GROUPS OF CENTRAL TYPE AND SCHUR MULTIPLIERS WITH LARGE EXPONENT

MATTHIAS GRÜNINGER AND PETER SCHMID
In commemoration of Reinhold Baer

Abstract

It is shown that finite groups with Schur multipliers of large exponent lead to groups of central type.

1. Introduction

Let G be a group with finite central factor group $G / Z(G)$. Then the commutator subgroup G^{\prime} of G is finite by a well known theorem of Schur (cf. Huppert [Hu, IV.2.3], and see Baer [B] for related results). Let $\mathrm{M}(G)=\mathrm{H}_{2}(G, \mathbb{Z})$ denote the Schur multiplier of G. If we describe $\mathrm{M}(G)$ by means of a free presentation of G (the Hopf-Schur formula), this theorem implies that if G is finite, then so is $\mathrm{M}(G)$. Then, if e is the exponent of $\mathrm{M}(G)$, by another result of Schur e^{2} is a divisor of $|G|([\mathrm{Hu}, \mathrm{V} .23 .9])$. What does it mean when we have equality $e^{2}=|G|$ here?

Theorem 1. Let $G / Z(G)$ be finite and let e be the exponent of $M=$ $G^{\prime} \cap Z(G)$. Then:
(a) e^{2} is a divisor of $|G: Z(G)|$.
(b) If $e^{2}=|G: Z(G)|$ then $M=Z\left(G^{\prime}\right) \cong \mathrm{M}(G / Z(G))$ is cyclic and $\left|G^{\prime \prime} \cap M\right|^{2}=\left|G^{\prime}: M\right|$ is relatively prime to $\left|G / G^{\prime} Z(G)\right|$. Also, $G / Z(G)$ is solvable with derived length at most 3.

Thus the hypothesis on G in (b) carries over to $G^{\prime}, G^{\prime \prime}$ and so on. We see that $G^{\prime \prime} M / M$ is a Hall subgroup of G^{\prime} / M and that $G^{\prime \prime} \cap M \cong \mathrm{M}\left(G^{\prime} / M\right)$, etc.. Since the p-component of the Schur multiplier of a finite group, for any prime p, is isomorphic to a subgroup of the multiplier of a Sylow p-subgroup, we may also read off that all nontrivial Sylow subgroups of $G / Z(G)$ are abelian of rank 2, and even homocyclic. Indeed, the Schur multiplier of $G / Z(G)$ agrees with that of the direct product over a Sylow system of $G / Z(G)$ (in view of the

[^0]Künneth theorem). Simple examples show that $G / Z(G)$ need not be abelian; there are examples where $G / Z(G)$ has derived length 3 .

The proof of Theorem 1 reduces at once to the case where G is finite. Solvability of G in (b) is easily proved by a transfer argument in case $G / Z(G)$ has odd order. Then $G / Z(G)$ is even metabelian, i.e., has derived length at most 2. In the general case we make use of the fact that G must be a group of central type. This means that there is an irreducible (complex) character $\chi \in \operatorname{Irr}(G)$ such that $\chi(1)^{2}=|G: Z(G)|$. Using the classification of the finite simple groups it has been shown by Howlett and Isaacs [HI] that groups of central type are solvable. In our situation we may avoid the classification theorem but we must still appeal to Walter's theorem [W] describing the finite simple groups with abelian Sylow 2-subgroups.

Let $Z^{*}(G)$ denote the (central) characteristic subgroup of G which is minimal subject to being the image in G of the centre of some central extension of G. The group $Z^{*}(G)$ is the image in G of the centre of any Schur cover of G (see [BFS] for a detailed discussion).

Theorem 2. Let G be finite and e be the exponent of $\mathrm{M}(G)$. Then:
(a) e^{2} is a divisor of $\left|G: Z^{*}(G)\right|$.
(b) If $e^{2}=\left|G: Z^{*}(G)\right|$ then $\mathrm{M}(G) \cong \mathrm{M}\left(G / Z^{*}(G)\right)$ is cyclic of order $\left|G: Z^{*}(G)\right|^{1 / 2}$ and G^{\prime} is metabelian with $Z^{*}\left(G^{\prime}\right)=1$ and with $\mathrm{M}\left(G^{\prime}\right)$ being isomorphic to the $\pi\left(G^{\prime}\right)$-component of $\mathrm{M}(G)$ (which has order $\left.\left|G^{\prime}\right|^{1 / 2}\right)$.

Here $\pi\left(G^{\prime}\right)$ denotes the set of primes dividing $\left|G^{\prime}\right|$. Theorem 2 follows from Theorem 1 by considering a Schur cover of G; in (b) the Schur covers of G will be groups of central type again. Recall that any central group extension $Z \mapsto G \rightarrow G / Z$ gives rise to a natural exact homology sequence

$$
Z \otimes G / G^{\prime} \rightarrow \mathrm{M}(G) \rightarrow \mathrm{M}(G / Z) \rightarrow G^{\prime} \cap Z \rightarrow 1
$$

Here the map on the left is the Ganea (commutator) mapping, and the map on the right the co-transgression. One knows that $Z \subseteq Z^{*}(G)$ if and only if the Ganea mapping is the zero map (see Theorem 4.2 in [BFS]). We shall refer to this homology sequence several times.

Acknowledgement. The second-named author wishes to express his reverence and gratitude to Reinhold Baer. It was a great honour having been part of the "Baer family".

2. Groups of central type

In this section G is a finite group. We summarize some basic facts on groups of central type.

Lemma 1. Let $\chi \in \operatorname{Irr}(G)$ be an irreducible character. Then $\chi(1)^{2} \leq$ $|G: Z(G)|$. Equality holds if and only if χ vanishes outside $Z(G)$.

For a proof see Isaacs $[\mathrm{I},(2.30)]$. Note that if $\chi(1)=e$ and $e^{2}=|G: Z(G)|$, then the restriction $\chi_{Z(G)}$ equals $e \varphi$ for some unique linear character φ of $Z(G)$, and the induced character is $\varphi^{G}=e \chi$ by Frobenius reciprocity. So G is of central type provided some irreducible character of $Z(G)$ is fully ramified in G.

Lemma 2. G is of central type if and only if all Sylow subgroups P of G are of central type, with $P \cap Z(G)=Z(P)$.

This is Theorem 2 in [DJ]. Theorem 3 in [DJ] gives the following.
Lemma 3. Suppose G is a p-group of central type for some prime p. If $Z(G)$ is cyclic and $Z_{0} / Z(G)$ is a normal subgroup of $G / Z(G)$ of order p, then $G_{0}=C_{G}\left(Z_{0}\right)$ is a group of central type with $Z\left(G_{0}\right)=Z_{0}$.

Lemma 4. If G is a group of central type and $G / Z(G)$ has abelian Sylow 2 -subgroups, then G is solvable.

This is true without the assumption on the Sylow 2-subgroups [HI]. The lemma may be proved along the lines given in [HI] by referring to Walter [W].

3. Symplectic actions

Let p be a prime. Let P be a finite group such that $P / Z(P)$ is abelian of type $\left(p^{a}, p^{a}\right)$ for some integer $a \geq 1$ and such that P^{\prime} is cyclic of order p^{a}. Examples of such groups are the Schur covers of abelian groups of type (p^{a}, p^{b}) with $b \geq a$ (see Baer's result as stated in Proposition 7.3 of [BFS]). Suppose H is a finite p^{\prime}-group acting on P and centralizing $Z(P)$.

Lemma 5. Either H acts trivially on P or $[P, H]$ covers $P / Z(P)$.
Proof. Suppose that H acts nontrivially on P. Since H is a p^{\prime}-group and P^{\prime} is a p-group contained in the Frattini subgroup of the (nilpotent) group P, the group H acts nontrivially on P / P^{\prime}. If H centralized the p-group $P / Z(P)$, it would act as a p-group on P / P^{\prime}, because it centralizes $Z(P) / P^{\prime}$. It follows that H, being a p^{\prime}-group, acts nontrivially even on the Frattini factor group V of $P / Z(P)$. It suffices to show that $[V, H]=V$.

Since H centralizes $Z(P)$, it respects the symplectic form on V induced by the (bilinear) commutator mapping $P / Z(P) \times P / Z(P) \rightarrow P^{\prime}$. It follows that H acts on V as a p^{\prime}-subgroup of the symplectic group $\mathrm{Sp}(V)=\mathrm{Sp}_{2}(p)$. We have $V=[V, H] \times C_{V}(H)$ (Maschke), with $[V, H] \neq 1$. If $[V, H] \neq V$ then V acts as a group of diagonal matrices on V having at least one entry

1. But all these matrices have determinant 1 . Thus H must centralize V, a contradiction.

Lemma 6. Suppose H^{\prime} is an abelian Hall subgroup of H. If H^{\prime} is nontrivial on P, the exponent of H / H^{\prime} is divisible by 4.

Proof. By Lemma 5 we know that $\left[P, H^{\prime}\right]$ covers $P / Z(P)$. As before we consider the action of H on the Frattini factor group V of $P / Z(P)$. So H acts on V symplectically. We may identify $X=H / C_{H}(V)$ with a p^{\prime}-subgroup of $\mathrm{Sp}_{2}(p)$. By hypothesis $X^{\prime} \neq 1$ is an abelian Hall subgroup of X. This forces p to be odd (and even $p \geq 5$). Now H is an M-group ([Hu, V.18.4]). Enlarging the field of scalars, if necessary, we may likewise describe X as a group of monomial 2×2-matrices (with determinant 1). It follows that X has a cyclic subgroup of index 2 .

The Sylow 2-subgroups of $\mathrm{Sp}_{2}(p)$ are generalized quaternion groups. The unique (central) involution of $\mathrm{Sp}_{2}(p)$ must belong to X. We conclude that $X^{\prime} \neq 1$ has odd order and that X / X^{\prime} is cyclic of order divisible by 4.

Example. Suppose p is odd and q is an odd prime dividing $p^{2}-1$. Let P be a Schur cover of an abelian p-group of type $\left(p^{a}, p^{a}\right)$ for some integer $a \geq 1$, and let Q be a Schur cover of an abelian q-group of type $\left(q^{b}, q^{b}\right)$ for some integer $b \geq 1$. Then there is a symplectic action of Q on P such that $C_{Q}(P) \supseteq Q^{\prime}$ has index q in Q. The semidirect product $P Q$ is a Schur cover of $\left(P / P^{\prime}\right)\left(Q / Q^{\prime}\right)$ with $Z(P Q)=P^{\prime} \times Q^{\prime}$.

Let R be a Schur cover of an abelian 2-group of type $\left(2^{c}, 2^{c}\right)$ with $c \geq 2$. There is a symplectic action of R on Q such that $C_{R}(Q)$ has index 2 . Thus R acts on Q through the central involution in $\mathrm{Sp}_{2}(q)$ inverting the elements of Q / Q^{\prime}. The semidirect product $H=Q R$ has a homomorphic image in $\operatorname{Sp}_{2}(p)$ of order $4 q$, the kernel in R being a subgroup $C \subset C_{R}(Q)$ containing R^{\prime}. Of course, R / C is cyclic of order 4 and $C_{R}(Q) / C$ maps onto the centre of $\mathrm{Sp}_{2}(p)$. Let $G=P H$ be the semidirect product with respect to the resulting symplectic action of H on P. This is a Schur cover of $\left(P / P^{\prime}\right)\left[\left(Q / Q^{\prime}\right)\left(R / R^{\prime}\right)\right]$ with

$$
Z(G)=P^{\prime} \times Q^{\prime} \times R^{\prime}
$$

Moreover, $G^{\prime \prime}=P Q^{\prime}$ and $G^{\prime \prime \prime}=P^{\prime}$.

4. The primary case

The crucial step in proving Theorem 1 is to handle the situation where $G / Z(G)$ is a p-group for some prime p. Here we have the following result.

Proposition. Let $G / Z(G)$ be a finite p-group and let e be the exponent of $M=G^{\prime} \cap Z(G)$. Then:
(a) e^{2} is a divisor of $|G: Z(G)|$.
(b) If $e^{2}=|G: Z(G)|$ then $G^{\prime}=M \cong \mathrm{M}(G / Z(G))$ is cyclic and $G / Z(G) \cong M \times M$.

Proof. Let $Z=Z(G)$. We know that M is finite. Let $\varphi: M \rightarrow \mathbb{Q} / \mathbb{Z}$ be a linear character (homomorphism). Since \mathbb{Q} / \mathbb{Z} is divisible, there is an extension of φ to Z, say $\widehat{\varphi}: Z \rightarrow \mathbb{Q} / \mathbb{Z}$. By construction $\widehat{\varphi}$ has finite order; we may choose $\hat{\varphi}$ such that its order is a p-power. Let χ be an irreducible character of $G / \operatorname{Ker}(\widehat{\varphi})$ occurring in the induced character $\widehat{\varphi}^{G}$.

The determinantal character of χ, when restricted to M, is $\varphi^{\chi(1)}$. Thus $\varphi^{\chi(1)}=1$ as $M \subseteq G^{\prime}$. Since $G / \operatorname{Ker}(\widehat{\varphi})$ is a finite p-group whose centre contains $Z / \operatorname{Ker}(\widehat{\varphi})$, by Lemma 1 and a familiar property of irreducible character degrees $\chi(1)^{2}$ is a divisor of $|G: Z|$. Thus the order $o(\varphi)$ of φ divides $|G: Z|$. This gives (a).

Now suppose $e=p^{a}$ and $|G: Z|=p^{2 a}$. The result is obvious for $a=0$, while if $a=1$, the group G / Z is necessarily elementary abelian. So we may assume that $a \geq 2$. Once it has been proved that G / Z is homocyclic of type $\left(p^{a}, p^{a}\right)$, the bilinear commutator mapping $(Z x, Z y) \mapsto[x, y]$ will show that $G^{\prime}=M$ is cyclic of order p^{a}.

Let $\varphi: M \rightarrow \mathbb{Q} / \mathbb{Z}$ be a linear character of order $e=p^{a}$. As before choose an extension $\widehat{\varphi}$ to Z of (finite) p-power order ($\geq p^{a}$), and let χ be an irreducible constituent of $\hat{\varphi}^{G}$. Then $\varphi^{\chi(1)}=1$ and $\chi(1)^{2}$ is a divisor of $|G / \operatorname{Ker}(\widehat{\varphi}): Z(G / \operatorname{Ker}(\widehat{\varphi}))|$, which in turn divides $|G: Z|=p^{2 a}$. We conclude that Z maps onto $Z(G / \operatorname{Ker}(\widehat{\varphi}))$ and that $\chi(1)=p^{a}$. Hence $G / \operatorname{Ker}(\chi)$ is a group of central type, and without loss we may assume that $\operatorname{Ker}(\chi)=1$. Then $Z=Z(G)$ is finite and cyclic. By construction $G^{\prime} \cap Z$ still has order p^{a} (and is cyclic).

By Lemma 3 there is a normal subgroup G_{0} of G of index p such that $\left|Z\left(G_{0}\right): Z\right|=p$, with G_{0} of central type. Thus $\left|G_{0}: Z\left(G_{0}\right)\right|=p^{2(a-1)}$. Applying the transfer from G to G_{0} shows that the exponent of $G_{0}^{\prime} \cap Z\left(G_{0}\right)$ is (at least) p^{a-1}. Arguing by induction on a we thus may assume that $G_{0} / Z\left(G_{0}\right)$ is abelian of type $\left(p^{a-1}, p^{a-1}\right)$. It follows that G_{0}^{\prime} is the (unique) subgroup of order p^{a-1} of the cyclic group $Z=Z(G)$.

Of course, $G^{\prime} \cap Z$ contains G_{0}^{\prime} with index p. It follows that $G^{\prime}=\left[G_{0}, y\right]$ for any $y \in G \backslash G_{0}$. The map $x \mapsto G_{0}^{\prime}[x, y]$ being a homomorphism $G_{0} \rightarrow G_{0} / G_{0}^{\prime}$, there is $x \in G_{0}$ such that

$$
G^{\prime} \cap Z=\langle[x, y]\rangle
$$

Now consider the subgroup \widetilde{G} of G generated by x, y and Z. Since $[x, y]$ is in the centre of G (and of \widetilde{G}), we have $\left[x^{n}, y^{m}\right]=[x, y]^{n m}$ for all integers n, m. Since $[x, y]$ has order p^{a}, we see that both $Z x$ and $Z y$ have order (at least) p^{a} in G / Z. Similarly, we must have $\langle x\rangle \cap\langle y\rangle \subseteq Z$. Thus $G=\widetilde{G}=\langle Z, x, y\rangle$ and G / Z is homocyclic of type (p^{a}, p^{a}), as desired.

Note finally that the Schur multiplier of an abelian p-group of type (p^{a}, p^{a}) is cyclic of order p^{a}.

5. Proof of Theorem 1

Let $Z=Z(G)$. Let M_{p} be the p-component of $M=G^{\prime} \cap Z$ for some prime p, and let e_{p} be the exponent of M_{p}. Assume further that P / Z is a Sylow p-subgroup of G / Z. The transfer from G to P shows that $M^{|G: P|} \subseteq P^{\prime} \cap M$. Hence $M_{p} \subseteq P^{\prime}$. We even have

$$
M_{p}=P^{\prime} \cap Z
$$

because $P^{\prime} \cap Z$ is a p-group. Indeed, $P^{\prime} \cap Z$ is the image of the p-group $\mathrm{M}(P / Z)$ under the co-transgression resulting from the central extension $Z \mapsto$ $P \rightarrow P / Z$. By the proposition e_{p}^{2} is a divisor of $|P: Z(P)|$, which in turn divides $|P: Z|$. We infer that e^{2} is a divisor of $|G: Z|$.

Now assume that $e^{2}=|G: Z|$. Then $e_{p}^{2}=|P: Z|$ and so necessarily $Z(P)=Z=Z(G)$. By the Proposition P / Z is homocyclic of type (p^{a}, p^{a}) for some integer $a \geq 0$, and M_{p} is cyclic of order p^{a}. In particular, $M_{p} \cong \mathrm{M}(P / Z)$. Since this holds true for all primes, we see that $M \cong \mathrm{M}(G / Z)$ is cyclic. (Notice that the p-component of $\mathrm{M}(G / Z)$ is isomorphic to a subgroup of $\mathrm{M}(P / Z)$.)

Arguing as in the proof of the Proposition, we may assume now that G is finite and that $Z=Z(G)$ is a cyclic group whose order is divisible only by primes dividing $|M|$. (Extend a faithful linear character of M suitably to Z, and pass to the quotient group modulo the kernel of such an extended character.) Note that

$$
|G: Z|=|M|^{2}
$$

Writing $P=P_{0} Z$ for some Sylow p-subgroup P_{0} of G, we may infer from $Z(P)=Z=Z(G)$ that $Z\left(P_{0}\right)=Z \cap P_{0}$. It follows from the proof of the Proposition that P_{0} is a group of central type. Thus Lemma 2 yields that G is a group of central type. In particular, G is solvable (Lemma 4). Since all Sylow subgroups of G / Z are abelian of rank at most 2, the derived length of G / Z is at most 3 by Satz VI.14.18 in [Hu].

Let H be a p-complement in the normalizer $N_{G}(P)=N_{G}\left(P_{0}\right)$ (SchurZassenhaus). By Lemma 5 either $[P, H]=1$ or $[P, H]$ maps onto P / Z. In the former case $N_{G}(P)=P_{0} H$ centralizes P / Z and so

$$
G^{\prime} \cap P=G^{\prime} \cap Z=M
$$

by Burnside's transfer theorem. Then $M_{p}=G^{\prime} \cap P_{0}$ is the Sylow p-subgroup of G^{\prime}. In the latter case $P \subseteq G^{\prime} Z$ and so $\left(G^{\prime} \cap P\right) / M \cong P / Z$ is abelian of type $\left(p^{a}, p^{a}\right)$. From $Z(P)=Z$ it follows that $Z\left(G^{\prime} \cap P\right)=M$. (If $|G / Z|$ is odd and p is the smallest prime divisor of $|G / Z|$, the former case must happen in view of the order of $\operatorname{Sp}_{2}(p)$. In this way we obtain that G / Z is solvable by induction.)

We deduce that $G^{\prime} Z / Z \cong G^{\prime} / M$ is a Hall subgroup of G / Z. Also $Z\left(G^{\prime}\right)=$ M as $Z\left(P_{1}\right)=M_{p}$ for any Sylow p-subgroup P_{1} of G^{\prime} (and any p; observe that $P_{1}=G^{\prime} \cap P_{0}$ covers $\left(G^{\prime} \cap P\right) / M$.) If p is a divisor of $\left|G^{\prime} / M\right|$ then
$M=Z\left(G^{\prime} \cap P\right)$ and so

$$
\left(G^{\prime} \cap P\right)^{\prime}=P^{\prime}=M_{p}
$$

In this case $P_{1}^{\prime}=M_{p}=Z\left(P_{1}\right)$, that is, P_{1} is a Schur cover of an abelian group of type $\left(p^{a}, p^{a}\right)$. The proof is complete.

6. Proof of Theorem 2

Let $Z^{*}=Z^{*}(G)$. Recall that $Z^{*}=Z(E) / M$ for any Schur cover $M \mapsto$ $E \rightarrow G$ of G. Thus $G / Z^{*} \cong E / Z(E)$. So large portions of Theorem 2 follow from Theorem 1 (with E in place of G). Observe that $M \cong \mathrm{M}(G)$) and that $M \subseteq E^{\prime} \cap Z(E)$. In particular, $E^{\prime} / M \cong G^{\prime}$ and the exponent e of $\mathrm{M}(G)$ is a divisor of $\widetilde{e}=\exp \left(E^{\prime} \cap Z(E)\right)$.

By Theorem 1 (a) \widetilde{e}^{2} is a divisor of $|E: Z(E)|=\left|G: Z^{*}\right|$. Suppose we have $e^{2}=\left|G: Z^{*}\right|$. Then $E^{\prime} \cap Z(E)$ must be cyclic of exponent $\widetilde{e}=e$ by Theorem 1 (b). Thus $E^{\prime} \cap Z(E)=M$ and so $G^{\prime} \cap Z^{*}=1$. The exact homology sequence for $Z^{*} \hookrightarrow G \rightarrow G / Z^{*}$ yields $\mathrm{M}(G) \cong \mathrm{M}\left(G / Z^{*}\right)$ (in view of Theorem 4.2 in [BFS]). We also know from Theorem 1 that G / Z^{*} is solvable with derived length at most 3. It follows that G^{\prime} is metabelian. From $Z\left(E^{\prime}\right)=M$ we infer that $Z^{*}\left(G^{\prime}\right)=1$.

The remainder is straightforward.
Corollary. Suppose we have $e^{2}=\left|G: Z^{*}(G)\right|$ for the exponent e of the Schur multiplier of the finite group G. If $\left|G / G^{\prime}\right|$ is not divisible by 2^{4}, then G is metabelian.

Proof. Again let again $Z^{*}=Z^{*}(G)$, and assume that $G^{\prime \prime} \neq 1$. We know that $G^{\prime \prime}$ is an abelian Hall subgroup of G^{\prime} and that $G^{\prime} Z^{*} / Z^{*} \cong G^{\prime}$ is a Hall subgroup of G / Z^{*}. Thus $G^{\prime \prime}$ is the nilpotent residual of G^{\prime} and so $\left[G^{\prime \prime}, G^{\prime}\right]=$ $G^{\prime \prime}$. Let P be the Sylow p-subgroup of $G^{\prime \prime}$ for some prime p dividing $\left|G^{\prime \prime}\right|$. Then P is normal in G and $C_{G}(P) \supseteq G^{\prime \prime} Z^{*}$. So $H=G / C_{G}(P)$ is a p^{\prime}-group, H^{\prime} is abelian, and $\left[P, H^{\prime}\right]=P$. From Lemma 6 it follows that the exponent of H / H^{\prime} is divisible by 4 . Hence the exponent of $G / G^{\prime} Z^{*}$ is divisible by 4. But the Sylow 2-subgroup of $G / G^{\prime} Z^{*}$ is of type $\left(2^{a}, 2^{a}\right)$ for some integer a, which must satisfy $a \geq 2$ now. Consequently 2^{4} divides $\left|G / G^{\prime}\right|$ and we are done.

References

[B] R. Baer, Endlichkeitskriterien für Kommutatorgruppen, Math. Ann. 124 (1952), 161-177.
[BFS] F.R. Beyl, U. Felgner, and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), 161-177.
[DJ] F.R. DeMeyer and G.J. Janusz, Finite groups with an irreducible character of large degree, Math. Z. 108 (1969), 145-153.
[HI] R.B. Howlett and I.M. Isaacs, On groups of central type, Math. Z. 179 (1982), 552569.
[Hu] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
[I] I.M. Isaacs, Character theory of finite groups, Academic Press, New York, 1976.
[W] J. Walter, The characterization of finite groups with abelian Sylow 2-subgroups, Ann. of Math. 89 (1969), 405-514.

Universität Tübingen, Mathematisches Institut, Auf der Morgenstelle 10, D72076 Tübingen, Germany

E-mail address: matthias.grueninger@web.de
E-mail address: peter.schmid@uni-tuebingen.de

[^0]: Received August 30, 2002.
 2000 Mathematics Subject Classification. 20C25, 20C15.

