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ON BAER’S PROBLEM AND PROPERTIES OF M ′′-GROUPS

N. S. CHERNIKOV

On the 100th anniversary of the birth of the outstanding algebraist Reinhold Baer

Abstract. We establish many new properties of M ′′-groups and give a
large set of new counter-examples to the well-known problems of R. Baer

(1949) and S. N. Chernikov (1959) concerning socle groups, M ′′-groups
and M ′-groups. In passing we also show that for a periodic FC-group G

and its locally soluble radical R the factor group G/L(G)R is residually

finite, where L(G) is the product of all normal semisimple subgroups
of G.

1. Introduction

Recall that the socle Soc(G) of a group G is the product of all its minimal
normal subgroups, or Soc(G) = 1, if G has no such subgroups (R. Remak).
Define Soc0(G) = 1 and Socα+1(G)/Socα(G) = Soc(G/ Socα(G)).

Definition 1 (S. N. Chernikov [6, §5]). The group G is called socle if
G = Socγ(G) for some ordinal γ.

It is obvious that a group is socle iff it has an ascending principal series.
Clearly, the class of socle groups contains all hyperfinite groups and, at the
same time, all locally finite-normal groups and, in particular, all periodic
abelian groups. It is easy to see that an arbitrary group G satisfying the
minimal condition for normal subgroups is a socle group and for each α <
γ, Socα+1(G)/Socα(G) is a direct product of finitely many minimal normal
subgroups of G/ Socα(G).

In 1949 the following natural question was raised by R. Baer.

Problem (R. Baer [2]). If the group G is socle and for each α < γ,
Socα+1(G)/Socα(G) is a direct product of finitely many minimal normal sub-
groups of G/ Socα(G), does it follow that G satisfies the minimal condition
for normal subgroups? (See also [6, §5] or [15, p. 151].)
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In 1959, in connection with some results of H. H. Muhammedžan [11], [12]
and (indirectly) motivated by this problem, S. N. Chernikov introduced the
following definitions and raised the following questions.

Definition 2 (S. N. Chernikov [6, §5]). The group G is called socle finite,
if for each finite N C

6=
G Soc(G/N) 6= 1 and Soc(G/N) is finite.

Definition 3 (S. N. Chernikov [6, §5]). A hyperfinite socle finite group
is called an M ′-group.

Definition 4 (S. N. Chernikov [6, §5]). The group G is called an M ′′-
group if it has an ascending normal series

(1) N0 = 1 ⊂ · · · ⊂ Nα ⊂ · · · ⊂ Nγ = G

such that for α < γ, Nα+1/Nα is maximal among all normal subgroups of
G/Nα which are direct products of finite simple groups, and Nα is finite for
finite α. (If G = 1, then γ = 0.)

By O. J. Schmidt’s Theorem (see, for instance, [15, Theorem 1.45]), M ′-
groups and M ′′-groups are locally finite.

Question 1 (S. N. Chernikov [6, §5]). Is an arbitrary M ′-group Cherni-
kov?

Question 2 (S. N. Chernikov [6, §5]). Is an arbitrary M ′′-group neces-
sarily Chernikov?

The above Problem and Questions were answered in the negative by Ju. M.
Mežebovskĭı [10] and, independently, by the author [4]; see also [5]. In the
present paper we continue the investigations begun in [4], [5] and, in particu-
lar, consider the Problem and Questions 1 and 2.

In what follows, N and P denote, respectively, the sets of all natural num-
bers and all prime numbers, and Z+ = N ∪ {0}. The symbols ×, h, and o
denote the direct, semidirect, and wreath products, respectively. If G is a
group and ∅ 6= H ⊆ G, then Z(G) is the centre of G, FC(G) = {g ∈ G :
|G : CG(g)| < ∞} (obviously, FC(G) is a subgroup of G), HG = {hg : h ∈
H, g ∈ G}, HG =

⋂
g∈GH

g, H snG and H ascG mean as usual that H is
a subnormal, resp. an ascendant subgroup of G (see, for example, [15]), and
H lascG means that H is a locally ascendant subgroup of G (see Definition
7). Other notations in the present paper are as in [15]. If Λ is the empty set,
then we set

∏
λ∈ΛGλ = 1.

Definition 5 (see [5]). The group G (finite or infinite) is called qua-
sisimple if G′ = G and G/Z(G) is simple. The group G is called semisimple
if G =

∏
λ∈ΛGλ for some family {Gλ : λ ∈ Λ} of its quasisimple subgroups

such that [Gν , Gλ] = 1, ν 6= λ.
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(Obviously, G/Z(G) is nonabelian.)

Definition 6 (see [5]). The subgroup L(G) of the group G is defined as
the product of all its normal semisimple subgroups.

Definition 7 (B. I. Plotkin; see, for instance, [13]). A subgroup H of the
group G is called locally ascendant (in G), if there exists a local system of
subgroups K of G such that H is ascendant in each K.

Recall also that a completely reducible group is defined as a direct prod-
uct of simple groups, and the trivial group is considered to be completely
reducible.

The main results of the present paper are the following theorems.

Theorem 1. The class of M ′-groups is just the class of hyperfinite M ′′-
groups, and the class of M ′′-groups is a proper subclass of the class of locally
finite socle finite groups. The class of locally finite-normal M ′-groups coin-
cides with the class of locally finite-normal M ′′-groups.

In view of Dietzmann’s Lemma (see, for instance, [15]) the class of locally
finite-normal groups is just the class of periodic FC-groups.

Theorem 2. For a group G the following statements are equivalent.
(i) G is an M ′′-group.
(ii) G is a periodic hyper-FC-group with Chernikov locally soluble radical

R such that for every m ∈ N the set of all quasisimple subgroups
Q C L(G) with |Z(Q)| ≤ m is finite or empty.

Theorem 3. Let G be an M ′′-group, H a subgroup and D the normal
closure of H in G.

(i) If the index |L(G) : H ∩ L(G)| is finite, then H is an M ′′-group.
(ii) If H lascG, then H is an M ′′-group.
(iii) If H lascG and H is almost locally soluble, then D is Chernikov.
(iv) If H lascG and L(H) ∩ L(G) is Chernikov, then D is Chernikov.
(v) If H lascG and Z(L(H)) ∩ Z(L(G)) is finite, then D is Chernikov.

Theorem 4. Let G be a periodic FC-group and R its locally soluble rad-
ical. Then the factor groups G/L(G)R and G/R are residually finite.

Below, as usual, ω is the first infinite ordinal.

Theorem 5. Let H be a countable periodic residually finite FC-group
or a finite group and A be a countable abelian Chernikov group such that
A ∩ H = 1. Then there exists a non-Chernikov locally finite-normal group
G = Socω(G) such that:
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(i) A,H < G = L(G)hH and L(G) is non-Chernikov.
(ii) The locally soluble radical R of G coincides with A, G/A is residually

finite, and

A = Z(G) = Z(L(G)) = CG(L(G)).

(iii) G is an M ′′-group and an M ′-group, Sock(G) is finite for each k ∈ N,
and G does not satisfy the minimal condition for normal subgroups of
finite index.

Theorems 1–3 present a number of new properties of M ′′-groups. Theorems
4 and 5, in particular, show that the class of all locally finite-normal M ′′-
groups is large. Theorem 5 also furnishes us with many new counter-examples
to the Problem and to Questions 1 and 2 mentioned above.

The following assertion gives further information about the group G of
Theorem 5.

Assertion. For a periodic FC-group G the following statements are equiv-
alent.

(i) G is an M ′′-group.
(ii) G = Socω(G) and for each k ∈ N, Sock(G) is finite.
(iii) For the series (2) of G (see below) γ ≤ ω and all Gα with finite α are

finite. (In particular, G is countable or finite.)

2. Preliminary results

The proofs of Theorems 1–5 and the Assertion will be given after a number
of preliminary results.

Lemma 1. Let X be a class consisting of simple and trivial groups, and
let Y be the class of all direct products of X-groups. Let F be a group, HCF ,
GC F and G ⊇ H ∈ Y. Then:

(i) There exists a subgroup K ⊆ G such that H ⊆ K and K is maximal
in the set of all Y-subgroups of G that are normal in F .

(ii) If Soc(G) ∈ Y, then for each Y-subgroup B CG, Soc(G)B ∈ Y. In
particular, if Soc(G) ∈ Y, then Soc(G) ⊆ B for each subgroup B that
is maximal in the indicated set.

Proof. (i) Let H1 (respectively H2) be the product of all nonabelian (resp.
abelian) factors of the decomposition of H into the direct product of X-
subgroups; if there are no such factors, let H1 = 1 (respectively H2 = 1).
Let D be the subgroup generated by all nonabelian X-subgroups X snG; if
there are no such X, let D = 1. We have, obviously, H = H1 ×H2, H1 ⊆ D
and H2 = Z(H) C F . In view of [5, Proposition 5 and Corollary3] (for ex-
ample), if D 6= 1, then D is the direct product of all X. It is easy to see
that H2 is contained in some subgroup S which is maximal in the set of all
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F -invariant abelian Y-subgroups of G. Clearly, H ⊆ DS C F and DS ∈ Y.
Suppose that DS ⊂ T ⊆ G, where T C F and T ∈ Y. Let R be a direct
X-factor of T such that R 6⊆ DS. Obviously, R ⊆ Z(T ). Clearly, SZ(T ) is a
normal abelian Y-subgroup of G. By virtue of the maximality of S, we have
Z(T ) ⊆ S, which is a contradiction.

(ii) Let Soc(G) ∈ Y. Obviously, for some ACG and A ⊆ Soc(G) we have
Soc(G)B = A × B. Then A ' Soc(G)/Soc(G) ∩ B and, clearly, A ∈ Y.
Therefore A×B ∈ Y. �

Lemma 2. Let G be a group. Let H lascG, K ascG and T ≤ G, N CG.
Then (K ∩H) lascG, (H ∩ T ) lascT and HN/N lascG/N , KN/N ascG/N .

The proof is obvious.

Proposition 1 (B. I. Plotkin; see [13, Theorems 5.2.1.3 and 5.2.2.4]). Let
X be the class of all locally nilpotent, or locally finite, or locally (finite and
soluble) groups. Let R be the product of all normal X-subgroups of a group G.
Then R ∈ X and every X-subgroup H lascG belongs to R.

In what follows, just as in [15], a series in a group G is called subnormal if
each of its terms is subnormal in G; given a class of groups X, a series in G
all of whose factors belong to X is called an X-series.

Proposition 2. Let the group G have an FC-series K. Then the follow-
ing statements hold.

(i) If K is subnormal or ascending, then G has no infinite quasisimple
subgroups; in particular, each completely reducible subgroup H 6= 1
of G is a direct product of finite simple groups. If, in addition, K is
abelian, then G does not possess any quasisimple subgroups.

(ii) If K is normal and ascending and G is periodic, then G has an as-
cending normal series

(2) G0 = 1 ⊂ · · · ⊂ Gα ⊂ · · · ⊂ Gγ = G

such that for each α < γ, Gα+1/Gα is a maximal normal completely
reducible subgroup of G and a direct product of finite simple groups.
Further, in this case, for any N C G, Soc(G/N) is a direct product
of finite simple groups.

(iii) For every series (2), Soc(G/Gα) ⊆ Gα+1/Gα and Socα(G) ⊆ Gα,
α < γ.

Proof. (i) Without loss of generality we may assume that G is quasisimple.
Further, according to Baer’s Theorem [1] (see, for instance, [15, Theorem
4.32(i)]), for an arbitrary FC-group X, X/Z(X) is locally finite. It is easy
to see that a locally finite FC-group has an ascending subnormal series with
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finite simple factors. Taking this into account we may also assume that each
factor of K is either finite simple, or abelian torsion-free.

Let K be subnormal. Take g ∈ G\Z(G). There are neighbouring N , K ∈ K
for which g ∈ K \N . Obviously, G = KZ(G). So G = G′ = (KZ(G))′ = K ′,
i.e., G = K. Since G 6= NZ(G) and N snG, clearly, N ⊆ Z(G). Then K/N
is not abelian, so K/N is finite. Consequently G/Z(G) is finite. Therefore,
by Schur’s Theorem (see, for instance, [15, Theorem 4.12]), G′ = G is finite.

Let K be ascending. There are neighbouring N , K ∈ K such that N ⊆
Z(G) and K 6⊆ Z(G). By Lemma 2, KZ(G)/Z(G) ascG/Z(G). Suppose that
K/N is abelian. Then KZ(G)/Z(G) is abelian too. Consequently, by Proposi-
tion 1, G/Z(G) = 〈(KZ(G)/Z(G))G/Z(G)〉 is locally nilpotent. But according
to Malcev’s Local Theorem an arbitrary nonabelian locally nilpotent group
is not simple, a contradiction. Thus K/N is finite nonabelian simple. Then,
by [5, Proposition 5], G/Z(G) is a direct product of all distinct subgroups
(KZ(G)/Z(G))g, g ∈ G/Z(G). Consequently, G/Z(G) = KZ(G)/Z(G).
Since G/Z(G) is finite, by Schur’s Theorem G is finite.

(ii) Let G 6= 1 and K(6= 1) be the first term of K. In view of Baer’s
Theorem [1], K is locally finite. Let g ∈ K \ {1}. Then 〈gK〉 is finite. Take
a minimal normal subgroup N ⊆ 〈gK〉 of K. Obviously, N is completely
reducible and for every g ∈ G either [N,Ng] = 1 or N = Ng. Consequently,
〈NG〉 is the direct product of some Ng and 〈NG〉 is completely reducible. In
view of Lemma 1, for some maximal normal completely reducible subgroup
G1 of G, 〈NG〉 ⊆ G1. By (i) G1 is a direct product of finite simple groups.
Now it is easy to show by induction that G possesses an appropriate series.
The proof of the last assertion in (ii) is obvious.

(iii) By (ii) Soc(G/Gα) is completely reducible. Therefore, in view of
Lemma 1(ii), Soc(G/Gα) ⊆ Gα+1/Gα. Hence it easily follows that for each
α ≤ γ, Socα(G) ⊆ Gα. �

The following result immediately follows from Proposition 1.

Corollary 1. For the series (1) Nα+1/Nα is a maximal normal com-
pletely reducible subgroup of G/Nα, Soc(G/Nα) ⊆ Nα+1/Nα and Socα(G) ⊆
Nα, α < γ.

Lemma 3. For the series (1) the union K =
⋃
i∈Z+ Ni coincides with

FC(G).

Proof. Obviously K ⊆ FC(G). Let g ∈ FC(G). By Dietzmann’s Lemma
the subgroup T = 〈gG〉 is finite. Suppose that g 6∈ K. Then for some t ∈ Z+,
TNt/Nt∩Nt+1/Nt = 1 and TNt/Nt 6= 1. LetD be a minimal normal subgroup
of G/Nt contained in TNt+1/Nt. Obviously D(Nt+1/Nt) is a direct product
of finite simple groups. But then D ⊆ Nt+1/Nt, which is a contradiction. �
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Lemma 4. Let the group G have a finite maximal normal completely re-
ducible subgroup H. Then every completely reducible subgroup KCG is finite.

Proof. Indeed, |K : CK(H)| is finite and HCK(H) is normal completely
reducible subgroup of G. So CK(H) ⊆ H and K is finite. �

The next proposition follows from [5, Theorem 2] and statement 2 of [5,
Proposition 1].

Proposition 3. Let G be a group. Let {Qλ : λ ∈ Λ} be the set of all
locally ascendant quasisimple subgroups of G. Then [Qλ, Qν ] = 1 for ν 6= λ,
L(G) = L(G)′ =

∏
λ∈ΛQλ, Qλ C L(G) and Qλ C2 G, λ ∈ Λ. Also, for

each H lascG there exists a unique set ∆ ⊆ Λ such that L(H) =
∏
λ∈∆Qλ.

In particular, L(G) is semisimple, and an arbitrary set of semisimple locally
ascendant subgroups of G generates a semisimple subgroup which is the product
of some Qλ’s. Further, Z(L(G)) =

∏
λ∈Λ Z(Qλ), L(G)/Z(L(G)) is the direct

product of simple subgroups QλZ(L(G))/Z(L(G)), λ ∈ Λ, and Z(L(H)) =
Z(L(G)) ∩ L(H).

Proposition 4. Let G be an M ′′-group. Then:
(i) For each m ∈ N all semisimple subgroups K lascG satisfying |Z(K)| ≤

m generate a finite semisimple subgroup H ⊆ L(G).
(ii) L(G) = L(FC(G)).

Proof. (i) By Proposition 3, H is semisimple, Z(H) is of finite exponent
and H/Z(H) is completely reducible. In view of Corollary 1 and Lemma 4, the
subgroup 〈g : Z(H) : gp = 1 for some p ∈ P〉 is finite. Therefore, obviously,
Z(H) is finite. Consequently, by Lemma 3, Z(H) is contained in some finite
Nk ∈ (1). Again, by Corollary 1 and Lemma 4, HNk/Nk is finite. So H is
finite.

(ii) In view of (i) and Proposition 2(i), L(G) ⊆ FC(G). Then, by Proposi-
tion 3, L(G) ⊆ L(FC(G)), while, on the other hand, L(FC(G)) ⊆ L(G). �

Lemma 5. Let G/Z(G) be simple. Then G′ is a normal quasisimple sub-
group of G such that G = G′Z(G) and G′/Z(G′) ' G/Z(G). Further, if
|G : Z(G)| is finite, then G′ is finite.

Proof. Obviously, Z(G′) = G′ ∩ Z(G) and G = G′Z(G). So G′/Z(G′) '
G/Z(G) and G′/Z(G′) is nonabelian simple. Further, G′ = (G′Z(G))′ = G′′.
If |G′ : Z(G′)| is finite, then by Schur’s Theorem G′′ (= G′) is finite. �

Proposition 5. Let the group G satisfy the following conditions:
(i) There are no infinite quasisimple subgroups Q lascG (equivalently, QC

L(G)) with finite Z(Q).
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(ii) For every m ∈ N the set of all quasisimple subgroups Q lascG (equiv-
alently, QC L(G)) with |Z(Q)| ≤ m is finite or empty.

Let the subgroup H lascG have a series H0 = 1 ⊂ H1 ⊂ · · · ⊂ Hn = H with
completely reducible factors. If the soluble radical R of H is Chernikov, then
H is finite.

Proof. Note first that, in view of Proposition 3, Q lascG iff QCL(G). Let
R be Chernikov. Then, obviously, R is finite and the soluble radical of Hn−1

is finite too. Further, by Lemma 2, Hn−1 lascG. Taking these properties
into consideration, we may assume, of course, that Hn−1 is already finite.
Let K/Hn−1 = Z(H/Hn−1) and T/Hn−1 = (H/Hn−1)′. Then H/Hn−1 =
(K/Hn−1) × (T/Hn−1), |K : CK(Hn−1)| and |T : CT (Hn−1)| are finite, and
CK(Hn−1) is a normal soluble subgroup of H. Consequently, K is finite.
Therefore, if CT (Hn−1) ⊆ Hn−1, then H is finite. Let CT (Hn−1) 6⊆ Hn−1.
It is easy to see that CT (Hn−1)/Z(Hn−1) is a direct product of nonabelian
simple subgroups. Let D/Z(Hn−1) be a direct simple nonabelian factor of
CT (Hn−1)/Z(Hn−1). Then, in view of Lemma 5, D′ is quasisimple and D =
D′Z(Hn−1). Then |Z(D′)| ≤ |Z(Hn−1)|. Further, in view of Lemma 2,
D′ lascG. Consequently, the subgroup F generated by all D′ is finite (see
conditions (i), (ii) above) and CT (Hn−1) = FZ(Hn−1). Therefore CT (Hn−1)
is finite. Then T and, at the same time, H are finite. �

Lemma 6. Let G be a group, H ≤ G and |G : H| be finite. Let G con-
tain quasisimple subgroups Q lascG which are not contained in H. Then the
subgroup K generated by all such Q is finite.

Proof. Since the index |G : HG| is finite, we may assume, of course, that
HCG. Let Q∗ be another subgroup of the type of Q. Then, by Proposition 3,
[Q,Q∗] = 1. Since obviously QH/H is not abelian, QH/H 6= Q∗H/H. Thus
the set of all Q is finite. Since, by statement 2 of [5, Lemma 1], Q∩H ⊆ Z(Q),
|Q : Z(Q)| is finite. Therefore, in view of Lemma 5, Q is finite. Consequently,
K is finite. �

Lemma 7. Let G be a group, H ≤ G, and assume that |L(G) : L(G)∩H|
is finite. Put K = L(G)H and C = CK(L(G)). Then:

(i) L(HK)C L(K) = L(G)L(C).
(ii) For any quasisimple subgroup Q lascK or Q lascHK , either QCL(G),

or QC L(C).
(iii) There exists exactly one semisimple subgroup BCH such that L(H) =

L(HK)B and [L(HK), B] = 1. The subgroup B is necessarily finite.
(iv) For any quasisimple subgroup Q lascH, either Q C L(HK) and Q C

L(K), or QCB.
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Proof. Indeed, (i) and (ii) easily follow from Proposition 3. Since the index
|H : HK | is finite, (iii) and (iv) easily follow from Lemma 6 and Proposition
3. �

Proposition 6. Let G be a periodic hyper FC-group with Chernikov lo-
cally soluble radical R. Then the subgroup C = CG(L(G)) is Chernikov.

Proof. In consequence of Proposition 3, L(C) ⊆ C ∩ L(G) = Z(L(G)).
Therefore, obviously, L(C) = 1. Let S be the locally soluble radical of C.
Then S ⊆ R. So S is Chernikov. Further, in view of Proposition 2(ii), C has
an ascending normal series with completely reducible factors. Thus, by [5,
Proposition 7], C is Chernikov. �

Lemma 8. Let H CG and suppose that H possesses a subnormal abelian
series. Then [H,L(G)] = 1.

Proof. In view of Proposition 2(i), H has no quasisimple subgroups. Fur-
ther, if L(G) 6= 1, then, by Proposition 3, L(G) is a product of quasisimple
subgroups QCL(G). Consequently, in view of [5, Proposition 3], [H,L(G)] =
1. �

The next result is an immediate consequence of Lemma 8 and Malcev’s
Local Theorem.

Corollary 2. Assume that H CG and H is locally hyperabelian. Then
[H,L(G)] = 1.

Lemma 9. Let Q and H = {h1, . . . , hn} be quasisimple and finite groups
such that Q∩H = 1. Then there exists a group G = RhH with the following
properties:

(i) QCR =
∏
h∈H Q

h.
(ii) For arbitrary h ∈ H and g ∈ H, g 6= h, [Qh, Qg] = 1 and Qh ∩Qg =

Z(Q).
(iii) R/Z(Q) is the direct product of all Qh/Z(Q), h ∈ H.
(iv) R/Z(Q) is the minimal normal subgroup of G/Z(Q).
(v) R = L(G) and Z(R) = Z(Q) = Z(G).
(vi) If N CG and N 6⊆ Z(Q), then N ⊇ R.
(vii) If N C G and N is a locally soluble (more generally an SI-)group,

then N ⊆ Z(Q).

Proof. Let W = Q oH. Then for some T, V ≤W we have that T ' Q and
V ' H, 〈TW 〉 is the direct product of all Th, h ∈ V , and W = 〈TW 〉 h V .
Identify T with Q and V with H. Put F = 〈QW 〉. Let K = {gh1

1 . . . ghnn :
gk ∈ Z(Q), hk ∈ H, k = 1, . . . , n, and g1 . . . gn = 1}. Then KCW , K∩Q = 1
and Z(F ) = KZ(Q). Let G be the factor group of W by K in which in a
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natural manner QK/K is identified with Q and HK/K is identified with H.
Put R = F/K. Then G = R h H and NG(Q) = R ⊆ L(G). Obviously,
(i)–(iii) hold. By the Corollary to [15, Theorem 5.45], (iv) holds too. Further,
by Proposition 3, L(G) ⊆ NG(Q). Thus L(G) = R.

Clearly, Z(R) = Z(Q) ⊆ Z(G) ⊆ NG(Q). So Z(G) ⊆ R(= NG(Q)) and
Z(G) ⊇ Z(R). Therefore Z(R) = Z(Q) = Z(G).

Let R 6⊆ N C G. Then Qg 6⊆ N for every g ∈ G. Therefore, by [5,
Proposition 3], [N,R] = 1. Consequently N ∩ R ⊆ Z(R) = Z(Q). Suppose
that N 6⊆ Z(Q). Then for some a ∈ R and h ∈ H \ {1}, ah ∈ N \Z(Q). But
Qah = Qh 6= Q. Thus [ah,R] 6= 1, which is a contradiction, and so (vi) holds.

Let N be a normal SI-subgroup of G. In view of Proposition 2(i), Q 6⊆
N . Consequently, by (vi), N ⊆ Z(Q) and (vii) holds. Hence the lemma is
proven. �

Lemma 10. Let Gλ C G, λ ∈ Λ, and G =
∏
λ∈ΛGλ. Let L (respectively

Lλ) be the set of all quasisimple subgroups Q lascG (resp. Q C2 Gλ), and
let N , N ∗, Nλ be the sets of all minimal normal subgroups of G, Z(G), Gλ,
respectively. Then:

(i) L =
⋃
λ∈Λ Lλ and L(G) =

∏
λ∈Λ L(Gλ).

(ii) An arbitrary noncentral minimal normal subgroup N of G lies in one
of the Gλ. If for each ν 6= λ, [Gλ, Gν ] = 1, then N = N ∗

⋃
(
⋃
λ∈ΛNλ)

and, in particular, Soc(G) = Soc(Z(G))
∏
λ∈Λ Soc(Gλ).

(iii) If for each ν 6= λ, [Gλ, Gν ] = 1, then Z(G) =
∏
λ∈Λ Z(Gλ).

Proof. (i) By Proposition 3, if Q ∈ L, then Q C 〈QG〉 and so Q C2 G.
Therefore, in view of [5, Proposition 3], for some λ ∈ Λ we have Q ⊆ Gλ.
Otherwise, [Q,Gλ] = 1, λ ∈ Λ, and Q ⊆ Z(G), which is a contradiction.
Then Q ∈ Lλ. On the other hand, clearly,

⋃
λ∈Λ Lλ ⊆ L.

(ii) Indeed, for some µ, [N,Gµ] 6= 1. So N ⊆ Gµ. Let [Gλ, Gν ] = 1,
ν 6= λ. Then obviously N ∗

⋃
(
⋃
λ∈ΛNλ) ⊆ N and N ∈ Nµ. Thus N =

N ∗
⋃

(
⋃
λ∈ΛNλ).

(iii) Obviously,
∏
λ∈Λ Z(Gλ) ⊆ Z(G). Let g ∈ Z(G) \

∏
λ∈Λ Z(Gλ) 6=

∅. Then for some pairwise distinct λ1, λ2, . . . , λn ∈ Λ and gk ∈ Gλk , k =
1, 2, . . . , n, we have g = g1g2 . . . gn. In that case 1 = [g,Gλk ] = [gk, Gλk ], i.e.,
gk ∈ Z(Gλk) and g ∈

∏
λ∈Λ Z(Gλ), a contradiction. �

3. Proofs of the main theorems

Proof of Theorem 1. Let G 6= 1 be an M ′-group. Suppose that in the
series (2) Gk−1 is finite for some finite nonzero k ≤ γ. Then Soc(G/Gk−1) is
finite. Further, by [5, Proposition 5], Gk/Gk−1 ⊆ Soc(G/Gk−1)Z(Gk/Gk−1).
Clearly, Z(Gk/Gk−1) is completely reducible and G/Gk−1 is an M ′-group.
Consequently, in view of [5, Proposition 10], Z(Gk/Gk−1) is finite. Thus
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Soc(G/Gk−1)Z(Gk/Gk−1) and, at the same time, Gk are finite. So G is an
M ′′-group.

Let G 6= 1 be an M ′′-group. Assume that H CG, H is finite and H 6= G.
Then some finite term Nk ∈ (1) is not contained in H. In view of Lemma 3, H
belongs to some finite term Nl ∈ (1). Since, obviously, NkH/H has a minimal
normal subgroup of G/H, Soc(G/H) 6= 1. Suppose further that Soc(G/H) is
infinite. Then, obviously, Soc(G/Nl) is infinite too. But in accordance with
Corollary 1, Soc(G/Nl) must be finite, a contradiction. Thus G is socle finite.
Therefore, if G is hyperfinite, then G is an M ′-group.

Let A be a quasicyclic group and B be an infinite locally finite p-group
without nontrivial normal abelian subgroups. Then, obviously, A × B is a
socle finite non-M ′′-group.

Finally, the last conclusion of Theorem 1 follows from the first one, because
the class of locally finite-normal groups is a subclass of the class of hyperfinite
groups. �

Proof of Theorem 2. Let (i) hold. Then G is a periodic hyper-FC-group.
In view of Proposition 4, we only need to prove that R is Chernikov. Let H
be an arbitrary nilpotent normal subgroup of G with class ≤ 2. Put K = 〈g ∈
Z(H) : gp = 1 for some p ∈ P〉 and T = 〈g ∈ H : gp ∈ Z(H) for some p ∈ P〉.
Obviously, T ′ ⊆ K. By Lemmas 4 and 3 and Corollary 1, K is contained in
some finite Nk ∈ (1). Since K is finite, Z(H) is Chernikov (for instance, by [7,
Lemma 1.10]). Since G/Nk is an M ′′-group and TNk/Nk is a normal abelian
subgroup of G/Nk, TNk/Nk is Chernikov as above. Therefore, obviously,
T/Z(H) is finite. Consequently, H/Z(H) is Chernikov. Since Z(H) and
H/Z(H) are Chernikov, H is Chernikov too (S. N. Chernikov; see, for instance,
[7, Theorem 1.4]). Further, it is easy to see that all distinct subgroups R∩Nα,
where Nα ∈ (1), constitute an ascending abelian series of R with G-invariant
terms. Consequently, in view of Proposition 7 in [5] and Proposition 2(i), R
is Chernikov.

Let (ii) hold, G 6= 1, and assume that for some k ∈ N and Gk ∈ (2), Gk−1

is finite. Since R is Chernikov, by Proposition 2(i) and Proposition 5, Gk is
finite. Thus G is an M ′′-group. �

Proof of Theorem 3. Obviously, H is a hyper-FC-group. Let R and T be
the locally soluble radicals of G and H, respectively. By Theorem 2, R is
Chernikov.

(i) Let K = L(G)H, C = CK(L(G)), let B be as in Lemma 7, and let
S be the locally soluble radical of K. Since L(G) is semisimple (see Propo-
sition 3) and L(G) C K, we have L(G) ⊆ L(K). Therefore CK(L(K)) ⊆
CG(L(G)). In view of Proposition 6, CG(L(G)) is Chernikov. By Corollary
2, S ⊆ CK(L(K)). Thus S is Chernikov. Because |K : H| is finite, T is,
obviously, Chernikov. Further, by Lemma 6 for the Chernikov subgroup C,
L(C) is finite. In view of Lemma 7, for any quasisimple subgroup QC L(H),
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either QCL(G) or QCL(C) or QCB. Since L(C) and B are both finite, by
Theorem 2 for every m ∈ N the set of all quasisimple subgroups QCL(H) with
|Z(Q)| ≤ m is finite or empty. Therefore, by Theorem 2, H is an M ′′-group.

LetH lascG. Then, by Proposition 1, T ⊆ R. Consequently, T is Chernikov.
(ii) Let m ∈ N and let K be the set of all quasisimple subgroups QCL(G)

with |Z(Q)| ≤ m and N be the corresponding set for L(H). By Proposition
3, N ⊆ K. In view of Proposition 4, K is finite or empty. Thus, by Theorem
2, H is an M ′′-group.

(iii) Suppose that H 6= T . Then there is a series H0 = T ⊂ H1 ⊂ · · · ⊂
Hn = H with finite simple factors. One may assume, of course, that H 6⊆
K = 〈HG

n−1〉 and K is already Chernikov. Then HK/K is finite simple, and
by Lemma 2, HK/K lascG/K.

Let HK/K be abelian. Then, in view of Proposition 1, D/K is locally
soluble. In this case D is almost locally soluble. Therefore the index |D :
D ∩R| is finite and D is Chernikov.

Now suppose thatHK/K is not abelian. Then, in view of [5, Proposition 5],
D/K is a minimal normal subgroup of G/K and, also, is the direct product of
all distinct subgroups (HK/K)g, g ∈ G/K. Obviously, either CD(K) ⊆ K, or
D = KCD(K). By the Baer-Polovickii Theorem [3], [14] (see, for instance, [15,
Theorem 3.29]), D/CD(K) is Chernikov. Therefore, in the case CD(K) ⊆ K,
D/K is finite and so D is Chernikov.

Next, suppose D = KCD(K). It is easy to see that for some finite
nonabelian simple subgroup B/Z(K), CD(K)/Z(K) is the direct product
of all distinct (B/Z(K))g, g ∈ G/Z(K). Clearly, B′ snG and CD(K) =
Z(K)

∏
g∈G(B′)g. In view of Lemma 5, B′ is finite quasisimple. Conse-

quently, in view of Proposition 4,
∏
g∈G(B′)g is finite. Therefore |D : K| is

finite and so D is Chernikov.
(iv), (v) By Proposition 3, L(H) =

∏
λ∈ΛQλ for some quasisimple sub-

groups Qλ C L(G) and, also, Z(Qλ) ⊆ Z(L(H)) ⊆ Z(L(G)). So |Z(Qλ)| ≤
|Z(L(H)) ∩ Z(L(G))|. Consequently, in case (iv), L(H) is Chernikov, and
in case (v), according to Proposition 4, L(H) is finite. Thus in both cases
L(H)T is Chernikov. Therefore, by [5, Proposition 7], H is Chernikov too.
Then D is Chernikov—see (iii). �

Proof of Theorem 4. Obviously, Z(G/R) = 1. Therefore G/R is residually
finite, for instance, by [8, Proposition 2.2.9]. We will prove that G/L(G)R is
residually finite.

(i) Let R = 1 and G 6= L(G). In view of [5, Proposition 8], CG(L(G)) =
Z(L(G)). Therefore L(G) 6= 1. By Proposition 3, L(G) is the direct product of
some nonabelian simple subgroups Qλ, λ ∈ Λ. Obviously, R ⊇ Z(L(G)) = 1
and so CG(L(G)) = 1. In view of Proposition 2(i), the Qλ are finite.

Let gL(G) be an arbitrary element of prime order p of G/L(G), and
Γ = {λ ∈ Λ : [g,Qλ] 6= 1}. Obviously, for some finite ∆ ⊇ Γ, g ∈
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NG(×λ∈∆Qλ) and gp ∈ ×λ∈∆Qλ. Put 〈g〉(×λ∈∆Qλ) = H. It is not diffi-
cult to show that H ∩ CG(H) = 1, CG(H)L(G) = CG(H)(×λ∈∆Qλ). Obvi-
ously, the index |G/L(G) : CG(H)L(G)/L(G)| is finite. It is easy to see that
g 6∈ CG(H)(×λ∈∆Qλ) = CG(H)L(G). Therefore gL(G) 6∈ CG(H)L(G)/L(G).
Thus G/L(G) is residually finite.

(ii) Let R = 1. We next prove that for an arbitrary normal subgroup N of
G with N ⊆ L(G), the group G/N is residually finite. Let aN ∈ G/N \ {1}.
Suppose that a 6∈ L(G). Since by (i) G/L(G) is residually finite, there exists
a subgroup K C G such that a 6∈ K ⊇ L(G) and |G : K| is finite. Then
aN 6∈ K/N and |G/N : K/N | is finite. Now let a ∈ L(G). Clearly, the index
|G/N : CG(〈aG〉)N/N | is finite. Suppose that aN ∈ CG(〈aG〉)N/N . Then,
obviously, 〈aG〉 ⊆ CG(〈aG〉)N . Consequently, 〈aG〉′ ⊆ N . It is easy to see
that 〈aG〉 is a direct product of some Qλ. Consequently, 〈aG〉 = 〈aG〉′. Thus
a ∈ N , a contradiction.

(iii) Finally, we consider the general case. The locally soluble radical of the
factor group G/R coincides with 1. It is obvious that L(G/R) ⊇ L(G)R/RC
G/R. Therefore by (ii) the factor group (G/R)/(L(G)R/R) ' G/L(G)R is
residually finite, and the theorem is proved. �

Proof of Theorem 5. In view of Ph. Hall’s Theorem [9], H is isomorphic
to a subgroup of the direct product V of some finite groups Hk, k ∈ N. We
will assume that V ∩ A = 1. Let Ak, k ∈ N, be cyclic subgroups of A (not
necessarily distinct in pairs) such that 2 < |Ak| ≤ |Ak+1| and A = 〈Ak : k ∈
N〉. Let Qk, k ∈ N, be finite quasisimple groups such that Z(Qk) = Ak and
the group Ak is a subgroup of Qk, Qk ∩ V = 1 and Qk ∩ Qj = Ak ∩ Aj ,
j 6= k. Let for Qk and Hk the groups Gk be as in Lemma 9 such that
Gk ∩ A = Ak = Z(Gk) and Gk ∩ Gj = Ak ∩ Aj , j 6= k. (For example, for
n = |Ak| and an arbitrary p ∈ P such that n|p−1 we may take Qk ' SLn(p).)
Further, let G0 = A, D be the external direct product of the groups Gk,
k ∈ Z+ (see, for instance, [16]), N < D,

N = 〈(uk) : uk ∈ Gk, k ∈ Z+, for some j ∈ N, uj ∈ Z(Gj), u0 = u−1
j

and uk = 1, k ∈ N \ {j}〉,
Tj = {(uk) : uk = 1 for k ∈ Z+ \ {j} }, j ∈ Z+.

It is not difficult to show that

Tj ∩N = 1, j ∈ Z+,

TjN/N ∩ T0N/N = Z(TjN/N), j ∈ N,
TjN/N ∩ TkN/N = Z(TjN/N) ∩ Z(TkN/N), j, k ∈ N, k 6= j.

In view of these relations we may identify in a natural way the subgroup
TjN/N of the factor group K = D/N with the group Gj , for each j ∈ Z+.
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Then K =
∏
k∈NGk, [Gk, Gj ] = 1 for j 6= k,

∏
k∈NHk is the direct

product of subgroups Hk, k ∈ N, and A =
∏
k∈N Z(Gk). We will assume that

H ≤
∏
k∈NHk. In view of Lemma 10, A = Z(K) and L(K) =

∏
k∈N L(Gk).

Obviously, L(K) ∩
∏
k∈NHk = 1. Since L(Gk) =

∏
g∈Hk Q

g
k, and for distinct

g, h ∈ Hk, [Qgk, Q
h
k ] = 1, we have L(K) =

∏
k∈N

∏
g∈Hk Q

g
k, and [Qgk, Q

h
j ] = 1

if k 6= j or g 6= h. Since CGk(L(Gk)) = Z(Gk), k ∈ N, it is easy to see that
CK(L(K)) = A = Z(L(K)).

Put G = L(K) hH. Since CG(L(K)) ⊆ L(K), by Proposition 3, L(G) =
L(K). So CG(L(G)) = A = Z(L(G)). By Corollary 2, R ⊆ CG(L(G)).
Consequently, R = Z(L(G)) = A and, at the same time, R is Chernikov.
Since A ⊆ Z(G) ⊆ R, we have Z(G) = A. Obviously, L(G) and G are locally
finite-normal and non-Chernikov.

Further, as a consequence of Proposition 3, M = {Qgk : k ∈ N, g ∈ Hk} is
the set of all quasisimple subgroups Q C L(G). Clearly, for each m ∈ N the
set {Q ∈ M : |Z(Q)| ≤ m} is finite or empty. Thus, by Theorem 2, G is
an M ′′-group. Then, in view of Theorem 1, G is an M ′-group. Since G is a
locally finite-normal M ′-group, we have G =

⋃
k∈N Sock(G) = Socω(G) and

|Sock(G)| <∞, k ∈ N (see [5, Lemma 7]).
It is easy to see that K/A, and also G/A, is infinite residually finite. Conse-

quently, G/A, and hence G, does not satisfy the minimal condition for normal
subgroups of finite index. Thus the theorem is proved. �

Remark. The group G constructed in the proof of Theorem 5 is isomor-
phic to a subgroup of a factor group of the direct product of groups Gk, k ∈ N,
by a central subgroup.

Proof of the Assertion. In view of Theorem 1, (i) holds iff G is an M ′-
group, and by [5, Lemma 7], G is an M ′-group iff (ii) holds. Thus (i) ⇔
(ii).

Let (i) hold. Then G = Socω(G) and by Proposition 2(iii), for the series
(2) we have γ ≤ ω. Further, by virtue of Theorem 2, for each Gα ∈ (2) with
finite α the locally soluble radical of Gα is Chernikov. Consequently, in view
of Propositions 4(i) and 5, Gα is finite.

Obviously, (iii) ⇒ (i). �

The next proposition may be useful when studying socle groups, M ′′-groups
or M ′-groups.

Proposition 7. Let G be a socle group such that for each k ∈ Z
+,

Sock+1(G)/Sock(G) is a direct product of finitely many minimal normal sub-
groups of group G/Sock(G). Let H be a normal subgroup of G such that
H 6⊆ Sock(G), k = 1, 2, . . . . Then the intersection H ∩ Socω(G) contains a
subgroup N CG with the following properties:

(i) N ∩ Sock(G) 6= N ∩ Sock+1(G), k = 0, 1, 2, . . . .
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(ii) Any proper G-invariant subgroup T of N is contained in one of the
Sock(G). (In particular, T is finite if all groups Sock(G) are finite.)

Proposition 7 follows at once from [5, Proposition 9], and the following
lemma, which is obvious.

Lemma 11. Let G be a socle group. Let N C G and assume that N 6⊆
Socα(G) for some ordinal α. Then N ∩ Socα(G) 6= N ∩ Socα+1(G).
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