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GROUPS OF CENTRAL TYPE AND SCHUR MULTIPLIERS
WITH LARGE EXPONENT

MATTHIAS GRÜNINGER AND PETER SCHMID

In commemoration of Reinhold Baer

Abstract. It is shown that finite groups with Schur multipliers of large
exponent lead to groups of central type.

1. Introduction

Let G be a group with finite central factor group G/Z(G). Then the com-
mutator subgroup G′ of G is finite by a well known theorem of Schur (cf. Hup-
pert [Hu, IV.2.3], and see Baer [B] for related results). Let M(G) = H2(G,Z)
denote the Schur multiplier of G. If we describe M(G) by means of a free
presentation of G (the Hopf-Schur formula), this theorem implies that if G is
finite, then so is M(G). Then, if e is the exponent of M(G), by another result
of Schur e2 is a divisor of |G| ([Hu, V.23.9]). What does it mean when we
have equality e2 = |G| here?

Theorem 1. Let G/Z(G) be finite and let e be the exponent of M =
G′ ∩ Z(G). Then:

(a) e2 is a divisor of |G : Z(G)|.
(b) If e2 = |G : Z(G)| then M = Z(G′) ∼= M(G/Z(G)) is cyclic and
|G′′ ∩ M |2 = |G′ : M | is relatively prime to |G/G′Z(G)|. Also,
G/Z(G) is solvable with derived length at most 3.

Thus the hypothesis on G in (b) carries over to G′, G′′ and so on. We see
that G′′M/M is a Hall subgroup of G′/M and that G′′∩M ∼= M(G′/M), etc..
Since the p-component of the Schur multiplier of a finite group, for any prime
p, is isomorphic to a subgroup of the multiplier of a Sylow p-subgroup, we
may also read off that all nontrivial Sylow subgroups of G/Z(G) are abelian of
rank 2, and even homocyclic. Indeed, the Schur multiplier of G/Z(G) agrees
with that of the direct product over a Sylow system of G/Z(G) (in view of the
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Künneth theorem). Simple examples show that G/Z(G) need not be abelian;
there are examples where G/Z(G) has derived length 3.

The proof of Theorem 1 reduces at once to the case where G is finite.
Solvability of G in (b) is easily proved by a transfer argument in case G/Z(G)
has odd order. Then G/Z(G) is even metabelian, i.e., has derived length at
most 2. In the general case we make use of the fact that G must be a group
of central type. This means that there is an irreducible (complex) character
χ ∈ Irr(G) such that χ(1)2 = |G : Z(G)|. Using the classification of the
finite simple groups it has been shown by Howlett and Isaacs [HI] that groups
of central type are solvable. In our situation we may avoid the classification
theorem but we must still appeal to Walter’s theorem [W] describing the finite
simple groups with abelian Sylow 2-subgroups.

Let Z∗(G) denote the (central) characteristic subgroup of G which is min-
imal subject to being the image in G of the centre of some central extension
of G. The group Z∗(G) is the image in G of the centre of any Schur cover of
G (see [BFS] for a detailed discussion).

Theorem 2. Let G be finite and e be the exponent of M(G). Then:

(a) e2 is a divisor of |G : Z∗(G)|.
(b) If e2 = |G : Z∗(G)| then M(G) ∼= M(G/Z∗(G)) is cyclic of order
|G : Z∗(G)|1/2 and G′ is metabelian with Z∗(G′) = 1 and with M(G′)
being isomorphic to the π(G′)-component of M(G) (which has order
|G′|1/2).

Here π(G′) denotes the set of primes dividing |G′|. Theorem 2 follows from
Theorem 1 by considering a Schur cover of G; in (b) the Schur covers of G
will be groups of central type again. Recall that any central group extension
Z � G� G/Z gives rise to a natural exact homology sequence

Z ⊗G/G′ → M(G)→ M(G/Z)→ G′ ∩ Z → 1.

Here the map on the left is the Ganea (commutator) mapping, and the map
on the right the co-transgression. One knows that Z ⊆ Z∗(G) if and only if
the Ganea mapping is the zero map (see Theorem 4.2 in [BFS]). We shall
refer to this homology sequence several times.

Acknowledgement. The second-named author wishes to express his rev-
erence and gratitude to Reinhold Baer. It was a great honour having been
part of the “Baer family”.

2. Groups of central type

In this section G is a finite group. We summarize some basic facts on
groups of central type.
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Lemma 1. Let χ ∈ Irr(G) be an irreducible character. Then χ(1)2 ≤
|G : Z(G)|. Equality holds if and only if χ vanishes outside Z(G).

For a proof see Isaacs [I, (2.30)]. Note that if χ(1) = e and e2 = |G : Z(G)|,
then the restriction χZ(G) equals eϕ for some unique linear character ϕ of
Z(G), and the induced character is ϕG = eχ by Frobenius reciprocity. So G
is of central type provided some irreducible character of Z(G) is fully ramified
in G.

Lemma 2. G is of central type if and only if all Sylow subgroups P of G
are of central type, with P ∩ Z(G) = Z(P ).

This is Theorem 2 in [DJ]. Theorem 3 in [DJ] gives the following.

Lemma 3. Suppose G is a p-group of central type for some prime p. If
Z(G) is cyclic and Z0/Z(G) is a normal subgroup of G/Z(G) of order p, then
G0 = CG(Z0) is a group of central type with Z(G0) = Z0.

Lemma 4. If G is a group of central type and G/Z(G) has abelian Sylow
2-subgroups, then G is solvable.

This is true without the assumption on the Sylow 2-subgroups [HI]. The
lemma may be proved along the lines given in [HI] by referring to Walter [W].

3. Symplectic actions

Let p be a prime. Let P be a finite group such that P/Z(P ) is abelian
of type (pa, pa) for some integer a ≥ 1 and such that P ′ is cyclic of order
pa. Examples of such groups are the Schur covers of abelian groups of type
(pa, pb) with b ≥ a (see Baer’s result as stated in Proposition 7.3 of [BFS]).
Suppose H is a finite p′-group acting on P and centralizing Z(P ).

Lemma 5. Either H acts trivially on P or [P,H] covers P/Z(P ).

Proof. Suppose that H acts nontrivially on P . Since H is a p′-group and
P ′ is a p-group contained in the Frattini subgroup of the (nilpotent) group P ,
the group H acts nontrivially on P/P ′. If H centralized the p-group P/Z(P ),
it would act as a p-group on P/P ′, because it centralizes Z(P )/P ′. It follows
that H, being a p′-group, acts nontrivially even on the Frattini factor group
V of P/Z(P ). It suffices to show that [V,H] = V .

Since H centralizes Z(P ), it respects the symplectic form on V induced
by the (bilinear) commutator mapping P/Z(P ) × P/Z(P ) → P ′. It follows
that H acts on V as a p′-subgroup of the symplectic group Sp(V ) = Sp2(p).
We have V = [V,H] × CV (H) (Maschke), with [V,H] 6= 1. If [V,H] 6= V
then V acts as a group of diagonal matrices on V having at least one entry
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1. But all these matrices have determinant 1. Thus H must centralize V , a
contradiction. �

Lemma 6. Suppose H ′ is an abelian Hall subgroup of H. If H ′ is non-
trivial on P , the exponent of H/H ′ is divisible by 4.

Proof. By Lemma 5 we know that [P,H ′] covers P/Z(P ). As before we
consider the action of H on the Frattini factor group V of P/Z(P ). So H acts
on V symplectically. We may identify X = H/CH(V ) with a p′-subgroup of
Sp2(p). By hypothesis X ′ 6= 1 is an abelian Hall subgroup of X. This forces p
to be odd (and even p ≥ 5). Now H is an M -group ([Hu, V.18.4]). Enlarging
the field of scalars, if necessary, we may likewise describe X as a group of
monomial 2× 2-matrices (with determinant 1). It follows that X has a cyclic
subgroup of index 2.

The Sylow 2-subgroups of Sp2(p) are generalized quaternion groups. The
unique (central) involution of Sp2(p) must belong to X. We conclude that
X ′ 6= 1 has odd order and that X/X ′ is cyclic of order divisible by 4. �

Example. Suppose p is odd and q is an odd prime dividing p2 − 1. Let
P be a Schur cover of an abelian p-group of type (pa, pa) for some integer
a ≥ 1, and let Q be a Schur cover of an abelian q-group of type (qb, qb) for
some integer b ≥ 1. Then there is a symplectic action of Q on P such that
CQ(P ) ⊇ Q′ has index q in Q. The semidirect product PQ is a Schur cover
of (P/P ′)(Q/Q′) with Z(PQ) = P ′ ×Q′.

Let R be a Schur cover of an abelian 2-group of type (2c, 2c) with c ≥ 2.
There is a symplectic action of R on Q such that CR(Q) has index 2. Thus R
acts on Q through the central involution in Sp2(q) inverting the elements of
Q/Q′. The semidirect product H = QR has a homomorphic image in Sp2(p)
of order 4q, the kernel in R being a subgroup C ⊂ CR(Q) containing R′.
Of course, R/C is cyclic of order 4 and CR(Q)/C maps onto the centre of
Sp2(p). Let G = PH be the semidirect product with respect to the resulting
symplectic action of H on P . This is a Schur cover of (P/P ′)[(Q/Q′)(R/R′)]
with

Z(G) = P ′ ×Q′ ×R′.
Moreover, G′′ = PQ′ and G′′′ = P ′.

4. The primary case

The crucial step in proving Theorem 1 is to handle the situation where
G/Z(G) is a p-group for some prime p. Here we have the following result.

Proposition. Let G/Z(G) be a finite p-group and let e be the exponent
of M = G′ ∩ Z(G). Then:

(a) e2 is a divisor of |G : Z(G)|.
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(b) If e2 = |G : Z(G)| then G′ = M ∼= M(G/Z(G)) is cyclic and
G/Z(G) ∼= M ×M .

Proof. Let Z = Z(G). We know that M is finite. Let ϕ : M → Q/Z
be a linear character (homomorphism). Since Q/Z is divisible, there is an
extension of ϕ to Z, say ϕ̂ : Z → Q/Z. By construction ϕ̂ has finite order;
we may choose ϕ̂ such that its order is a p-power. Let χ be an irreducible
character of G/Ker(ϕ̂) occurring in the induced character ϕ̂G.

The determinantal character of χ, when restricted to M , is ϕχ(1). Thus
ϕχ(1) = 1 as M ⊆ G′. Since G/Ker(ϕ̂) is a finite p-group whose centre con-
tains Z/Ker(ϕ̂), by Lemma 1 and a familiar property of irreducible character
degrees χ(1)2 is a divisor of |G : Z|. Thus the order o(ϕ) of ϕ divides |G : Z|.
This gives (a).

Now suppose e = pa and |G : Z| = p2a. The result is obvious for a = 0,
while if a = 1, the group G/Z is necessarily elementary abelian. So we may
assume that a ≥ 2. Once it has been proved that G/Z is homocyclic of type
(pa, pa), the bilinear commutator mapping (Zx,Zy) 7→ [x, y] will show that
G′ = M is cyclic of order pa.

Let ϕ : M → Q/Z be a linear character of order e = pa. As before
choose an extension ϕ̂ to Z of (finite) p-power order (≥ pa), and let χ be
an irreducible constituent of ϕ̂G. Then ϕχ(1) = 1 and χ(1)2 is a divisor of
|G/Ker(ϕ̂) : Z(G/Ker(ϕ̂))|, which in turn divides |G : Z| = p2a. We conclude
that Z maps onto Z(G/Ker(ϕ̂)) and that χ(1) = pa. Hence G/Ker(χ) is a
group of central type, and without loss we may assume that Ker(χ) = 1. Then
Z = Z(G) is finite and cyclic. By construction G′ ∩ Z still has order pa (and
is cyclic).

By Lemma 3 there is a normal subgroup G0 of G of index p such that
|Z(G0) : Z| = p, with G0 of central type. Thus |G0 : Z(G0)| = p2(a−1).
Applying the transfer from G to G0 shows that the exponent of G′0∩Z(G0) is
(at least) pa−1. Arguing by induction on a we thus may assume thatG0/Z(G0)
is abelian of type (pa−1, pa−1). It follows that G′0 is the (unique) subgroup of
order pa−1 of the cyclic group Z = Z(G).

Of course, G′ ∩Z contains G′0 with index p. It follows that G′ = [G0, y] for
any y ∈ GrG0. The map x 7→ G′0[x, y] being a homomorphism G0 → G0/G

′
0,

there is x ∈ G0 such that
G′ ∩ Z = 〈[x, y]〉.

Now consider the subgroup G̃ of G generated by x, y and Z. Since [x, y] is in
the centre of G (and of G̃), we have [xn, ym] = [x, y]nm for all integers n,m.
Since [x, y] has order pa, we see that both Zx and Zy have order (at least) pa

in G/Z. Similarly, we must have 〈x〉 ∩ 〈y〉 ⊆ Z. Thus G = G̃ = 〈Z, x, y〉 and
G/Z is homocyclic of type (pa, pa), as desired.

Note finally that the Schur multiplier of an abelian p-group of type (pa, pa)
is cyclic of order pa. �
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5. Proof of Theorem 1

Let Z = Z(G). Let Mp be the p-component of M = G′ ∩Z for some prime
p, and let ep be the exponent of Mp. Assume further that P/Z is a Sylow
p-subgroup of G/Z. The transfer from G to P shows that M |G:P | ⊆ P ′ ∩M .
Hence Mp ⊆ P ′. We even have

Mp = P ′ ∩ Z,

because P ′ ∩ Z is a p-group. Indeed, P ′ ∩ Z is the image of the p-group
M(P/Z) under the co-transgression resulting from the central extension Z �
P � P/Z. By the proposition e2

p is a divisor of |P : Z(P )|, which in turn
divides |P : Z|. We infer that e2 is a divisor of |G : Z|.

Now assume that e2 = |G : Z|. Then e2
p = |P : Z| and so necessarily

Z(P ) = Z = Z(G). By the Proposition P/Z is homocyclic of type (pa, pa) for
some integer a ≥ 0, and Mp is cyclic of order pa. In particular, Mp

∼= M(P/Z).
Since this holds true for all primes, we see that M ∼= M(G/Z) is cyclic. (Notice
that the p-component of M(G/Z) is isomorphic to a subgroup of M(P/Z).)

Arguing as in the proof of the Proposition, we may assume now that G
is finite and that Z = Z(G) is a cyclic group whose order is divisible only
by primes dividing |M |. (Extend a faithful linear character of M suitably
to Z, and pass to the quotient group modulo the kernel of such an extended
character.) Note that

|G : Z| = |M |2.
Writing P = P0Z for some Sylow p-subgroup P0 of G, we may infer from
Z(P ) = Z = Z(G) that Z(P0) = Z ∩ P0. It follows from the proof of the
Proposition that P0 is a group of central type. Thus Lemma 2 yields that G
is a group of central type. In particular, G is solvable (Lemma 4). Since all
Sylow subgroups of G/Z are abelian of rank at most 2, the derived length of
G/Z is at most 3 by Satz VI.14.18 in [Hu].

Let H be a p-complement in the normalizer NG(P ) = NG(P0) (Schur-
Zassenhaus). By Lemma 5 either [P,H] = 1 or [P,H] maps onto P/Z. In the
former case NG(P ) = P0H centralizes P/Z and so

G′ ∩ P = G′ ∩ Z = M

by Burnside’s transfer theorem. Then Mp = G′ ∩ P0 is the Sylow p-subgroup
of G′. In the latter case P ⊆ G′Z and so (G′ ∩ P )/M ∼= P/Z is abelian of
type (pa, pa). From Z(P ) = Z it follows that Z(G′ ∩ P ) = M . (If |G/Z| is
odd and p is the smallest prime divisor of |G/Z|, the former case must happen
in view of the order of Sp2(p). In this way we obtain that G/Z is solvable by
induction.)

We deduce that G′Z/Z ∼= G′/M is a Hall subgroup of G/Z. Also Z(G′) =
M as Z(P1) = Mp for any Sylow p-subgroup P1 of G′ (and any p; observe
that P1 = G′ ∩ P0 covers (G′ ∩ P )/M .) If p is a divisor of |G′/M | then
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M = Z(G′ ∩ P ) and so

(G′ ∩ P )′ = P ′ = Mp.

In this case P ′1 = Mp = Z(P1), that is, P1 is a Schur cover of an abelian group
of type (pa, pa). The proof is complete.

6. Proof of Theorem 2

Let Z∗ = Z∗(G). Recall that Z∗ = Z(E)/M for any Schur cover M �
E � G of G. Thus G/Z∗ ∼= E/Z(E). So large portions of Theorem 2 follow
from Theorem 1 (with E in place of G). Observe that M ∼= M(G)) and that
M ⊆ E′ ∩ Z(E). In particular, E′/M ∼= G′ and the exponent e of M(G) is a
divisor of ẽ = exp(E′ ∩ Z(E)).

By Theorem 1 (a) ẽ2 is a divisor of |E : Z(E)| = |G : Z∗|. Suppose we have
e2 = |G : Z∗|. Then E′∩Z(E) must be cyclic of exponent ẽ = e by Theorem 1
(b). Thus E′ ∩Z(E) = M and so G′ ∩Z∗ = 1. The exact homology sequence
for Z∗ � G � G/Z∗ yields M(G) ∼= M(G/Z∗) (in view of Theorem 4.2 in
[BFS]). We also know from Theorem 1 that G/Z∗ is solvable with derived
length at most 3. It follows that G′ is metabelian. From Z(E′) = M we infer
that Z∗(G′) = 1.

The remainder is straightforward.

Corollary. Suppose we have e2 = |G : Z∗(G)| for the exponent e of the
Schur multiplier of the finite group G. If |G/G′| is not divisible by 24, then
G is metabelian.

Proof. Again let again Z∗ = Z∗(G), and assume that G′′ 6= 1. We know
that G′′ is an abelian Hall subgroup of G′ and that G′Z∗/Z∗ ∼= G′ is a Hall
subgroup of G/Z∗. Thus G′′ is the nilpotent residual of G′ and so [G′′, G′] =
G′′. Let P be the Sylow p-subgroup of G′′ for some prime p dividing |G′′|.
Then P is normal in G and CG(P ) ⊇ G′′Z∗. So H = G/CG(P ) is a p′-group,
H ′ is abelian, and [P,H ′] = P . From Lemma 6 it follows that the exponent of
H/H ′ is divisible by 4. Hence the exponent of G/G′Z∗ is divisible by 4. But
the Sylow 2-subgroup of G/G′Z∗ is of type (2a, 2a) for some integer a, which
must satisfy a ≥ 2 now. Consequently 24 divides |G/G′| and we are done. �
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