper subgroup of G0.

Construction 2.1. The group G has natural permutation representa-
tions.

Proof. For each i, we choose a G0-map η0i : Ω0 −→ Ωi. Since every Gi acts
transitively on Ωi, there are unique Gi-maps ηij : Ωi −→ Ωj for all j >i such
that η0iηij = η0j . The direct limit of the sets Ωi and maps ηij is a natural
G-set. �

Remark 2.2. Every finite subgroup of G has infinitely many non-trivial
orbits on every non-trivial G-set Ω.

Proof. Because the finitary symmetric group on a set Ω is a normal sub-
group in Sym(Ω), the non-finitary simple group G cannot contain a non-trivial
element with finite support. �

Proposition 2.3. The confined subgroup X of G has a unique infinite
orbit ∆ on every natural G-set Ω, and |Ω \∆| ≤ n−3.

Proof. Let Θ = {ω1, . . . , ωn} be one of the natural F -orbits in Ω. Assume
by way of contradiction that X has at least n orbits ∆1, . . . ,∆n in Ω. Since
G acts highly transitively on Ω, there is an element g∈G such that ωkg ∈ ∆k

for 1≤ k≤ n. Every x ∈ F g ∩ X must fix each ωkg. Since every non-trivial
F g-orbit in Ω is isomorphic to Θg, it follows that x acts trivially on Ω. Thus
F g ∩X = 1, a contradiction. This contradiction shows that X has at most
n−1 orbits in Ω. Because Ω is infinite, one of them must also be infinite.

Let ∆ be an infinite X-orbit, and let Γ = Ω\∆. Assume that Γ contains at
least n−2 elements. By Remark 2.2 F has infinitely many non-trivial orbits
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on Ω. Choose n−2 distinct natural F -orbits Θ1, . . . ,Θn−2 and points θk∈Θk

in such a way that each θk has a different stabilizer Sk in F . Since G acts
highly transitively on Ω, there is an element g∈G such that Θkg ∩ Γ = {θk}
for all k. It follows that F g∩X ⊆ S1∩· · ·∩Sn−2 = 1, a contradiction. Hence
|Γ| ≤ n−3. �

Proposition 2.4. In the situation of Proposition 2.3, the subgroup X
acts primitively on ∆.

Proof. Assume that X has a proper system of imprimitivity in its action
on the infinite orbit ∆. Suppose first that the system is finite. In this case
each block is infinite, and there are at least two blocks ∆1 and ∆2. Choose
pairwise distinct natural F -orbits Θf and Λf (1 6=f ∈F ) in ∆. Pick elements
αf , βf ∈ Θf and σf , τf ∈ Λf in such a way that

• their point stabilizers satisfy Fαf = Fσf and Fβf = Fτf for 1 6=f ∈F ,
and
• αff = βf and σff = τf for 1 6=f ∈F .

By high transitivity we can now find some g ∈ G which fixes the finite set
Ω \∆ and satisfies

(αf )g−1 ∈ ∆1, (βf )g−1 ∈ ∆2, and (Λf )g−1 ⊆ ∆1 for every f ∈ F \ 1.

Consider an element 1 6= f ∈ F ∩Xg. It moves αf to βf , hence ∆1g onto ∆2g.
On the other hand f must leave ∆1g fixed because σf and τf belong to ∆1g.
But this is a contradiction since ∆1g and ∆2g are blocks under the action of
Xg on ∆g. It follows that the system of imprimitivity must be infinite.

Now we know that each block contains at least two points. Recall that n
denotes the natural degree of the finite alternating group F . We consider n2

distinct X-blocks ∆k` (k, ` = 1, . . . , n). In each ∆k` we pick two distinct
points θk` and λk`. Then we define the sets Θs = {θs1, . . . , θsn} for every s,
and Λr = {λ1r, . . . , λnr} for every r. Using high transitivity we obtain g∈G
such that the sets Θs and Λr become natural F g-orbits whose similarity is
explained by the following F g-maps:

Θs1 ∼ Θs2 via θs1` 7→ θs2` for all `,
Λr1 ∼ Λr2 via λkr1 7→ λkr2 for all k, and
Θs ∼ Λr via θsj 7→ λjr for all j.

Consider a non-trivial element x ∈ F g ∩ X. There is an index j such
that θjjx 6= θjj . As λjj and θjj lie in the same block, x must move λjj too.
However, θjjx = θj` for some ` 6=j while λjjx = λkj for some k 6=j. The first
equation implies ∆jjx = ∆j` while the second equation implies ∆jjx = ∆kj .
This final contradiction shows that X cannot have a system of imprimitivity
in its action on ∆. �
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It is useful to note that Remark 2.2 and Propositions 2.3 and 2.4 have a
local version. The reader can easily convince himself that the above proofs
work for the subgroups Gi in place of G provided that they are large enough.
This leads to the following conclusion.

Proposition 2.5. There exists i ∈ I, depending on X and F , such that
for every j > i, the subgroup Xj = X ∩ Gj has a unique largest orbit ∆j in
Ωj, and the complement Γj = Ωj \ ∆j has size at most n−3. Moreover Xj

acts primitively on ∆j. �

The next result will actually be proved from the above local version.

Proposition 2.6. In the situation of Proposition 2.5, a large enough
choice of the index i ensures that Xj contains the pointwise stabilizer in Gj
of Γj for all j>i.

Proof. We know that |Γj | ≤ n−3. A large choice of i allows us to as-
sume that |∆j | > 16n4, and that F has at least n!n natural orbits Λk,` =
{λk,`,1, . . . , λk,`,n} (k = 1, . . . , n!, ` = 1, . . . , n) on ∆j for every j > i. Let
Λk = Λk,1 ∪ · · · ∪ Λk,n. For each k there is an element gk ∈Gj which fixes
Ωj \Λk pointwise and sends each λk,`,m to λk,m,`. The first condition implies
that f and fgk act in the same way on Ωj \ Λk for every f ∈ F , while the
second condition ensures that F gr ∩ F gs is trivial whenever r 6=s.

Because Xj is confined in Gj with respect to F , there exists a non-trivial
element xk ∈ F gk ∩ Xj for each k. By the Pigeon Hole Principle there are
some f ∈F and two indices r 6=s with xr = fgr and xs = fgs . In particular xr
and xs coincide with f on Ωj \ (Λr ∪Λs). But then y = xrx

−1
s is a non-trivial

element in Xj whose support is contained in Λr ∪ Λs ⊂ ∆j . It follows that
the image of y in Xj = Xj/(Xj)(∆j) is non-trivial. By Proposition 2.5, Xj is
a primitive permutation group on ∆j , and y is an element of degree at most
2n2 <

√
|∆j |/2 in Xj . By [1, Theorems 5.3A and 5.4A] the alternating group

on ∆j is contained in Xj .
Let Hj be the preimage of this alternating group in Xj , and consider the

alternating group Aj = (Gj)(Γj). The product HjAj is a subgroup because ∆j

is Xj-invariant and Aj is a normal subgroup of the setwise stabilizer (Gj){∆j}.
Clearly [Aj , (Xj)(∆j)] = 1, so that we can consider the quotient HjAj , which
has the same order as Hj . This shows that Aj ≤ Xj , as desired. �

In the sequel we shall assume that the minimal index 0∈I is chosen so large
that the conclusions of Propositions 2.5 and 2.6 hold for every Gi. Moreover,
after passing to a suitable subsystem of the local system in G, we may assume
that there is a fixed ν ≤ n−3 such that |Γi| = ν for all i. We now study a
particularly important special case of the above situation.
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Proposition 2.7. Suppose that each Xi (i∈I) is the pointwise stabilizer
of a set Γi of fixed size ν. Then the confined subgroup X is an intersection of
ν point stabilizers of natural permutation representations of G.

Proof. If ν=0, then X=G, and the claim holds. Suppose now that ν≥1.
We say that two points in some G0-sets are 0-equivalent if their stabilizers
in G0 coincide. Note that no two distinct elements of Γ0 are 0-equivalent,
because Γ0 lies in the natural G0-orbit Ω0.

Assume by way of contradiction that some Γi contains a non-empty subset
Θ which is fixed by G0. Then X0 = Xi ∩ G0 consists of the elements in G0

which fix precisely those points in Ω0 which are 0-equivalent to some point in
Γi \Θ. In particular, X0 is the pointwise stabilizer in G0 of a subset of Ω0 of
size < ν. This contradiction shows that every Γi is contained in a union of
natural G0-orbits. The same kind of argument shows that no Γi contains two
0-equivalent points.

Assume next that some Γi contains a point γ which is not 0-equivalent to
any point in Γ0. Then X0 = Xi ∩ G0 fixes not only Γ0 pointwise, but also
the point in Ω0 which is 0-equivalent to γ. In particular, X0 is the pointwise
stabilizer in G0 of a subset of Ω0 of size >ν, again a contradiction. Altogether
it follows that there are bijections ε0i : Γ0 −→ Γi for all i which preserve 0-
equivalence. Clearly, ε0j = ε0iεij whenever i<j.

Pick a point γ∈Γ0. Since every Gi acts transitively on Ωi, there are unique
Gi-maps ηγij : Ωi −→ Ωj (i < j) such that γηγ0i = γε0i and ηγik = ηγijη

γ
jk for

all i < j < k. The direct limit Σγ of the sets Ωi and maps ηγij is a natural
G-set, and γ can be identified with a certain point in Σγ . Let Gγ denote
the stabilizer in G of this point. Of course, X ≤

⋂
γ∈Γ0

Gγ . On the other
hand, Gi ∩

⋂
γ∈Γ0

Gγ = (Gi)(Γi) = Xi ≤ X for all i. Hence X is equal to the
intersection of point stabilizers Gγ (γ∈Γ0). �

Proposition 2.8. The arbitrary confined subgroup X contains a simple
normal subgroup N of index at most ν!, whose intersection Ni with Gi is the
pointwise stabilizer in Gi of Γi for all i. Moreover, N is confined in G.

Proof. By Proposition 2.6 every Xi contains the simple normal subgroup
Ni = (Gi)(Γi). For j > i, the intersection Ni ∩ Nj is either trivial or equal
to Ni. Since we can assume that ν < |Ωi \ Γi|, the group Ni is too large to
embed into Xj/Nj . Hence Ni ≤ Nj for all j>i, and N =

⋃
i∈I Ni is a simple

normal subgroup of index at most ν! in X. The discussion of 0-equivalence in
the proof of Proposition 2.7 shows that Nj ∩Gi = Ni whenever i<j. Hence
N ∩Gi = Ni for all i.

Finally we shall show that N is confined with respect to G0. To this end,
consider an element g in some Gi. Since |Γi| = ν << |Ω0|, there are at least
three points in the natural G0-orbit Ω0 whose stabilizers are different from
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the stabilizer of every point in Γig. The 3-cycle z on these points lies in G0

and acts trivially on Γig. Therefore z is a non-trivial element in G0 ∩Ng
i . �

Proof of Theorem A. The argument used to show the last statement of the
above proposition can be applied accordingly to establish part (a). Suppose
next that X is confined in G with respect to F . Consider the subgroup N≤X
as in Proposition 2.8. Part (b) of Theorem A is a consequence of Proposition
2.7, applied to N in place of X. �

3. Some examples

We shall now give an example to illustrate that certain intersections of point
stabilizers of natural permutation representations of an lA-group cannot be
expressed as pointwise stabilizers of a finite set of points in a better natural
permutation representation.

Example 3.1. We shall construct recursively an ascending chain of finite
alternating groups Gi = Alt(Ωi) (i∈N) as follows. Let G0 = Alt(Ω0) be any
alternating group of degree at least five. Given Gi, let Ωi+1 be the disjoint
union of two copies Ωi1 and Ωi2 of the Gi-set Ωi, and embed Gi diagonally
into Gi+1. The union G of the ascending chain of groups Gi is an lA-group.

Pick two distinct points α0 and β0 in Ω0. Given αi, βi ∈ Ωi, let αi+1 ∈ Ωi1
resp. βi+1 ∈ Ωi2 be the corresponding points under the above Gi-similarities
Ωi1 ∼ Ωi ∼ Ωi2. Finally, let Γi = {αi, βi} for all i. Clearly, (Gi)(Γi+1) =
(Gi)(Γi) for all i. Therefore X =

⋃
i≥0 (Gi)(Γi) is a subgroup in G. It follows

as in the proof of Proposition 2.8 that X is confined in G. Note that X is
simple as it is the union of the finite alternating groups (Gi)(Γi).

Now let Σ be any natural G-set. Fix some σ ∈ Σ and consider the finite
sets Σi = σGi (i∈N). Every Σi is of course similar to Ωi as Gi-set. Assume
that X = G(∆) for some finite subset ∆ ⊆ Σ. By the transitivity of G on Σ
there exists i≥ 0 with ∆ ⊆ Σi. In particular, ∆ ⊆ fixΣi(X ∩ Gi). From the
Gi-similarity between Σi and Ωi it is clear that ∆ consists of the two elements
δ1, δ2 ∈ Σi which correspond to αi and βi in Ωi. The Gi+1-similarity between
Σi+1 and Ωi+1 yields that δ1 and δ2 lie in distinct Gi-orbits in Σi+1 ⊂ Σ. This
holds for all but finitely many i. We conclude that δ1 and δ2 lie in distinct
G-orbits in Σ. But this contradicts the transitivity of G on Σ. �

Another interesting fact is that a proper confined subgroup in an lA-group
G might act transitively on some natural G-set.

Example 3.2. Let G be an lA-group as constructed in Example 3.1.
Choose a finite subset Γ0 ⊆ Ω0. Given Γi, let Γi+1 ⊆ Ωi2 be the corresponding
subset under the above Gi-similarity Ωi ∼ Ωi2. Now X =

⋃
i≥0 (Gi)(Γi) is a

proper confined subgroup in G. In fact, X is the pointwise stabilizer of two
points in the natural G-set which is the direct limit of the Gi-sets Ωi with
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respect to the Gi-maps Ωi −→ Ωi2 ⊂ Ωi+1. However, X acts transitively on
the natural G-set which is the direct limit of the Gi-sets Ωi with respect to
the Gi-maps Ωi −→ Ωi1 ⊂ Ωi+1. �

We conclude our discussion of confined subgroups in lA-groups by counting
their number.

Theorem 3.3. Every lA-group G of cardinality ℵ has 2ℵ confined sub-
groups.

Proof. Let G be the union of the direct limit of finite groups Gi = Alt(Ωi)
(i ∈ I) with diagonal embeddings. Consider Construction 2.1. Fix some
ω0∈Ω0, and let ωi = ω0η0i ∈ Ωi for all i. Since every Gi acts transitively on
Ωi, the permutation representation of G on the direct limit Ω of the sets Ωi
and maps ηij is completely determined by the tuple (ωi)i∈I , and every choice
of a tuple gives rise to a natural permutation representation of G.

Let X be the point stabilizer in G of the point in Ω corresponding to
(ωi)i∈I . Then there exists some i ∈ I such that X ∩ Gj = (Gj)(ωj) for all
j > i. By choice of the tuple we have (Gj)(ωj) ∩ Gk = (Gk)(ωk) for all k<j,
whence X ∩ Gk = (Gk)(ωk) for all k. It follows that any tuple which differs
from (ωi)i∈I gives rise to a different point stabilizer in G. Since there are 2ℵ

possible tuples, we obtain 2ℵ point stabilizers. Each of them is confined by
Theorem A. �

4. Connection between confined subgroups and ideals

In this section, K will always denote a field of characteristic zero, and G will
always be an lA-group with a local system of finite alternating subgroups Gi
(i∈I), embedded diagonally into each other. In order to prove Theorem B, we
need to recall a few facts from the representation theory of finite alternating
groups (cf. [10]).

To every irreducible KAlt(n)-representation ϕ we can associate a Young
diagram which is completely described by a finite non-increasing sequence
(`1, `2, . . . , `k) of positive integers with sum n. Here `i is the number of cells
in the i-th row of the Young diagram. The depth δ(ϕ) of the representation
is defined as δ(ϕ) = `2 + · · · + `k. The trivial representation is the unique
irreducible representation of depth zero. The Young diagram of the unique ir-
reducible representation ηn of depth one is described by the sequence (n−1, 1).
We denote the KAlt(n)-module affording ηn by En.

Lemma 4.1 ([10, Lemma 5]). Let d > 1. Then the set of all irreducible
components of the d-fold inner tensor power of the representation ηn of Alt(n)
coincides with {ψ∈ IrrK(Alt(n)) | δ(ψ)≤d }. �
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Lemma 4.2 ([10, Lemma 9]). Let k > 4. If the group Alt(k) is embedded
diagonally in Alt(n) and Alt(k) has at least d + 1 non-trivial orbits on the
natural Alt(n)-set, then every irreducible representation of Alt(k) of depth
≤ d is a constituent of every irreducible representation of Alt(n) of depth
d. �

A set Φ = {Φi | i∈I} is said to be an inductive system if

• each Φi is a set of irreducible KGi-representations (resp. KGi-mo-
dules), and
• whenever i < j, then Φi consists precisely of the irreducible KGi-

constituents of the representations (resp. modules) in Φj .

By [11, Prop. 1.2] the inductive systems are in one-to-one correspondence
with the ideals in the group algebra KG. Here an ideal J corresponds to
the inductive system Φ = {Φi | i ∈ I}, where Φi consists of the irreducible
KGi-modules occurring in KGi/(J ∩ KGi). By [10] the ideals in KG form
a chain KG ⊃ J0 ⊃ J1 ⊃ · · · ⊃

⋂
d∈N Jd = 0, and we denote the inductive

system corresponding to Jd by Φ(d). It was shown in [10] that Φi(d) = {ψ∈
IrrK(Gi) | δ(ψ)≤d}.

If V is any KG-module, we can define Φi to be the set of all irreducible
KGi-submodules of V . Then Φ = {Φi | i∈ I} is an inductive system, which
we call the inductive system associated to V . The corresponding ideal in KG
is the annihilator of V .

Lemma 4.3. Let Ω1, . . . ,Ωd be natural G-sets. Then Φ(d) is the inductive
system associated to the KG-module V = K(Ω1×· · ·×Ωd) = KΩ1⊗· · ·⊗KΩd.

Proof. Let Gi = Alt(ni). Clearly V can be decomposed into a direct sum
of submodules of the form L1⊗· · ·⊗Ld where each Lk is an irreducible KGi-
submodule of KΩk. But every non-trivial irreducible KGi-submodule of KΩk
is isomorphic to Eni . Since V contains a KGi-submodule where all the Lk
are isomorphic to Eni , Lemma 4.1 can be applied to get the claim. �

Proposition 4.4. Let Ω1, . . . ,Ωd be natural G-sets such that the stabiliz-
ers in G of certain points ωk ∈Ωk (k = 1, . . . , d) are pairwise different. Let
∆ be the G-orbit of (ω1, . . . , ωd) in Ω1× · · · ×Ωd. Then Φ(d) is the inductive
system associated to the KG-module K∆.

Proof. Consider a tuple α = (α1, . . . , αd) ∈ Ω1× · · ·×Ωd with the property
Gα1 =Gα2 . Then the map αg 7−→ (α2, . . . , αd)g embeds the G-orbit αG into
the G-set Ω2× · · · ×Ωd. By Lemma 4.3, the inductive system associated to
K(αG) is therefore contained in Φ(d−1), and in particular strictly smaller
than Φ(d). The same conclusion holds for any tuple α with two entries which
have the same point stabilizer in G.
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Suppose next that the tuple α = (α1, . . . , αd) ∈ Ω1×· · ·×Ωd satisfies Gαk 6=
Gα` for all k 6= `. Choose i∈ I so large that αk ∈ ωkGi for k = 1, . . . , d. The
natural Gi-set Ωi contains points α′1, . . . , α

′
d, ω
′
1, . . . , ω

′
d satisfying (Gi)αk =

(Gi)α′k and (Gi)ωk =(Gi)ω′k for all k. By high transitivity there is some g∈Gi
which maps (ω′1, . . . , ω

′
d) onto (α′1, . . . , α

′
d), and hence also (ω1, . . . , ωd) onto

(α1, . . . , αd). This shows that ∆ contains every tuple α satisfying Gαk 6=Gα`
for all k 6=`.

Consider any Gj of large enough degree. By the above reasoning and
Lemma 4.3, every irreducible KGj-representation of depth d must be be a
constituent of K∆. Now Lemma 4.2 ensures that for every i < j the mod-
ule K∆ contains every irreducible KGi-representation of depth at most d.
On the other hand, Lemma 4.3 yields that there are no further irreducible
representations. �

Proposition 4.5. If the confined subgroup X in G is the intersection of
d pairwise distinct point stabilizers of natural permutation representations of
G, then

⋂
g∈G(Xg − 1)KG is the dth non-trivial ideal in the descending chain

of ideals in KG.

Proof. Let Ω1, . . . ,Ωd be natural G-sets containing points ωk ∈ Ωk such
that X =

⋂d
i=1Gωi . Let ∆ = ωG where ω = (ω1, . . . , ωd) ∈ Ω1× · · · ×Ωd.

We have annKG(ωg−1) = (Xg − 1)KG for every g ∈G. By Proposition 4.4,
Φ(d) is the inductive system associated to K∆. Hence Jd = annKG(K∆) =⋂
g∈G annKG(ωg−1) =

⋂
g∈G(Xg − 1)KG. �

Proof of Theorem B. Let N denote the simple normal subgroup of finite
index in X. Let Gi = Alt(Ωi) where |Ωi| = ni, and let Xi = X ∩ Gi, and
Ni = N ∩Gi for every i∈I. By Propositions 2.5 and 2.8 we may assume that
there exists a subset Γi of size d in each Ωi such that (Gi)(Γi) = Ni ≤ Xi ≤
Si = (Gi){Γi}. Consider the action of G by right translation on the set [X\G]
of right cosets of X in G. As above, annKG(K[X \G]) =

⋂
g∈G(Xg − 1)KG.

Hence it suffices to show that the inductive system Φ = {Φi | i∈I} associated
to K[X\G] coincides with Φ(d).

Proposition 4.5, applied to N in place of X, yields Φ ⊆ Φ(d). Conversely,
by Lemma 4.2, it suffices to show that every Φi contains an irreducible rep-
resentation of Gi of depth d. However, Si is the intersection of Gi with the
Young subgroup Sym(Ωi\Γi) × Sym(Γi) of Sym(Ωi), and so the irreducible
representation ϕi of Gi with Young diagram (ni−d, d) occurs as a constituent
of the permutation representation of Gi on the coset space K[Si\Gi]. Any
right transversal of Si in Gi is part of right transversals of Xi in Gi and of X
in G. This shows that ϕi∈Φi, as desired. �
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5. Positive definite functions

In this section we shall consider the complex group algebra CG of an lA-
group G. Let F(G) denote the set of all normalized positive definite complex
class functions on G, that is, the set of all functions f : G→ C satisfying

• f(1) = 1 and f(ghg−1) = f(h) for all g, h ∈ G, and
•
∑n
k=1

∑n
`=1 c∗k f(g−1

k g`) c` ≥ 0 for all g1, . . . , gn ∈ G
and all c1, . . . , cn ∈ C.

Here, c∗ denotes the complex conjugate of c∈C. Examples of such functions
are the so-called trivial ones, namely the convex combinations of the constant
function 1 and the normalized function which sends every non-trivial element
in G to 0. If f ∈F(G), then f |Gi =

∑
χ cχ χ, where the cχ are non-negative

real numbers, and where χ ranges over the irreducible complex characters
of Gi. In this situation the set Φ(f) = {Φi(f) | i ∈ I} with Φi(f) = {χ ∈
IrrC(Gi) | cχ > 0} is an inductive system, and the corresponding ideal is of
the form

J(f) =

{
n∑
k=1

ckgk ∈ CG
∣∣∣ n∑
k=1

n∑
`=1

c∗k f(g−1
k g`) c` = 0

}
(see [11], Corollary 5.11 and Proposition 5.16). Note again that there are only
a few possibilities for Φ(f) here. Either every Φi(f) is empty, or every Φi(f)
contains all complex characters of Gi, or there exists some d such that every
Φi(f) consists of all complex characters of Gi of depth at most d.

Proof of Theorem C. Suppose that there exists a positive integer d such
that Jd = J(f) for some f ∈F(G). Without loss we may assume that |Ωi| >
2d+1. Consider some j>i and let nj = |Ωj |. Clearly, fj = f |Gj is an R-linear
combination of all irreducible complex characters of Gj of depths at most d. If
α is an irreducible complex character of Gj with Young diagram (`1, . . . , `k),
then the permutation character πα obtained from the action of Gj on the
right cosets of the Young subgroup Alt(nj)∩ (Sym(`1)×· · ·×Sym(`k)) is the
sum of α and a Z-linear combination of irreducible characters preceding α in
the dominance order (see [7, Cor. 2.4.7]). Therefore fj is also an R-linear
combination of the πα:

fj =
∑

δ(α)≤d

cαπα for certain cα ∈ R.

Let sj denote the number of non-trivial Gi-orbits in Ωj . Let Mα be the
Gj-module with character πα. We call this module a Young module for Gj .
Considered as Gi-module, Mα is a Z-linear combination of Young modules
for Gi. We want to calculate the multiplicity with which Mτ occurs in this
combination, where τ is the irreducible complex character of Gi with Young
diagram (ni − d, 1, . . . , 1). This multiplicity is an integral polynomial in sj ,
depending on the distribution into Gi-orbits of the points of the partition of
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Ωj with respect to the Young diagram (`1, . . . , `k) of α. In fact, since Mα can
be viewed as the permutation module arising from the action on all (k − 1)-
tuples of `r-sets (2 ≤ r ≤ k), the multiplicity in question is only non-zero
when δ(α) = d and the points corresponding to (`2, . . . , `k) lie in pairwise
different non-trivial Gi-orbits. Therefore we get

(πα|Gi , πτ ) =
(
sj
`2

)(
sj − `2
`3

)
. . .

(
sj − `2 − · · · − `k−1

`k

)
.=

sdj
`2! . . . `k!

=
sdj
`α

whenever δ(α) = d. Now fj |Gi = fi implies that

cτ
.= sdj

 ∑
δ(α)=d

cα
`α

 .

On the other hand, the function f is normalized, that is,

1 = fj(1) =
∑

δ(α)≤d

cαπα(1).

The degrees πα(1) are integral polynomials in nj , and the highest power of
nj occurs again when α has depth d. In this case we have

πα(1) =
(
nj
`2

)(
nj − `2
`3

)
. . .

(
nj − `2 − · · · − `k−1

`k

)
.=
ndj
`α
.

It follows that

1 = fj(1) .= ndj

 ∑
δ(α)=d

cα
`α

 .=
ndj
sdj

cτ .

Because cτ is fixed, we conclude that sj must asymptotically be a linear
function of nj , as desired.

Suppose conversely that sj is asymptotically linear in nj , i. e., that there
exists a constant a > 0 satisfying anj < sj ≤ nj/ni for large j. We shall
show then that J1 = J(f) for some f ∈F(G). Let ιnj (resp. ηnj ) denote the
irreducible characters of Gj of depths 0 (resp. 1). Choose

fj =
(

1− anj
sj

)
ιnj +

a

sj
πηnj =

(
1− a(nj−1)

sj

)
ιnj +

a(nj−1)
sj

ηnj
nj−1

.

Since fj is a convex combination of normalized irreducible characters, [11,
Lemma 5.4] gives fj ∈F(Gj) for large j. Moreover,

πηnk =
sk
sj
πηnj + (nk −

sk
sj
nj) ιnj whenever k ≥ j � i.
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We conclude that

fk|Gj =
(

1− ank
sk

+
a

sk

(
nk −

sk
sj
nj

))
ιnj +

a

sk

sk
sj
ηnj

=
(

1− anj
sj

)
ιnj +

a

sj
πηnj = fj whenever k ≥ j � i.

Therefore f ∈ F(G) is well defined via f |Gj = fj for all j� i. Because the
expansion of fj involves all irreducible characters of depth ≤1, it is clear that
J(f) = J1.

For any d > 1, the restriction to any Gj of the d th power fd of f is a convex
combination of normalized characters of the d th cartesian power Gdj of Gj ,
whence fd ∈ F(Gd) by [11, Lemma 5.4]. We identify G with the diagonal
subgroup of Gd. Then fd|G ∈ F(G). Since Jd is the d th tensor power of J1,
i. e., since the representations in Φi(d) are the d-fold tensor products of the
representations in Φi(1), it follows that Jd = J(fd|G). �

The orbit growth in Theorem C can also be expressed in terms of growth
of fixed point sets.

Proposition 5.1. The number of non-trivial Gi-orbits in Ωj (j > i) is
asymptotically a sublinear function of |Ωj | if and only if the quotient
|fixΩjGi|/|Ωj | tends to 1 for j � i.

Proof. With the notation developed in the proof of Theorem C, we clearly
have

|fixΩjGi|
|Ωj |

= 1−
|suppΩjGi|
|Ωj |

= 1− sj
nj

ni.

Hence |fixΩjGi|/|Ωj | tends to 1 if and only if sj/nj becomes arbitrarily small.
�

Finally we shall show that for every lA-group G the set F(G) contains
many indecomposable functions, that is, functions which are not proper convex
combination of functions from F(G). In the case of lA-groups G with sublin-
ear orbit growth the inductive systems associated with these indecomposable
functions contains all complex characters of the finite alternating subgroups
Gi.

Theorem 5.2. Every lA-group G admits at least 2ℵ0 indecomposable nor-
malized positive definite class functions f : G −→ C.

Proof. Again, G is the diagonal limit of finite alternating subgroups Gj =
Alt(Ωj) (j∈I), and we may assume without loss that there exists a minimal
index i ∈ I. Moreover, sj (resp. tj) denotes the number of natural (resp.
trivial) Gi-orbits in Ωj . Every Gj embeds naturally into a countably infinite
alternating group Aj . Moreover, the diagonal embeddings Gj → Gk (j < k)
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extend naturally to diagonal embeddings Aj → Ak, where Aj has sj natural
and tj trivial orbits on the natural Ak-set. Then G is contained in the diagonal
limit A of the countably infinite alternating groups Aj (j∈I).

Let E(G) be the set of all indecomposable normalized positive definite class
functions G → C. Fix any real number α ∈ ] 0, 1 [ , and define fαj : Aj −→ R

(j∈I) via

fαj (g) =
r∏

ν=2

(αν)
γν/sj

whenever g∈Aj has cycle type
(γ1, . . . , γr) as a permutation of Ωj .

An application of [9, Satz 3] (with α1/sj in place of α1) and [9, Satz 6] shows
that fαj ∈ E(Aj). Moreover, fαk extends fαj whenever k > j. Therefore, the
union fα of the fαj (j∈I) is in E(A).

Suppose that c1fα1 |G + · · ·+ c`f
α` |G = 0 for pairwise distinct α1, . . . , α` ∈

] 0, 1 [ and certain cν ∈ C. Choose j∈I so large that |Ωj | > 2`. Let βµ = α
2/sj
µ

for all µ. Let gν be a (2ν+1)-cycle in Gj for 1≤ν≤`. Then

fαµ(gν) = α1/sj
µ βνµ for all µ, ν,

whence (
c1α

1/sj
1 . . . . . . c` α

1/sj
`

) 
β1 β2

1 . . . β`1
β2 β2

2 . . . β`2
...

...
...

β` β2
` . . . β``

 = 0 .

The Vandermonde argument implies that cν = 0 for all ν. We conclude that
the functions fα|G ∈ F(G) (0 < α < 1) are C-independent. Because every
function in F(G) is a convex combination of functions from E(G), we must
have |E(G)| ≥ 2ℵ0 . �

It is uncertain whether the functions fα constructed above are always inde-
composable. However, we can show that fα∈ E(G) whenever G has sublinear
orbit growth.

Proposition 5.3. Let G be an lA-group with sublinear orbit growth, and
form A≥G as in the proof of Theorem 5.2. Then G contains a conjugate of
every finite subgroup in A. In particular, every f ∈F(G) extends to a unique
f̂ ∈F(A), and the map f 7→ f̂ preserves decomposability.

Proof. Since the functions in F(G) are class functions, it suffices to show
that G contains a conjugate of every finite subgroup F in A. By choosing
the minimal index i large enough we may assume that F ≤Ai. Let Λj be the
support of F on the natural Aj-set. Then |Λj |/|Ωj | = |Λi| sj/|Ωj | tends to
zero for large j. Hence there exists some j such that |Ωj | > |Λj |. Because
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Aj is highly transitive, we can choose g ∈ Aj such that Λjg ⊂ Ωj . Then
F g ≤ Gj . �
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