A REMARK ON THE QUASI-INVERSE OF A PRODUCT

P. M. COHN

Abstract

It is well known that a product $a b$ in a ring may have an inverse without $b a$ being invertible. However, if $a b$ has a quasi-inverse, then so does $b a$. This note provides a (3-line) proof and an explanation.

It is well known that the existence of an inverse for a product $a b$ in a ring does not imply that $b a$ has an inverse. So it comes as a surprise that the existence of a quasi-inverse for $a b$ implies the existence of a quasi-inverse for $b a$. This could be the subject of a 3 -line paper, but we shall also point out the underlying reason. Reinhold Baer, who wrote about the existence of 2 -sided inverses under chain conditions in [1], might have appreciated this fact.

The quasi-inverse of an element a in a ring is defined as an element a^{\prime} such that

$$
\begin{equation*}
a+a^{\prime}=a a^{\prime}=a^{\prime} a \tag{1}
\end{equation*}
$$

It occurs in the study of the Jacobson radical (see, e.g., [2], p. 191), and is related to inverses by the fact that $1-a$ has the inverse $1-a^{\prime}$. Even for algebras without a unit element it is often convenient to adjoin a unit element and so reduce the study of quasi-inverses to that of inverses.

It is clear that if a product $a b$ has an inverse, $b a$ need not be invertible, e.g., $a b$ might be 1 ; if $b a$ has an inverse u say, then $u b a=b a u=1$, hence $u b=u b \cdot a b=u b a \cdot b=b$ and so $b a=u b a=1$. However, many examples are known where $a b=1$ and $b a \neq 1$.

Suppose now that $a b$ has a quasi-inverse $1-u$: thus $(1-a b) u=u(1-a b)=$ 1. Then we claim that $-b u a$ is a quasi-inverse for $b a$. The proof is a simple verification:

$$
\begin{aligned}
(1-b a)(1+b u a) & =1-b a+(1-b a) b u a \\
& =1-b a+b(1-a b) u a \\
& =1-b a+b a=1
\end{aligned}
$$

[^0]and similarly $(1+b u a)(1-b a)=1$. For an explanation we consider the matrix
\[

(1-b a) \oplus 1=\left($$
\begin{array}{cc}
1-b a & 0 \tag{2}\\
0 & 1
\end{array}
$$\right)
\]

This matrix can be linearized by elementary transformations:

$$
\left(\begin{array}{ll}
1 & b \tag{3}\\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1-b a & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & b \\
a & 1
\end{array}\right) .
$$

Similarly we have

$$
\left(\begin{array}{cc}
1 & 0 \tag{4}\\
a & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1-a b
\end{array}\right)\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & b \\
a & 1
\end{array}\right)
$$

We can write (3) and (4) more briefly as $P((1-b a) \oplus 1) Q=T=Q(1 \oplus(1-$ $a b)) P$, where P and Q are elementary matrices, and hence invertible. Thus

$$
(1-b a) \oplus 1=P^{-1} Q(1 \oplus(1-a b)) P Q^{-1}
$$

Now suppose that $1-a b$ has an inverse u, say. Then

$$
\begin{equation*}
(1-b a)^{-1} \oplus 1=Q P^{-1}(1 \oplus u) Q^{-1} P \tag{5}
\end{equation*}
$$

hence $1-b a$ has an inverse and by working out the product on the right of (5), we obtain the value $1+b u a$ for the inverse of $1-b a$.

References

[1] R. Baer, Inverses and zero-divisors, Bull. Amer. Math. Soc. 48 (1942), 630-638.
[2] P. M. Cohn, Basic algebra, groups, rings, and fields, Springer-Verlag, London, 2002.
University College London, Gower Street, London WC1E 6BT, United KingDOM

E-mail address: pmc@math.ucl.ac.uk

[^0]: Received June 3, 2002.
 2000 Mathematics Subject Classification. 16N20.

