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GROUPS IN WHICH SYLOW SUBGROUPS AND
SUBNORMAL SUBGROUPS PERMUTE

A. BALLESTER-BOLINCHES, J. C. BEIDLEMAN, AND H. HEINEKEN

Reinhold Baer in memoriam

Abstract. We consider certain properties of finite groups in which
the subnormal subgroups permute with all the Sylow subgroups. Such

groups are called PST-groups. If G is such a group and H1/K1 and

H2/K2 are isomorphic abelian chief factors of G such that H1H2 ⊆ G′,
then they are operator isomorphic. Moreover, if all the abelian isomor-

phic chief factors of a PST-group G are operator isomorphic, then all
the subnormal subgroups are hypercentrally embedded in G.

1. Introduction

Several authors have considered finite groups in which subnormal subgroups
permute with certain classes of subgroups: see, for example, [1], [2], [3], [4],
[6], and [7]. The object of this note will be to prove statements about finite
groups in which the subnormal subgroups permute with the Sylow subgroups.
These groups are called PST-groups. We will see that two abelian chief factors
Hi/Ki are operator isomorphic if they are isomorphic and H1H2 ⊆ G′. For
the proof heavy use is made of the classification of finite simple groups and
the Atlas [9]. An example of Thompson in [10] shows that containment in G′

is indispensable.
A subnormal subgroup S is called hypercentrally embedded in G if SG/SG ⊆

Z∞(G/SG), the hypercenter of G/SG. We show that in general subnormal
subgroups of PST-groups are not hypercentrally embedded. If, however, all
isomorphic abelian chief factors are operator isomorphic, all subnormal sub-
groups are hypercentrally embedded. In [2] the authors show that if G is a
soluble PST-group, then p-chief factors are operator isomorphic. Thus for sol-
uble PST groups all the subnormal subgroups are hypercentrally embedded,
a result that was observed in [4] and [7].
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2. The chief factors

Let p be a prime. A finite group G is said to be an Np-group provided that
if N is a normal subgroup of G, then all the subgroups of Op(G/N) permute
with all the Sylow subgroups of G (see [7]). Robinson [10] introduced a class
Np of groups which is slightly different from ours.

A characterization of PST-groups is presented in [10] (see (ii) on p. 158),
which is similar to the next proposition. As mentioned in [10], the proof is
very similar to the proof of Theorem 3.1 of that paper and for that reason we
simply outline a proof.

Proposition 1. A finite group G is a PST-group if and only if the non-
abelian chief factors of G are simple and G satisfies Np for all primes p.

Proof. Assume that the non-abelian chief factors of G are simple and G
satisfies Np for all p. It is clear that all the chief factors of G are simple. Let
D be the soluble residual of G. By Lemma 2.4 of [10] D/Z(D) is a direct
product of G-invariant non-abelian simple groups. Also by Theorem A of [7]
G/D is a soluble PST-group. Let H be a subnormal subgroup of G. Argue
as in the proof of Theorem 3.1 of [10] to show that H permutes with all the
Sylow subgroups of G.

Conversely, assume that G is a PST-group. Since each homomorphic image
of G is a PST-group, it follows that G is an Np-group for all primes p. Thus
the p-chief factors of G are simple for all p. Using a proof similar to the
one used to establish Proposition 2.1 of [10] we see that the non-abelian chief
factors of G are simple. �

Now we consider operator isomorphisms of the abelian chief factors of PST-
groups.

Theorem 2. Assume that G is a finite PST-group. If H1/K1 and H2/K2

are isomorphic abelian chief factors of G and H1H2 ⊆ G′, then these factors
are isomorphic as G-operator groups.

Proof. Assume that H1/K1 and H2/K2 have order p. Let D be the soluble
residual of G and recall from Proposition 1 that Z(D) is the soluble radical
of D. Assume that D avoids the given chief factors. Since G/D is a soluble
PST-group, H1/K1 and H2/K2 are G-operator isomorphic by Theorems 6
and 8 of [2]. Now assume that D covers H1/K1 and H2/K2. Hence Z(D)
covers these factors. By Proposition 1 the p′-elements of G induce power
automorphisms on Op(Z(D)) and hence in H1/K1 and H2/K2. Thus these
factors are G-isomorphic. We can now assume that K1 < H1 ≤ Z(D) and
D ≤ K2 < H2 ≤ G′. Choose M maximal subject to MCG and M∩H1 = K1.

First suppose that p divides the order of MD/D. By the previous para-
graph we can assume H2 ⊆MD. But then H1H2/K1K2

∼= H1/K1 ×H2/K2
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is a factor of MD/M ∩ D ∼= M/M ∩ D × D/M ∩ D and the p′-elements
of G induce power automorphisms in this. Hence H1/K1 and H2/K2 are
G-isomorphic.

Next assume that the order of MD/D is prime to p. Then we can assume
that MD ≤ K2 < H2 ≤ G. Thus we may replace G by G/M and hence
K1 = 1. This means that H1 is the unique minimal normal subgroup of G
and it follows that Op′(G) = 1 and Z = Z(D) is a p-group.

Let C = CG(D/Z). By Proposition 1 and Lemma 2.6 of [10] C = CG(D)
is the soluble radical of G. Note that C is a PST-group. Hence, by Theorem
1 of [1], γ∞(C) ∩ Z = 1, which means γ∞(C) = 1 since Op′(G) = 1. (Here
γ∞(C) is the hypercommutator or last term of the lower central series of C.)
Therefore, C is a p-group.

Suppose that H2/K2 is G-isomorphic with a factor of CD/D ∼= C/Z. Then
we can assume that Z ≤ K2 < H2 ≤ C. Write H2 = 〈x2,K2〉 and H1 = 〈x1〉.
Then A = 〈x1, x2〉 is abelian and A ≤ C. By Proposition 1 the p′-elements of
G induce power automorphisms in C and hence in A. Hence H1 and H2/K2

are G-isomorphic.
Thus we can assume that C = Z and H2/K2 is G-isomorphic with a fac-

tor of (G/D)′. By Proposition 1 and Lemma 2.4 of [10] we have D/Z =
Drki=1(Ui/Z) where Ui/Z is a non-abelian simple group. Now G/D is iso-
morphic with a subgroup of Drki=1 Out(Ui/Z). Hence p divides the order of
(Out(Ui/Z))′ for some i. Also U ′i ∩ Z 6= 1, so that p divides the order of
M(Ui/Z), where M(Ui/Z) is the Schur multiplier of Ui/Z. Put Si = Ui/Z.

At this point we appeal to the classification of finite simple groups. From
the Atlas [9] we see that Si can not be a sporadic group. Also, since p can be
assumed odd, Si is not of alternating type. Thus we are left with Chevalley
and twisted Chevalley groups. Consulting Table 2 and Table 5 of [9] we see
that we have to consider only

An(q) = Ln+1(q) if p divides gcd(n+ 1, q − 1),
2An(q) = Un+1(q) if p divides gcd(n+ 1, q + 1),

E6(q) if p = 3 and 3 divides q − 1,
2E6(q) if p = 3 and 3 divides q + 1.

In all of these cases we obtain the Sylow p-subgroup of Z(Ui) = Z(D) as
a subgroup of the multiplicative group of some field and the p-subgroup of
(Out(Ui/Z(D))′ as a subgroup of a normal subgroup which can be consid-
ered isomorphic to a subgroup of the multiplicative group of the same field.
On both of these p-groups the same field automorphism operates, so in fact
the p-chief factor belonging to Z(D) and G′CG(Ui)/CG(Ui)Ui are operator
isomorphic. This completes the proof of Theorem 2. �
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3. Hypercentral embedding

We begin with a counterexample.

Example. Let p be an odd prime; also let q be a prime such that q − 1
is divisible by p but not by p2. The group SL(p2, qp) possesses a duality
automorphism δ (which maps every matrix onto the inverse of its transpose)
of order 2 and an automorphism σ of order p arising from applying the field
automorphism to every matrix entry. The center of SL(p2, qp) is of order p2

and cyclic. Now let H ∼= SL(p2, qp) and K = 〈H, d, s|[d, s] = d2 = sp =
1; d−1hd = δ(h); s−1hs = σ(h) for all h ∈ H〉. We choose the subgroup
L = 〈d1d2, s1s

−1
2 ,H1,H2〉 of the direct product K1 × K2 of two copies of

K. We have Z(L) = 1, since d1d2 inverts by conjugation all elements of
Z(H1H2). On the other hand, if t1, t2 are generators of Z(H1), Z(H2), then
[t1t2, s1s

−1
2 ] = tkp1 t−kp2 for some k prime to p. It is easy to see that

〈t1t2, tp1t
−p
2 〉 = (〈t1, t2〉)L ⊆ Z(H1H2),

〈tp1t
p
2〉 = (〈t1t2〉)L,

and so 〈t1t2〉 is subnormal and not hypercentrally embedded in L. On the
other hand, L is a PST- group.

As a positive statement we obtain:

Theorem 3. Assume that G is a finite PST-group and all abelian isomor-
phic chief factors of G are operator isomorphic. Then all subnormal subgroups
are hypercentrally embedded in G.

Proof. Let S be a subnormal subgroup of G. Then S/SG is soluble. Con-
sider a nontrivial normal p-subgroup T/SG of S/SG. Then TG = SG and
TG/SG is a normal p-subgroup of G/SG. If TG/SG does not belong to the
hypercenter of G/SG, then some Sylow q-subgroups of G/SG (where q 6= p)
operate nontrivially on TG/SG. By Lemma 1 of [5], TG/SG is abelian and
(G/SG)/CG/SG(TG/SG) is a direct product of a p-group and a cyclic group of
order prime to p. Since p-chief factors of this quotient group would be central
and those of TG/SG are not, we obtain that this centralizer quotient group is
cyclic of order prime to p and all subgroups of TG/SG are normal in G/SG;
TG = T = TG, a contradiction. We obtain that the Fitting subgroup of S/SG
is contained in the hypercenter of G/SG and so in the hypercenter of S/SG.
From this we deduce that S/SG is nilpotent and in the hyperenter of G/SG,
as was to be shown. �

Corollary 1. Assume that G is a finite soluble PST-group. Then all
subnormal subgroups of G are hypercentrally embedded in G.
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Proof. Corollary 1 follows from Theorem 3 and Theorem H of [7]. It is also
Corollary 2 of [4]. �

Carocca and Maier [8] prove the following result.

Theorem 4. Let G be a finite group and let S be a subnormal subgroup of
G which permutes with all the Sylow subgroups of G. Then S permutes with
all the pronormal subgroups of G if and only if it is hypercentrally embedded
in G.

From Theorems 3 and 4 we obtain:

Corollary 2. Let G be a finite PST-group all of whose isomorphic
abelian chief factors are operator isomorphic. Then the subnormal subgroups
of G permute with all the pronormal subgroups of G.

Remark 1. Let G be a finite PST-group. By Proposition 1 and Theorem
A of [6] all the subnormal subgroups of G permute with all the maximal
subgroups of G. In fact, one can prove the following: Let G be a finite
PST-group and let X be a locally pronormal subgroup of G. Then all the
subnormal subgroups of G permute with X.

4. T-groups

It is common usage to call groups in which all subnormal subgroups are
normal subgroups T-groups. Obviously the class of finite T-groups is a sub-
class of the class of finite PST-groups. This gives rise to a specialization of
Theorem 2:

Corollary 3. Two isomorphic abelian chief factors H1/K1 and H2/K2

of a T-group G are operator isomorphic whenever H1H2 ⊆ G′.

There is another connection between these classes: we denote by G∗ the
nilpotent residual of G, i.e., the smallest normal subgroup K of G with nilpo-
tent quotient group G/K. Now we can formulate our statement.

Theorem 5. Assume that G is a finite PST-group. Then G∗ is a T-group.

Proof. Consider a subnormal subgroup S ⊆ G∗ and assume SG 6= S. If
T/SG is a normal p-subgroup of S/SG, we obtain TG = SG and TG/SG
is a normal p-subgroup of G/SG. If TG/SG is contained in the hypercenter
of G/SG, then (G/SG)/CG/SG(TG/SG) is nilpotent as it is a p-group. If
TG/SG is not contained in the hypercenter of G/SG, the quotient group
(G/SG)/CG/SG(TG/SG) is a direct product of a cyclic group and a p-group,
so it is again nilpotent. So in both cases we have TG/SG ⊆ Z(G∗/SG). We
deduce that the Fitting subgroup of the soluble group S/SG coincides with
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its centre. Now S/SG is abelian and contained in Z(G∗/SG). Thus S/SG is
normal in G∗/SG and S is normal in G∗. So G∗ is a T-group. The proof is
complete. �

Let B be a finite soluble PST-group. In the proof of Theorem H of [7] it
was shown that Fit(B) = γ∞(B)×Z∞(B). By Theorem 1 of [1] B/Z∞(B) is
a T -group so that B′′ ≤ Z∞(B).

Notice also that by consulting the Atlas [9] it is noted for a non-abelian
simple group S that Aut(S)/ Inn(S) is metabelian except when S ∼= D4(q),
where this quotient is isomorphic to S4.

Let G be a finite PST-group. By Proposition 1 the chief factors of G are
simple, and hence if S ∼= D4(q) is isomorphic to some chief factor H/K of G,
then (G/K)/(H/K)CG/K(H/K) is a subgroup of S4 which is a PST-group
and hence supersoluble. Thus it is therefore abelian, or isomorphic to S3 or
isomorphic to the dihedral group of order 8.

Let D be the soluble residual of G. Since G/D is a soluble PST-group, it
follows from above that G′′/D is contained in the hypercenter of G/D. Let
H be the hypercenter of G. Then H ≤ CG(D), the soluble radical of G. By
Proposition 1, Lemma 2.4 of [10] and the above, it follows that G′′ ≤ DCG(D)
whence G′′ ≤ HD. Now the nilpotent factors of G/H are abelian and the
automorphisms induced on them by the PST-group G/H are power automor-
phisms. Furthermore, the abelian factors of (G/H)′ ∼= G′H/H are central.
Thus G′H/H is a T -group by Theorem 4.2 of [10]. We have established:

Theorem 6. Let G be a finite PST-group with hypercenter H. Then
G′H/H is a T -group.

Remark 2. Let G be a finite PST-group with hypercenter H. If G is
soluble, then G/H is a T -group. However, if G is the extension of D4(3) by
the dihedral group of order 8, then G/H is not a T -group.
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