Illinois Journal of Mathematics Volume 48, Number 4, Winter 2004, Pages 1321–1343 S 0019-2082

# GEOMETRIC CHARACTERIZATIONS OF EXISTENTIALLY CLOSED FIELDS WITH OPERATORS

## DAVID PIERCE

ABSTRACT. This paper concerns the basic model-theory of fields of arbitrary characteristic with operators. Simplified geometric axioms are given for the model-companion of the theory of fields with a derivation. These axioms generalize to the case of several commuting derivations. Let a *D*-field be a field with a derivation *or* a difference-operator, called *D*. The theory of *D*-fields is companionable. The existentially closed *D*-fields can be characterized geometrically without distinguishing the two cases in which *D* can fall. The class of existentially closed fields with a derivation *and* a difference-operator is elementary only in characteristic 0.

## 0. Introduction

On a field, a *jet-operator* is, roughly, a function whose behavior at sums and products is determined by polynomials, *and* whose value at 0 and 1 is 0. The term is from Alexandru Buium [4], who shows that on a field of characteristic 0, every jet-operator is equivalent to a *derivation* or a *difference-operator*. Piotr Kowalski [10] shows that this remains true in positive characteristic, provided that one generalizes the notion of a derivation.

The present paper is concerned with a *uniform* and *geometric* treatment of fields with derivations and difference-operators.

Thomas Scanlon [20] provides a way to begin, defining a *D*-field as a structure (K, e, D), where K is a field,  $e \in K$ , and D is an endomorphism of the additive group of K satisfying

(\*) 
$$D(x \cdot y) = Dx \cdot y + (x + e \cdot Dx) \cdot Dy.$$

If e = 0, then D is a **derivation**, and (K, D) is a **differential field**. In any case,  $e \cdot D$  is the map  $x \mapsto x^{\sigma} - x$  for some endomorphism  $\sigma$  of K, so  $e \cdot D$  is the **difference-operator** associated with  $\sigma$ , and  $(K, \sigma)$  is a **difference-field**. As Scanlon notes, 'this formal connection [between differential and difference-fields] supports the view that differential and difference-algebra are instances of the same theory.'

Received April 10, 2004; received in final form November 12, 2004.

<sup>2000</sup> Mathematics Subject Classification. Primary 03C60. Secondary 12Hxx, 12L12.

By piecing together what is known about differential and difference-fields, one can show that the theory of *D*-fields is *companionable*. (The definition is reviewed at the end of this section.) Then the *model-companion* of this theory is a mathematically motivated model-complete theory whose completions are, respectively, (0)  $\omega$ -stable; (1) stable, but not super-stable; and (2) simple, but not stable.

For the model-companion  $DCF_0$  of the theory  $DF_0$  of differential fields of characteristic 0, geometric axioms are given in a paper with Anand Pillay [18]. Here, 'geometric' means that the axioms refer to **varieties**, which for us are just zero-sets of polynomials; they are irreducible when this matters. Say (K, D) is a differential field. If V is a variety over K, then the **prolongation**  $\tau(V)$  is the variety obtained by applying D to the polynomials over K that are 0 on V. If  $(K, D) \models DCF_0$ , then K is algebraically closed, and every subvariety of  $\tau(V)$  that projects generically onto V contains a K-rational point  $(\mathbf{a}, D\mathbf{a})$ ; and these observations *characterize* the models of  $DCF_0$  among the models of  $DF_0$ .

A derivation on a field of characteristic 0 extends *uniquely* to the algebraic closure of the field. Because of this, in Section 1 below, we can streamline the geometric approach of [18], giving axioms of DCF<sub>0</sub> that refer to varieties alone, and not to their prolongations. These re-formulated axioms can be seen as a special case of the axioms in [17] for DCF<sub>0</sub><sup>m</sup>, the model-companion for the theory of fields of characteristic 0 with m commuting derivations. Rather, the new axioms for DCF<sub>0</sub> suggest a neater way to express the axioms for DCF<sub>0</sub><sup>m</sup> in general, given in Section 2.

In the case of positive characteristic p, Carol Wood [22] shows how to come to terms with the fact that a non-trivial differential field cannot be perfect. She gives axioms for DCF<sub>p</sub> using Seidenberg's elimination-theory for differential equations (as Abraham Robinson did for DCF<sub>0</sub>; Wood gives simpler axioms for DCF<sub>p</sub> in [23], parallel to those of Blum for DCF<sub>0</sub>). *Geometric* axioms for DCF<sub>p</sub> are a special case in Kowalski's analysis [11] of **derivations of powers of Frobenius**. These are additive maps  $\delta$  satisfying

(†) 
$$\delta(x \cdot y) = \delta x \cdot y^{\sigma} + x^{\sigma} \cdot \delta y,$$

where  $\sigma$  is a power of the Frobenius map  $x \mapsto x^p$ , so that  $\sigma^{-1} \circ \delta$  and  $\delta \circ \sigma^{-1}$  are derivations in the usual sense (albeit not on the same field). In case  $\sigma$  is the identity, Kowalski's axioms correspond to those of [18]; in particular, they involve prolongations.

As in the characteristic-zero case, we can write geometric axioms for  $\text{DCF}_p$  without reference to prolongations. We can also write the axioms independently of characteristic, getting the theory DCF of existentially closed differential fields of arbitrary characteristic. Likewise, we shall axiomatize  $\text{DCF}^m$ , the model-companion of the theory of fields of arbitrary characteristic with m commuting derivations.

We can approach the theory of fields with distinguished automorphism  $\sigma$ in the same spirit. This theory has the model-companion ACFA, for which Angus Macintyre [13] and Zoé Chatzidakis and Ehud Hrushovski [5] have published geometric axioms. These axioms inspired the original geometric axioms for DCF<sub>0</sub>. Where the latter axioms refer to  $\tau(V)$ , the former refer to  $V \times V^{\sigma}$ . In the present paper, as we re-formulate the axioms for DCF<sub>0</sub>, so too, in Section 3, for ACFA. In contrast to the case of a derivation, we cannot avoid applying  $\sigma$  to a variety. Still, we need not form the Cartesian product. (Thus, logically, we can strengthen the axioms for ACFA. The main point is that we can simplify them, at least slightly; the corresponding simplification in the case of derivations is much greater.)

In Section 4, we shall also adjust the definition of D-field so that there are two additional named operators present. There will be a derivation  $\delta$  and an endomorphism  $\sigma$ , of which, however, at least one is trivial. Then D is  $\delta$  if this is non-trivial; otherwise D is  $x \mapsto x^{\sigma} - x$ . In the larger language, we shall be able to axiomatize the existentially closed D-fields without distinguishing the cases in which D can fall.

Finally, in Section 5, of the class of fields with a derivation and an endomorphism that have no required interaction, we can say enough about the sub-class of existentially closed members to see that it is not elementary. For example, if  $(K, \delta, \sigma)$  is in this class, let  $K^{\sigma}$  be the image of  $\sigma$ . Then  $K/K^{\sigma}$ is purely inseparable; but if char K = p, then there need be no *n* such that  $K^{p^n} \subseteq K^{\sigma}$ . In characteristic 0, such problems disappear, so there is a modelcompanion.

The notational conventions of the present paper are as in [17]; in particular, tuples are bold-face, indices on their entries may be superscripts, and indices start with 0.

Words being defined (perhaps implicitly) are in **bold**; technical terms being emphasized, but not defined, are *slanted*; other emphasized words are in the usual *italic*.

Functions are generally written to the left of their arguments, although the field-endomorphism  $\sigma$  is written as a superscript (as above), by analogy with the Frobenius endomorphism  $x \mapsto x^p$ .

If V is a variety over K, and **x** is an n-tuple of elements of the functionfield K(V), then **x** is the generic point over K of a sub-variety W of affine *n*-space  $\mathbb{A}^n$ . Also, **x** can be understood as a rational map from V to  $\mathbb{A}^n$ , and as a *dominant* rational map into W. Finally, **x** determines an embedding  $f \mapsto f(\mathbf{x}) : K(W) \to K(V)$ , which can be considered as an inclusion; then the rational map **x** is **separable** if K(V) is separable over K(W). (All fieldextensions in characteristic 0 are separable; in characteristic p, the extension L/K is separable if and only if  $L^p$  and K are linearly disjoint over  $K^p$ .) If K(V) is separable over K, then V itself may be called separable.

Over a theory T, a model  $\mathfrak{A}$  is **existentially closed** if  $\mathfrak{A} \preccurlyeq_1 \mathfrak{B}$  whenever  $\mathfrak{A} \subseteq \mathfrak{B}$  and  $\mathfrak{B} \models T$ . (This definition can be found in [21, § 2]. Here  $\mathfrak{A} \preccurlyeq_1 \mathfrak{B}$ means that quantifier-free formulas with parameters from A have solutions in  $\mathfrak{A}$ , provided they have solutions in  $\mathfrak{B}$ ; equivalently, all primitive sentences over A that are true in  $\mathfrak{B}$  are true in  $\mathfrak{A}$ .) A structure can be called existentially closed if it is an existentially closed model of its own universal theory (by [21, Theorem 2.4]). If the class of existentially closed models of an  $\forall \exists$  theory T is elementary, then the theory of the class is the **model-companion** of T. More generally, a theory T has model-companion  $T^*$  if  $T_{\forall} = T^*_{\forall}$  and  $T^*$  is **modelcomplete** ( $T^* \cup \text{diag} \mathfrak{M}$  is complete whenever  $\mathfrak{M} \models T^*$ ); model-complete theories are always  $\forall \exists$ .

The existentially closed models of any theory are just those models that omit certain types. Indeed, a model  $\mathfrak{M}$  of T is an existentially closed model just in case, for all primitive formulas  $\phi(\mathbf{x})$  in the language of T, for all tuples **a** from M, if  $T \cup \text{diag } \mathfrak{M} \cup \{\phi(\mathbf{a})\}$  is consistent, then  $\mathfrak{M} \models \phi(\mathbf{a})$ . Now, the following conditions are equivalent:

- (0)  $T \cup \operatorname{diag} \mathfrak{M} \cup \{\phi(\mathbf{a})\}$  is inconsistent.
- (1)  $T \models \theta(\mathbf{a}, \mathbf{b}) \rightarrow \neg \phi(\mathbf{a})$  for some open formula  $\theta$  and some tuple **b** from M such that  $\mathfrak{M} \models \theta(\mathbf{a}, \mathbf{b})$ .
- (2)  $T \models \forall \mathbf{x} \ (\phi(\mathbf{x}) \to \forall \mathbf{y} \ \neg \theta(\mathbf{x}, \mathbf{y}))$  for some open  $\theta$  such that  $\mathfrak{M} \models \exists \mathbf{y} \ \theta(\mathbf{a}, \mathbf{y}).$

For any primitive  $\phi$ , let  $\Theta_{\phi}$  be the set of universal consequences of  $T \cup \{\phi\}$ . Condition (2) is that  $\mathfrak{M}$  omits  $\Theta_{\phi}$ . So a model  $\mathfrak{M}$  of T is an existentially closed model if and only if  $\mathfrak{M}$  omits each type  $\Theta_{\phi} \cup \{\neg\phi\}$ .

I thank the anonymous referee for reading carefully and for insisting on the spelling out of some details; this led to some important corrections and improvements, as for example in the development of Lemma 1.2.

# 1. Differential fields

The co-domain of a derivation **on** a field need only be a vector-space over that field. Let an **extension** of a derivation be a derivation of which the first is a restriction. On any field K, the zero-derivation has the extension  $f \mapsto f'$  to K(X) and, more generally, has the *n* extensions  $\partial/\partial X^j$  or  $\partial_j$  to  $K(X^0, \ldots, X^{n-1})$ . Moreover, any derivation  $\delta$  on K has the unique extension  $f \mapsto f^{\delta}$  to  $K(X^0, \ldots, X^{n-1})$  that takes each  $X^j$  to 0.

FACT 1.1. Suppose  $\delta$  is a derivation on a field K.

(0) If  $f \in K(X^0, \ldots, X^{n-1})$ , and  $\mathbf{a} \in K^n$ , then

$$\delta(f(\mathbf{a})) = \sum_{j < n} \partial_j f(\mathbf{a}) \cdot \delta a^j + f^{\delta}(\mathbf{a})$$

if 
$$f(\mathbf{a})$$
 is defined. In case  $n = 1$ , this is

(‡) 
$$\delta(f(a)) = f'(a) \cdot \delta a + f^{\delta}(a).$$

- (1) If a is transcendental over K, or if char K = p and  $a \in K^{1/p} \setminus K$  and  $\delta(a^p) = 0$ , then the formula (‡) uniquely determines an extension of  $\delta$  to K(a), once the derivative  $\delta a$  is chosen arbitrarily.
- (2) If  $a \in K^{\text{sep}}$ , then  $\delta$  extends uniquely to K(a); and if f is the minimal polynomial of a over K, then  $\delta a = -f^{\delta}(a)/f'(a)$ .

*Proof.* See for example [12, ch. VIII, 
$$\S$$
 5, p. 369].

Fact 1.1 (1) suggests an analogy between differential fields of null and positive characteristic; the analogy can be described in terms of *closure-operators* (as defined for example in [1, Definition 3.1.4, p. 53]). If L is a field with subfield K, then L becomes a *pre-geometry* when equipped with the closureoperator

$$\operatorname{cl}_{K}^{\operatorname{alg}}: A \longmapsto K(A)^{\operatorname{alg}} \cap L : \mathfrak{P}(L) \longrightarrow \mathfrak{P}(L).$$

Therefore L has a basis—a maximal independent subset—with respect to this closure-operator; such a basis is precisely a transcendence-basis of L/K. (See also [14] for an early account of transcendence-bases along these lines.) If char K = p, then another closure-operator that makes L/K a pre-geometry is

$$\mathrm{cl}^p_K : A \longmapsto L^p K(A) : \mathfrak{P}(L) \longrightarrow \mathfrak{P}(L);$$

a basis of *this* pre-geometry can be called a *p*-basis of L/K (or of  $L/L^pK$ ). An (absolute) *p*-basis of *L* is then a *p*-basis of  $L/L^p$ . (See also [15, § 4].) That *B* is a *p*-basis of L/K means that *L*, as a vector-space over  $L^pK$ , has a basis consisting of the monomials

$$\prod_{x \in B} x^{s(x)}$$

where s is a map from B to p whose support  $B \\ s^{-1}(0)$  is finite. That L/K is separable means that any (absolute) p-basis of K is p-independent in L—is included in a p-basis of L.

Every separating transcendence-basis in characteristic p is a p-basis, by [15, Lemma 3, p. 382]. The converse holds if L/K has a *finite* separating transcendence-basis, but not generally [15, p. 385], since the field  $\mathbb{F}_p(X_n : n \in \omega)$  has the p-basis  $(X_n - X_{n+1}^p : n \in \omega)$ , over which the field is not algebraic.

It may be worth noting that, in the sense of Kolchin [9, ch. 0, § 2, pp. 3–4], an **inseparability-basis** of L/K is a minimal generating set of L with respect to the closure-operator  $A \mapsto K(A)^{\text{sep}} \cap L$ . This operator fails generally to have the exchange property, since  $\mathbb{F}_p(X)^{\text{sep}} \sim \mathbb{F}_p^{\text{sep}}$  contains  $X^p$ , but  $\mathbb{F}_p(X^p)^{\text{sep}}$ does not contain X. So the operator does not make L a pre-geometry, and inseparability-bases are not guaranteed to exist. Indeed, there is a standard counterexample: The extension  $\mathbb{F}_p(X)^{p^{-\infty}}/\mathbb{F}_p$  has no inseparability-basis.

For any field L that includes K, on  $\mathcal{P}(L)$  define

$$cl_K = \begin{cases} cl_K^{alg}, & \text{if char } K = 0; \\ cl_K^p, & \text{if char } K = p. \end{cases}$$

Henceforth, let **independence** in L/K and **bases** of L/K be understood with respect to  $cl_K$ . In characteristic p, the following is a generalization of [8, ch. IV, § 7, Theorem 17, p. 181]:

LEMMA 1.2. Suppose L/K is a field-extension, B is a basis of L/K, and  $\delta$  is a derivation from K to L.

- (0) If  $\delta$  extends to L and sends B into L, then L becomes a differential field.
- (1) If char K = 0, then  $\delta$  extends to L.
- (2) If  $\delta$  extends to L, then  $\delta$  extends uniquely to L after arbitrary choice of those  $\delta x$  such that  $x \in B$ .
- (3) Hence, if  $\delta$  extends to L, or if char K = 0, then  $\delta$  extends so as to make L a differential field.

*Proof.* Claim (0) follows from Fact 1.1 (0) and (2).

Suppose now char K = 0. By induction on a well-ordering of B and by Fact 1.1 (1), we can extend  $\delta$  to K(B) after arbitrary choice of  $\delta x$  when  $x \in B$ ; and the extension of  $\delta$  is then unique. Then  $\delta$  extends further, and uniquely, to L by Fact 1.1 (2). This proves Claim (2) when char K = 0, and also Claim (1).

For the other case of Claim (2), suppose char K = p and  $\delta$  extends to L. Then  $\delta$  is zero on  $L^p$ , and this determines the extension to  $L^p K$  by Fact 1.1 (0); this extension still has co-domain L; so we can replace K with  $L^p K$ . Now we can use induction and Fact 1.1 (1) as before to extend  $\delta$  uniquely to K(B)after arbitrary choice of the  $\delta x$  with x in B. But now K(B) = L (since we assumed  $K = L^p K$ ); so Claim (2) is established in all cases.

So now, by Claim (1), if char K = 0, then  $\delta$  extends to L. In any case, if  $\delta$  extends to L, then by Claim (2), it extends so as to send B into L; then by Claim (0), the extension makes L a differential field. This establishes Claim (3) and the theorem.

For any field-extension L/K, let Der(L/K) be the vector-space over L consisting of derivations from L to itself that are 0 on K. The **universal** K-linear derivation on L (as defined in [6, § 16, p. 386]) can be understood as the map  $d_K : L \to \text{Der}(L/K)^*$  given by

$$D(\mathbf{d}_K x) = Dx.$$

If  $S \subseteq \text{Der}(L/K)^*$ , let  $\langle S \rangle^L$  be the *L*-linear span of *S*. Then there is a uniform definition of  $\text{cl}_K$ :

LEMMA 1.3. Let L/K be a field-extension, and let  $d_K$  be the universal K-linear derivation on L. Then  $cl_K$  is the map

$$A \longmapsto \{x \in L : d_K x \in \langle d_K a : a \in A \rangle^L\} : \mathcal{P}(L) \longrightarrow \mathcal{P}(L).$$

*Proof.* Being a derivation on L that is 0 on K, the map  $d_K$  takes dependent sets to L-linearly dependent sets, by Fact 1.1 (0); it takes independent sets to L-linearly independent sets, by Lemma 1.2 (2).

The subspace  $\langle \mathrm{d} \, x : x \in L \rangle^L$  of  $\mathrm{Der}(L/K)^*$  can be denoted

$$\Omega^1_{L/K}$$
.

This can be understood as the space of Kähler differentials of L over K, and its dual is naturally isomorphic to Der(L/K).

In the following, the **kernel** of a derivation is its constant-field, that is, its kernel as a homomorphism of abelian groups.

LEMMA 1.4. Suppose  $(K, \delta)$  is a differential field, and  $K \subseteq L$ .

- (0) If  $\delta$  extends to  $\tilde{\delta}$  on L, then ker  $\tilde{\delta}$  is linearly disjoint from K over ker  $\delta$ .
- (1) If char K = p, and  $L^p(\ker \delta)$  is linearly disjoint from K over ker  $\delta$ , then  $\delta$  extends to L.

*Proof.* That (0) is true is a special case of [9, ch. II, § 1, Corollary 1, p. 87]. For an alternative proof, suppose  $\delta$  does extend to  $\tilde{\delta}$  on L. Let **a** be an *n*-tuple of elements of ker  $\tilde{\delta}$  that are linearly dependent over K. Shortening the tuple as necessary, we may assume that its null-space

$$\{\mathbf{x} \in K^n : \mathbf{a} \cdot \mathbf{x} = 0\}$$

has dimension 1. Then we may assume that this space is spanned by a single element **b** whose first entry  $b^0$  is 1. But  $\tilde{\delta}\mathbf{a} = \mathbf{0}$ , so

$$0 = \delta(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot \delta \mathbf{b}.$$

Thus  $\delta \mathbf{b}$  is in the null-space of  $\mathbf{a}$  and is therefore a multiple of  $\mathbf{b}$ . But  $\delta b^0 = 0$ , so  $\delta \mathbf{b} = \mathbf{0}$ , which means  $\mathbf{b} \in (\ker \delta)^n$ . Thus  $\mathbf{a}$  is linearly dependent over ker  $\delta$ . This proves (0).

Suppose now that the hypotheses of (1) hold. Let *B* be a *p*-basis of  $K/\ker \delta$ . Then  $\delta$  on *K* is determined by  $\delta|_B$ , by Lemma 1.2. Also, *B* is included in a *p*-basis of  $L/\ker \delta$ ; so the zero-derivation on ker  $\delta$  extends to *L* to agree with  $\delta$  on *K*.

In the terminology of [22], the differential field  $(K, \delta)$  is (differentially) perfect if char K = 0, or else char K = p and ker  $\delta \subseteq K^p$ . The terminology is chosen because of the following lemma (which is equivalent to a slight generalization of [9, ch. II, § 3, Proposition 5(a), p. 92]).

LEMMA 1.5. Suppose  $(K, \delta)$  is a differential field. The following are equivalent:

- (0) If  $\delta$  extends to L, then L/K is separable.
- (1) If  $\delta$  extends to L, and L/K is algebraic, then L/K is separable.
- (2)  $(K, \delta)$  is differentially perfect.

*Proof.* We may assume that char K = p. Trivially, (0) implies (1).

Suppose (2) fails. Then there is  $\beta$  in ker  $\delta \setminus K^p$ . Let  $L = K(\beta^{1/p})$ . Then L/K is algebraic; also  $L^p \subseteq \ker \delta$ , so  $\delta$  extends to L by Lemma 1.4 (1). Thus (1) fails.

Finally, if (2) holds, and  $\delta$  extends to L, then  $L^p$  is linearly disjoint from K over  $K^p$  by Lemma 1.4 (0), so L/K is separable; thus (0) holds.

The following theorem will turn out to be a special case of Corollary 2.7 below. (Rather, it is *almost* a special case; the weakening of Condition (2) in the theorem uses Lemma 1.2, which doesn't generalize to several commuting derivations.)

THEOREM 1.6. A differential field  $(K, \delta)$  is existentially closed just in case it satisfies the following conditions:

- (0) K is separably closed.
- (1)  $(K, \delta)$  is differentially perfect.
- (2) For every variety V over K, if there are rational maps



for some n, where  $\phi$  is dominant and separable, then V has a K-rational point P such that  $\phi$  and  $\psi$  are regular at P, and

$$\delta \circ \phi(P) = \psi(P).$$

In Condition (2), it is sufficient to assume  $n = \dim V$ .

*Proof.* Existentially closed differential fields meet Condition (0) by Fact 1.1 (2) and Lemma 1.2; they meet Condition (1) by Lemmas 1.2 and 1.5.

Condition (2) is that if an *n*-tuple **x** of elements of K(V) extends to a separating transcendence-basis of this field over K, and **y** is an arbitrary *n*-tuple of elements of K(V), then V has a K-rational point **a** such that each member of each equation

(§) 
$$\delta(x^i(\mathbf{a})) = y^i(\mathbf{a})$$

is well-defined, and the equations hold.

Suppose for the moment that **a** is a *generic* point of V. Then the set of elements  $x^i(\mathbf{a})$  of  $K(\mathbf{a})$  extends to a separating transcendence-basis B of this

field over K. By Fact 1.1, we can extend  $\delta$  to  $K(\mathbf{a})$ . By Lemma 1.2 (2) then, since the  $y^i(\mathbf{a})$  are in  $K(\mathbf{a})$ , we can extend  $\delta$  so that the equations (§) hold and  $\delta$  maps all of B into  $K(\mathbf{a})$ . This extension makes  $K(\mathbf{a})$  a differential field by Lemma 1.2 (0).

Moreover, each of the  $x^i$  or  $y^i$  is an equivalence-class of quotients  $f_n/f_d$  or  $g_n/g_d$  of polynomials over K; so the equations (§) are implied by the satisfaction, by **a**, of some quantifier-free formulas of the form

$$(\delta f_{\rm n} \cdot f_{\rm d} - f_{\rm n} \cdot \delta f_{\rm d}) \cdot g_{\rm d} = f_{\rm d}^2 \cdot g_{\rm n} \wedge f_{\rm d} \neq 0 \wedge g_{\rm d} \neq 0$$

in the signature of rings with constants from K. Hence existentially closed differential fields meet Condition (2) as well.

Suppose conversely that  $(K, \delta)$  meets the given conditions. We have to look at primitive sentences over  $(K, \delta)$ . We can simplify such a sentence as in [17, Lemma 5.5]: we can replace the inequations by equations, using the Rabinowitsch-trick, and we can replace each derivative with a new variable. The result is the statement that a system

$$(\P) \qquad \qquad \bigwedge_{f} f = 0 \land \bigwedge_{i < k} \delta X^{i} = g^{i}$$

has a solution, where the (finitely numerous) f and the  $g^i$  are in the polynomialring  $K[X^0, \ldots, X^{r-1}]$  for some r, and  $k \leq r$ . Suppose the system (¶) has a solution **b** from an extension of  $(K, \delta)$ ; we have to find a K-rational solution.

Now, we are assuming that  $\delta$  extends to  $K(\mathbf{b})$  so as to map  $K(b^0, \ldots, b^{k-1})$  into  $K(\mathbf{b})$ . By Lemma 1.2 (3), we may assume that  $\delta$  has been extended so as to map all of  $K(\mathbf{b})$  into itself.

By Lemma 1.5, the extension  $K(\mathbf{b})/K$  is separable. Let  $(h^j(\mathbf{b}) : j < n)$ be a basis of  $K(\mathbf{b})/K$ , and say  $\delta h^j(\mathbf{b}) = q^j(\mathbf{b})$  when j < n, for some rational functions  $h^j$  and  $q^j$  over K. These equations determine the extension of  $\delta$ from K to  $K(\mathbf{b})$ . In particular, they determine the equations  $\delta b^i = g^i(\mathbf{b})$ where i < k. Indeed, let  $F^i$  be irreducible polynomials over K such that  $F^i(h^0(\mathbf{b}), \ldots, h^{n-1}(\mathbf{b}), b^i) = 0$ . By Fact 1.1, we have

$$\sum_{j < n} \partial_j F^i(h^0(\mathbf{b}), \dots, h^{n-1}(\mathbf{b}), b^i) \cdot q^j(\mathbf{b}) + \\ + \partial_n F^i(h^0(\mathbf{b}), \dots, h^{n-1}(\mathbf{b}), b^i) \cdot g^i(\mathbf{b}) + \\ + (F^i)^{\delta}(h^0(\mathbf{b}), \dots, h^{n-1}(\mathbf{b}), b^i) = 0,$$

and these equations can be solved for  $g^i(\mathbf{b})$ .

Let U be the algebraic set over K consisting of those specializations of **b** where the  $h^j$  and the  $q^j$  are well-defined and the  $\partial_n F^i(h^0, \ldots, h^{n-1}, X^i)$  are not 0. Suppose  $\mathbf{x} \in U$ . Then the  $x^i$  are separable over  $K(h^0(\mathbf{x}), \ldots, h^{n-1}(\mathbf{x}))$ when i < k; and if  $\delta$  extends to this field so that  $\delta h^j(\mathbf{x}) = q^j(\mathbf{x})$ , then  $\delta$ extends further to the  $x^i$ , and  $\delta x^i = g^i(\mathbf{x})$ .

Now, there is a variety V over K consisting of precisely one tuple  $(\mathbf{x}, \mathbf{y})$ for each **x** in U. By the weak form of Condition (2), with  $(h^0, \ldots, h^{n-1})$  as  $\phi$ , and with  $(q^0, \ldots, q^{n-1})$  as  $\psi$ , we can conclude that (¶) has a K-rational solution. 

In the weak form of Condition (2), if  $\phi$  is written as a tuple **c**, then there is a variety W with a generic point  $(\mathbf{c}, d)$  such that  $d \in K(\mathbf{c})^{\text{sep}}$ , and there is a birational map  $\chi: W \to V$  such that  $\phi \circ \chi$  is  $(\mathbf{x}, y) \mapsto \mathbf{x}$ . In Condition (2) then, we can replace  $\phi$  with  $\phi \circ \chi$ , and V with an open subset of W (namely, the set of regular points of  $\chi$ ). So, we can write the conditions of Theorem 1.6 in a more explicitly first-order way:

- (0)  $\forall x \exists y \ (f'(x) = 0 \lor f(y) = 0)$  for all polynomials f in one variable (over the universe).
- (1)  $\forall x \exists y \ (p \cdot 1 = 0 \land \delta x = 0 \to y^p = x)$  for all primes p.
- (2)  $\exists \mathbf{x} (f(\mathbf{x}) = 0 \land \bigwedge_{i \leq n} g^i(\mathbf{x}) \neq 0 \land \bigwedge_{i < n} g^i(\mathbf{x}) \cdot \delta x^i = h^i(\mathbf{x}))$  for all polynomials  $f, g^i$  and  $h^i$  in n+1 variables such that  $\partial_n f \neq 0$  and  $f \nmid g^i$ , for

all n in  $\omega$ .

So the theory DF of differential fields has a model-companion, DCF, which is the theory of **differentially closed fields** of arbitrary characteristic.

We shall generalize to several derivations in the next section. Meanwhile, for the sake of an analogy with difference-fields, we give an alternative axiomatization of DCF.

Let  $(K, \delta)$  be an arbitrary differential field. Suppose the variety V over K is the zero-set of the prime ideal I of the ring  $K[\mathbf{X}]$ . If f is in this ring, then  $\delta f \in K[\mathbf{X}, \delta \mathbf{X}]$ . The zero-set of all f and  $\delta f$  such that  $f \in I$  has been denoted  $\tau(V)$ , presumably by analogy with the tangent-bundle T(V); but here I shall just write  $\delta(V)$ . I shall also write  $\pi_0$  for the map  $(\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x} : \delta(V) \to V$ .

The next lemma (in case of positive characteristic) is related to [11, Fact 1.6].

LEMMA 1.7. Let  $(K, \delta)$  be a differential field. Suppose V is a variety over K containing a tuple **a**, and **b** is a tuple of the same length. If  $\delta$  extends to  $K(\mathbf{a})$  so that  $\delta \mathbf{a} = \mathbf{b}$ , then  $(\mathbf{a}, \mathbf{b}) \in \delta(V)$ . The converse holds, provided  $\mathbf{a}$  is a generic point of V.

*Proof.* See [12, ch. VIII, § 5], or use [8, ch. IV, § 6, Theorem 14, p. 172]. □

Certain generalizations of the lemma are not possible:

- Though  $\delta$  extend to  $K(\mathbf{a})$  so that  $\delta \mathbf{a} = \mathbf{b}$ , if char K = p, it may be that  $\delta$  does not extend further to  $K(\mathbf{a}, \mathbf{b})$ . For example, if  $\alpha$  is transcendental over K, we can define  $\delta(\alpha^p) = \alpha$ , but then  $\delta\alpha$  cannot be defined [11, Remark after Fact 1.6].
- The map  $\pi_0: \delta(V) \to V$  need not be dominant. Let  $K = \mathbb{F}_p(\alpha, \beta)$ . where  $\{\alpha, \beta\}$  is algebraically independent. Define  $\delta \alpha = \delta \beta = 1$ . Let

 $f = \alpha \cdot X^p + \beta \cdot Y^p$ , and let V be the zero-set of f. Since  $\delta f = X^p + Y^p$ , the image of  $\delta(V)$  under  $\pi_0$  is  $\{(0,0)\}$ .

In characteristic 0, the following can be seen as a corollary of [18, Theorem 2.1].

- THEOREM 1.8. In Theorem 1.6, we can replace Condition (2) with:
  - (3) For every variety V over K, if  $s: V \to \delta(V)$  is a rational section of  $\pi_0$ , then V has a K-rational point P such that  $s(P) = (P, \delta P)$ .

*Proof.* The necessity of Condition (3) is by Lemma 1.7. For its sufficiency, consider the system (¶)—with the attendant notation—of the proof of Theorem 1.6. In that proof, once the solution **b** is chosen, it is noted that, by Lemma 1.2 (3), we may assume that  $\delta$  maps **b** into  $K(\mathbf{b})$ . This means we may assume that  $g^i$  in  $K(\mathbf{X})$  exist also when  $k \leq i < r$  so that  $\delta b^i = g^i(\mathbf{b})$  for all i less than r. Let s be  $\mathbf{x} \mapsto (\mathbf{x}, \mathbf{g}(\mathbf{x}))$  on V. Then  $s(\mathbf{b}) \in \delta(V)$  by Lemma 1.7, so s is a section of  $\pi_0$ . Condition (3) now yields a K-rational solution of (¶).

Following [2, (1.1), p. 4] and [3, (0.6), pp. 3f.], we can refer to the pair (V, s) in Condition 3 as a  $\delta$ -variety, and to the point P as a K-rational  $\delta$ -**point**. So the condition is that  $\delta$ -varieties have K-rational  $\delta$ -points. Also, if  $(V, s)^{\sharp} = \{P \in V : s(P) = (P, \delta P)\}$  as in [19, p. 3], then the condition is that  $(V, s)^{\sharp}$  contains a K-rational point.

A corollary will be needed for the uniform treatment in Section 4. First, note that, if f is a rational map on V, then  $\delta f$  can be understood as a rational map on  $\delta(V)$ . Moreover, by Lemma 1.7, if  $\phi$  is a rational map from V onto W, then  $(\phi, \delta \phi)$  is a rational map from  $\delta(V)$  into  $\delta(W)$  making the following diagram commute:

$$V \xleftarrow{\pi_0} \delta(V)$$

$$\phi \downarrow \qquad \qquad \downarrow (\phi, \delta \phi)$$

$$W \xleftarrow{\pi_0} \delta(W)$$

COROLLARY 1.9. In Theorem 1.6, we can replace Condition (2) with:

(4) If  $\phi: V \to W$  is a rational map of varieties over K, and if  $s: V \to \delta(V)$  is a rational section of  $\pi_0$ , then V has a K-rational point P such that  $\delta\phi \circ s(P) = \delta \circ \phi(P)$ .

It is sufficient to require  $\phi$  to be dominant.

*Proof.* Condition (4) is sufficient, since Condition (3) is the special case when  $\phi$  is the identity. For the necessity, suppose **b** is a generic point of V. Then  $\delta$  extends to  $K(\mathbf{b})$  so that  $(\mathbf{b}, \delta \mathbf{b}) = s(\mathbf{b})$ . Hence  $\delta \circ \phi(\mathbf{b}) = \delta \phi(\mathbf{b}, \delta \mathbf{b}) = \delta \phi \circ s(\mathbf{b})$ .

#### 2. Fields with several derivations

We can generalize Theorem 1.6 to several derivations, because we can generalize the relevant arguments of [17] to arbitrary characteristic. Indeed, let us remove from [17] the blanket assumption that rings and fields have characteristic 0. In particular, let us allow models of  $DF^m$  to have any characteristic. (We can specify characteristic with a subscript, as in  $DF_0^m$  or  $DF_p^m$ .) In characteristic p, all transcendence-bases should be replaced with p-bases, and 'transcendence-degree' should be read as p-dimension—the size of a p-basis. Also, the following additional changes should be made:

In [17, Fact 3.1], by Lemmas 1.2 and 1.4 above, if char K = p, then the extension  $f \mapsto f^{\delta}$  exists just in case  $L^p$  is linearly disjoint from K over ker  $\delta$ ; such a condition is also required for the conclusion about more general extensions of  $\delta$ .

Now [17, Fact 3.3] is incorrect as it stands, by [22, Theorem 2]. But replace  $DF^1$  with the theory of *perfect* differential fields (with one derivation); then the claim holds by [22, Lemma 5].

In [17, Lemma 3.4], the field  $K^{\rm a}$  (that is,  $K^{\rm alg}$ ) should be  $K^{\rm sep}$ .

To generalize [17, Lemma 3.6], we generalize the definition of perfect: A model  $(K, D_0, \ldots, D_{m-1})$  of DF<sup>m</sup> can be called **(differentially) perfect** if char K = 0, or if char K = p and  $K^p = \bigcap_{i < m} \ker D_i$ . So being perfect here means satisfying the sentence

$$\forall x \exists y \ (p \cdot 1 = 0 \land \bigwedge_{i < m} D_i x = 0 \to y^p = x)$$

whenever p is prime. Let us refer to the theory of differentially perfect models of DF<sup>m</sup> as PDF<sup>m</sup>. In [17, Lemma 3.6], the theories PDF<sup>m</sup><sub>p</sub>  $\cup \{\alpha\}$  are consistent, having the models ( $\mathbb{F}_p(X^0, \ldots, X^{m-1}), \partial_0, \ldots, \partial_{m-1}$ ). Also, it is now PDF<sup>m</sup> $\cup$  $\{\alpha\}$  that has the amalgamation property. The proof in characteristic 0 should have noted that the fields  $L_i$  can and must be assumed free over K. The same is true in positive characteristic, but only by Lemma 2.3 below.

In [17, § 4], the first two sub-sections require no change. In particular, if  $(K, D_0, \ldots, D_{m-1}) \models \mathrm{DF}^m$ , and the  $D_i$  span E over K, then (K, E) is also called a differential field and is equipped with the derivation  $d : K \to E^*$  given by D(dx) = Dx; if char K = p, then (K, E) is perfect if and only if ker  $d \subseteq K^p$ .

In [17, Lemma 4.7], Condition (1) could have been given more simply as: There is also an additive map  $d: E^* \to A^2(E)$  such that  $d(d y \cdot x) = d x \wedge d y$ when  $x, y \in K$ . It should be noted then that, if this condition holds, so that (0) also holds, then d is given by the equation near the bottom of [17, p. 933], so that

$$(D_0, D_1) d\theta = D_0(D_1\theta) - D_1(D_0\theta) - [D_0, D_1]\theta$$

when  $\theta \in E^*$ . This observation is needed in proving [17, Lemma 4.9].

In the sub-section called 'Extensions' [17, p. 935], the discussion leading up to the 'Frobenius Theorem' [17, 4.11] needs some modification. It is assumed here that (K, E) is a differential field, and L/K is a field-extension. If char K = p, then possibly the restriction-map  $D \mapsto D|_K : \text{Der}(L) \to$  $L \otimes_K \text{Der}(K)$  is not surjective. The definition of Der(L/E) stands in any case; but the ensuing [17, Lemma 4.10] for characteristic 0 should be supplemented with the following, where p-dim(L/K) denotes the p-dimension of L/K if char K = p:

LEMMA 2.1. Suppose (K, E) is a differential field, char K = p, and L/K is a field-extension.

(0) If L/K is separable, then the map

$$\Psi: D \longmapsto D|_K: \operatorname{Der}(L/E) \longrightarrow L \otimes_K E$$

is surjective;

(1) if  $\Psi$  is surjective, then  $\dim_L \operatorname{Der}(L/E) = \dim_K E + p \cdot \dim(L/K)$ .

*Proof.* By Lemma 1.4 (1), the map is surjective; by [17, Fact 3.1] for characteristic p, or Lemma 1.3, the dimension of its kernel is p-dim(L/K).

In the remainder of [17, § 4], if char K = p, then it should be assumed that the map  $\Psi$  in Lemma 2.1 *is* surjective. It should be noted that Der(L/E) is naturally isomorphic to the dual of  $\Omega^1_{L/E}$ . If  $(x^j : j < \mu)$  is a basis of L/K, then  $(d x^j : j < \mu)$  is a basis of  $\Omega^1_{L/E}$ —not simply, (as wrongly suggested six lines before [17, Lemma 4.11],) but modulo  $E^* \otimes_K L$ , by [17, Fact 3.1]. In fact,

$$\Omega^1_{L/E} \cong \Omega^1_{L/K} \oplus (E^* \otimes_K L),$$

though not canonically;  $E^* \otimes_K L$  is the kernel of the restriction-map from  $\Omega^1_{L/E}$  to  $\Omega^1_{L/K}$  (whose dual is the embedding of Der(L/K) in Der(L/E)).

Again, [17, Lemma 4.12] can be taken as a definition of *integrable*. (A minor correction in the proof is that [17, p. 937, l. 3] should read '...its further restriction to K is in  $L' \otimes_K E...$ '.) In particular, if  $\Omega^1_{L/E}$  has an integrable subspace, then the map  $\Psi$  in Lemma 2.1 is surjective.

We now have the following generalization of Lemma 1.4 above.

LEMMA 2.2. Suppose  $(K, D_0, \ldots, D_{m-1})$  is a differential field, the  $D_i$  span E, and  $K \subseteq L$ .

- (0) If each  $D_i$  extends to  $\tilde{D}_i$  on L, then  $\bigcap_{i < m} \ker \tilde{D}_i$  is linearly disjoint from K over ker d.
- (1) If char K = p, and  $L^p(\ker d)$  is linearly disjoint from K over kerd, then (K, E) has an extension  $(L, \tilde{E})$ .

*Proof.* Claim (0) is [9, ch. II, § 1, Corollary 1, p. 87]. Alternatively, under the assumptions, each ker  $\tilde{D}_i$  is linearly disjoint from K over ker  $D_i$ , by

Lemma 1.4 (0). Suppose then that  $(\mathbf{a}, b)$  from  $\bigcap_{i < m} \ker D_i$  is minimally linearly dependent over K. Then  $\mathbf{a}$  is independent over K, but b is a  $(\ker D_i)$ linear combination of  $\mathbf{a}$  for each i. It should be the *same* combination in each case (otherwise subtraction yields a dependence for  $\mathbf{a}$ ); so the combination is over  $\bigcap_{i < m} \ker D_i$ , which is ker d.

Suppose now that the hypotheses of (1) hold. Then  $L^p(\ker D_i)$  is linearly disjoint from K over  $\ker D_i$  (by [7, Lemma VI.2.3, p. 319]) for each i less than n; so each  $D_i$  extends to an element of  $\operatorname{Der}(L)$ , and  $E^* \otimes_K L$  embeds in  $\Omega^1_{L/E}$ . Let B be a p-basis of L/K. Let W be the span of the dx such that  $x \in B$ . Then  $\Omega^1_{L/E} = W \oplus (E^* \otimes_K L)$ , and  $dW = \Omega^1_{L/E} \wedge W$ , so  $(L, \ker W)$  extends (K, E) by [17, Theorem 4.11].

Then Lemma 1.5 also generalizes:

LEMMA 2.3. Suppose (K, E) is a differential field. The following are equivalent:

- (0) If  $(K, E) \subseteq (L, \tilde{E})$ , then L/K is separable.
- (1) If  $(K, E) \subseteq (L, \tilde{E})$ , and L/K is algebraic, then L/K is separable.
- (2) (K, E) is differentially perfect.

*Proof.* As for Lemma 1.5.

The generalization of [17, Lemma 5.2] is the following:

LEMMA 2.4. In any existentially closed model of  $DF^m$ , the  $D_i$  are linearly independent, the model itself is differentially perfect, and the underlying field is separably closed.

*Proof.* The original proof of [17, Lemma 5.2] yields the first and last points; the middle point is by Lemma 2.3.  $\Box$ 

In the ensuing discussion in [17], we may therefore assume that  $(K, D_0, \ldots, D_{m-1})$  is a model of  $\text{PDF}^m \cup \{\alpha\} \cup \text{SCF}$  (where SCF is the theory of separably closed fields). We can drop [17, Theorem 5.3] for now. We can generalize [17, Lemma 5.5] as Theorem 2.5 below.

First, I correct a flaw in the definition of 'eliminable' on [17, p. 939]. There (and everywhere else in the paper), the word 'place' should be understood more generally than usual. If  $W \subseteq \Omega^1_{L/E}$ , and L is  $K(\mathbf{a})$ , and  $\mathbf{b}$  is a specialization of  $\mathbf{a}$  over K, then W is **eliminable** if it vanishes under the substitutionmap  $f(\mathbf{a}) \mapsto f(\mathbf{b})$ . This map is well-defined on the localization  $\mathfrak{O}$  of  $K[\mathbf{a}]$ at the ideal  $\{f(\mathbf{a}) : f(\mathbf{b}) = 0\}$ . This ideal generates in  $\mathfrak{O}$  its unique maximal ideal  $\mathfrak{m}$ , the field  $\mathfrak{O}/\mathfrak{m}$  being isomorphic to  $K(\mathbf{b})$  over K. Now,  $\mathfrak{O}$  is *not* generally a valuation-ring; but nothing in [17] requires it to be. So, for 'valuation-', read 'local' everywhere. In particular, in [17, Lemma 5.4], the ring  $\mathfrak{O}$  need only be a local ring such that  $K \subseteq \mathfrak{O} \subseteq L$ . (Strictly,  $\mathfrak{O}$  need

1334

not even be local;  $\mathfrak{m}$  should just be *some* maximal ideal.) For the additive map of that lemma to be surjective, it is enough that the extension L/K be separable; but this case is all that is needed for the following.

THEOREM 2.5. The existentially closed models of  $DF^m$  are just the differential fields  $(K, D_0, \ldots, D_{m-1})$  such that:

- (0) K is separably closed;
- (1)  $(K, D_0, \ldots, D_{m-1})$  is differentially perfect;
- (2) the span E over K of the derivations  $D_i$  has dimension m;
- (3) for any finitely generated extension L of K, every integrable subspace W of Ω<sup>1</sup><sub>L/E</sub> is eliminable.

The last condition can be weakened by requiring W to have, modulo  $E^* \otimes_K L$ , a basis of the form  $(d X^k : k < r)$ , where  $(X^k : k < r)$  is independent in L/K.

*Proof.* Except for the weakening of Condition (3), the argument of [17] remains correct in arbitrary characteristic, provided that we make the terminological corrections just noted. (Also, on [17, p. 940, l. -1], the word 'integrable' should be 'eliminable'.)

In the original argument that, with the other conditions, the weak form of (3) is sufficient, an integrable subspace W of some  $\Omega_{L/E}^1$  is found. Here  $L = K(\mathbf{a}, \mathbf{b})$ ;—rather,  $L = K(A \cup B)$  for some finite sets A and B, and  $W = \langle d a - \theta^a : a \in A \rangle^L$  for some  $\theta^a$  in  $E^* \otimes_K L$ . Then L/K is separable, by [17, Lemma 4.12] and Lemma 2.3. Suppose char K = p. If  $a \in L^p \cap A$ , then  $\theta^a = 0$ . Let  $W' = \langle d a - \theta^a : a \in A \setminus L^p \rangle^L$ . Since W is integrable, so is W'; also, if W' is eliminable, then so is W. Now, A has a p-independent subset C such that  $W' = \langle d a - \theta^a : a \in C \rangle^L$ , by Lemma 1.3. So the weak form of Condition (3) is enough in general.

Let (K, E) be a differential field such that dim E = m, and let V be a variety over K. A rational map from V to  $\mathbb{A}^m$  over K is an element of  $\mathbb{A}^m(K(V))$ . This space can also be written  $\mathbb{A}^m(K) \otimes_K K(V)$ . Now,  $\mathbb{A}^m(K) \cong_K E^*$  as vector-spaces. Let us say that the elements of  $E^* \otimes_K K(V)$  are the **rational maps** from V to  $E^*$ . If V is separable, then this space embeds in  $\Omega^1_{K(V)/E}$ . Then [17, Theorem 5.7] becomes the following.

THEOREM 2.6. Let (K, E) be a differential field, and let V be a variety over K. Suppose **x** is a dominant separable rational map from V to  $\mathbb{A}^r$ , and **y** is an r-tuple of rational maps from V to  $E^*$ . Let W be the subspace of  $\Omega^1_{K(V)/E}$  spanned by the forms  $y^i - dx^i$ . Then the following are equivalent:

- (0) W is integrable, that is, the differential field (K, E) has an extension in which  $dx^i = y^i$  in each case.
- (1) The subspace dW of  $\Omega^2_{K(V)/E}$  is linearly disjoint from  $A^2(E) \otimes_K K(V)$ .

*Proof.* The tuple **x** is an initial segment of a basis  $(x^k : k < n)$  of K(V)/K. With the  $x^k$  in place of the  $X^k$ , the argument of [17, Theorem 5.7] now goes through. Condition (3) there is equivalent to Condition (1) above, by [17, Lemma 4.8].

In the lemma, let us denote dW by  $d\mathbf{y}/d\mathbf{x}$ . Then Condition (1) is that  $d\mathbf{y}/d\mathbf{x}$  contains no non-trivial rational map from V to  $A^2(E)$ .

To Theorem 2.5, we now have:

COROLLARY 2.7. The existentially closed models of  $DF^m$  are just the differential fields  $(K, D_0, \ldots, D_{m-1})$  such that:

- (0) K is separably closed;
- (1)  $(K, D_0, \ldots, D_{m-1})$  is differentially perfect;
- (2) the span E over K of the derivations  $D_i$  has dimension m;
- (3) for every variety V over K, if there are rational maps



where  $\phi$  is dominant and separable, then V has a K-rational point P such that  $d \circ \phi(P) = \psi(P)$ , provided that  $d \psi/d \phi$  does not contain a non-trivial rational map from V to  $A^2(E)$ .

As the conditions are first-order,  $DF^m$  is companionable.

*Proof.* The maps  $\phi$  and  $\psi$  correspond to **x** and **y** in Theorem 2.6.

REMARK 2.8. An element of  $A^q(E) \otimes_K K(V)$  induces, for each field L that includes K, a partial map from V(L) to  $A^q(E) \otimes_K L$ . More generally, an element of  $\Omega^q_{K(V)/E}$  can be written as  $\theta(\mathbf{b})$ , where **b** is a generic point of V; by [17, Lemma 5.4], if  $\mathbf{a} \in V(L)$ , then we have a partial map

$$\theta(\mathbf{b}) \longmapsto \theta(\mathbf{a}) : \Omega^q_{K(V)/E} \dashrightarrow \Omega^q_{L/E}.$$

So a particular form  $\theta(\mathbf{b})$  induces

$$\mathbf{a} \longmapsto \theta(\mathbf{a}) : V(L) \dashrightarrow \Omega^q_{L/E}$$

As we can consider  $\mathbb{A}^m$  as a functor  $L \mapsto \mathbb{A}^m(L)$  from the category of fields that include K (with inclusions) to the category of vector-spaces (with inclusions), so we have a functor  $L \mapsto \Omega^q_{L/E}$ , which we might denote  $\Omega^q_E$ . But this is not a variety, and the map  $\mathbf{a} \mapsto \theta(\mathbf{a})$  is not generally a rational map from Vto  $\Omega^q_E$ . Indeed, the map  $\mathbf{a} \mapsto \theta(\mathbf{a})$  generally involves differentiation, as when  $\theta$  is d f for some non-constant f in K(V): then  $\theta(\mathbf{a}) = d(f(\mathbf{a}))$ .

# 3. Difference-fields

If  $\sigma$  is an endomorphism of the field K, then: (0)  $\sigma$  extends to the algebraic closure of K; (1)  $\sigma$  extends to a field of which it is an *automorphism*; (2) if  $\{\alpha^0, \ldots, \alpha^{d-1}\}$  is algebraically independent over K, then  $\sigma$  extends uniquely to  $K(\alpha^0, \ldots, \alpha^{d-1})$  after *algebraically independent* choices are made for the  $\sigma \alpha^i$ . As mentioned in Section 0, these give us the following, a slight simplification of a known result:

THEOREM 3.1. The difference-field  $(K, \sigma)$  is existentially closed just in case the following hold:

- (0) K is algebraically closed.
- (1)  $\sigma$  is surjective.
- (2) If V and W are irreducible varieties over K for which there are dominant rational maps



then V has a K-rational point P such that  $\phi(P)^{\sigma} = \psi(P)$ .

*Proof.* For the necessity of Condition (2), let **a** and **c** be generic points of W and  $W^{\sigma}$ ; then as in [13, § 1.5, Lemma 5], we can extend  $\sigma$  to an isomorphism from  $K(\mathbf{a})$  to  $K(\mathbf{c})$ , which extends further to an automorphism of a field that includes K(V).

For the sufficiency of the conditions, follow the pattern of the proof of Theorem 1.6. Every primitive sentence over a difference-field  $(K, \sigma)$  says that a system

(||) 
$$\bigwedge_{f} f = 0 \land \bigwedge_{i < k} (X^{i})^{\sigma} = g^{i}$$

has a solution, where the f and the  $g^i$  are in  $K[X^0, \ldots, X^{r-1}]$ , and  $k \leq r$ . Suppose the system (||) has a solution **b**. Let V have generic point **b** over K, and let W have generic point  $(b^i : i < k)$ . By Condition (1), we have that  $(g^i(\mathbf{b}) : i < k)$  is a generic point of  $W^{\sigma}$ ; so we can apply Condition (2), letting  $\phi$  be  $\mathbf{x} \mapsto (x^i : i < k)$ , and letting  $\psi$  be  $\mathbf{x} \mapsto (g^i(\mathbf{x}) : i < k)$ .

In the original geometric treatment, Condition (2) is weakened by the further hypothesis that  $\phi$  and  $\psi$  are the projections from a sub-variety of  $W \times W^{\sigma}$ . The weakened condition is still sufficient, since, in the proof, for the system (||), one may assume that r = 2k, and each  $g^i$  is  $X^{k+i}$ .

The same assumption can be made for the system  $(\P)$  in the proof of Theorem 1.6; then one is led to the axioms in [18]. A similar assumption

could be made in the presence of several derivations, but this was not fruitful in the search for Corollary 2.7.

We have a map  $f \mapsto f^{\sigma} - f : K[\mathbf{X}] \to K[\mathbf{X}, \mathbf{X}^{\sigma}]$ . We can write the co-domain as a quotient

$$K[\mathbf{X}, \mathbf{X}^{\sigma}, D\mathbf{X}]/(D\mathbf{X} - \mathbf{X}^{\sigma} + \mathbf{X}),$$

or as  $K[\mathbf{X}, D\mathbf{X}]$ ; in the latter case, we can write  $f^{\sigma} - f$  as Df. For a variety V over K, we can define D(V) by analogy with  $\delta(V)$ . Then we have an isomorphism

$$(\mathbf{x}, \mathbf{y}) \mapsto (\mathbf{x}, \mathbf{x} + \mathbf{y}) : D(V) \to V \times V^{\sigma}.$$

Let  $\rho$  be the composition of this with the projection onto  $V^{\sigma}$ , so  $\rho(\mathbf{x}, \mathbf{y}) = \mathbf{x} + \mathbf{y}$ . As with  $\delta(V)$ , let  $\pi_0$  be the projection of D(V) onto V. We can now recast Theorem 3.1:

COROLLARY 3.2. In Theorem 3.1, we can replace Condition (2) with:

(3) If  $\phi: V \to W$  is a dominant rational map of varieties over K, and  $\psi: V \to D(W)$  is a rational map such that  $\rho \circ \psi$  is dominant and  $\pi_0 \circ \psi = \phi$ , then V has a K-rational point P such that  $\psi(P) = (\phi(P), D \circ \phi(P))$ .

Thus, both Corollaries 1.9 and 3.2 concern a commutative diagram



where  $\phi$  is dominant. In the former case, where D is a derivation, the map  $\psi$  should have a section of the projection of D(V) as a factor. In the latter case,  $\rho \circ \psi$  should be dominant.

# 4. *D*-fields

As in Section 0, we can equip any *D*-field (K, e, D) with the map  $x \mapsto x + e \cdot Dx$ , which is an endomorphism  $\sigma$  of K. As mentioned in [20, Remark 2.6], we can now describe D as an additive map satisfying the identity

$$(**) D(x \cdot y) = Dx \cdot y + x^{\sigma} \cdot Dy.$$

Let an **operator-field** be a structure  $(K, \sigma, D, \delta)$ , where  $\sigma$  and  $\delta$  are respectively an endomorphism and a derivation of K, and both (\*\*) and

$$(\dagger\dagger) \qquad \qquad \delta x + x^{\sigma} = x + Dx$$

are identities. Then for any endomorphism  $\sigma$  and derivation  $\delta$  of K, the structures  $(K, \sigma, \sigma - \mathrm{id}_K, 0)$  and  $(K, \mathrm{id}_K, \delta, \delta)$  are operator-fields. In fact, these are the only possibilities:

THEOREM 4.1. Suppose  $(K, \sigma, D, \delta)$  is an operator-field. Then either  $\sigma = id_K$  and  $D = \delta$ , or  $\delta = 0$  and  $D = \sigma - id_K$ .

*Proof.* From (\*\*), since xy = yx, we get

$$Dx \cdot y + x^{\sigma} \cdot Dy = D(x \cdot y) = Dy \cdot x + y^{\sigma} \cdot Dx.$$

Therefore

$$(x^{\sigma} - x) \cdot Dy = (y^{\sigma} - y) \cdot Dx,$$

that is, D and  $\sigma - \mathrm{id}_K$  are linearly dependent. By ( $\dagger \dagger$ ) then,  $\delta$  and  $\sigma - \mathrm{id}_K$  are linearly dependent. So either  $\delta = 0$ , or  $e \cdot \delta = \sigma - \mathrm{id}_K$  for some non-zero e. In the latter case,  $(K, e, \delta)$  is a D-field, and as we have (\*\*), so we have the identity

$$\delta(x \cdot y) = \delta x \cdot y + x^{\sigma} \cdot \delta y$$

this holds trivially if  $\delta = 0$ . Since  $\delta$  is also a derivation, we have  $\delta(x \cdot y) = \delta x \cdot y + x \cdot \delta y$ , so

$$(\ddagger\ddagger) \qquad (x^{\sigma} - x) \cdot \delta y = 0,$$

that is, either  $\sigma = \mathrm{id}_K$  or  $\delta = 0$ . The remainder follows from (††).

Note then that the name 'operator-field' is not ideal, since it doesn't cover fields with derivations of a power of the Frobenius map.

Let OF be the theory of operator-fields, and let  $\theta$  be the sentence  $\forall x \ x^{\sigma} = x$ . Then OF has a model-companion, OF<sup>\*</sup>, whose axioms are:

$$OF \cup \{\neg \theta \to \gamma : \gamma \in ACFA\} \cup \{\theta \to \gamma : \gamma \in DCF\}.$$

Towards a more uniform axiomatization, let  $(K, \sigma, D, \delta)$  be an operator-field in which  $D \neq 0$ , and let V be a variety over K. We can define

$$(D,\delta)V = \begin{cases} \{(\mathbf{x},\mathbf{y},\mathbf{0}) : (\mathbf{x},\mathbf{y}) \in D(V)\}, & \text{if } \delta = 0 \text{ on } K; \\ \{(\mathbf{x},\mathbf{y},\mathbf{y}) : (\mathbf{x},\mathbf{y}) \in D(V)\}, & \text{if } \delta = D \text{ on } K. \end{cases}$$

This is not uniform either; but we can also define  $(D, \delta)V$  as the zero-set of the polynomials f, Df,  $\delta f$  and  $\delta g \cdot (Dh - \delta h)$  in  $K[\mathbf{X}, D\mathbf{X}, \delta \mathbf{X}]$ , where the polynomials f define V, and the g and h are from  $K \cup \mathbf{X}$ . We have a map  $\tau$  from  $(D, \delta)V$  to  $V^{\sigma}$  taking  $(\mathbf{x}, \mathbf{y}, \mathbf{z})$  to  $\mathbf{x} + \mathbf{y} - \mathbf{z}$ . We also have a map  $v : (D, \delta)V \to \delta(V)$  taking  $(\mathbf{x}, \mathbf{y}, \mathbf{z})$  to  $(\mathbf{x}, \mathbf{z})$ .

THEOREM 4.2. The existentially closed models of OF are just those models  $(K, D, \delta, \sigma)$  such that the following conditions hold:

- (0) D is non-trivial.
- (1) K is separably closed.
- (2)  $(K, \delta)$  is perfect.
- (3)  $\sigma$  is surjective.

(4) Suppose  $\phi : V \to W$  and  $\chi : V \to (D, \delta)W$  are rational maps of varieties over K, and s is a section of  $\pi_0 : \delta(V) \to V$ , such that the diagram

$$V \xrightarrow{s} \delta(V)$$

$$\phi \downarrow \qquad \chi \qquad \downarrow^{(\phi,\delta\phi)}$$

$$W \xleftarrow{\pi_0} \delta(W) \xleftarrow{\upsilon} (D,\delta)W \xrightarrow{\tau} W^{\sigma}$$

commutes and  $\phi$  and  $\tau \circ \chi$  are dominant. Then V has a K-rational point P such that  $\chi(P) = (\phi(P), D \circ \phi(P), \delta \circ \phi(P)).$ 

*Proof.* The claim follows from Corollaries 1.9 and 3.2. Consider in particular the diagram in Condition (4).

Suppose first that  $\delta = 0$  on K. Then  $\chi$  is  $\mathbf{x} \mapsto (\psi(\mathbf{x}), \mathbf{0})$  for some  $\psi : V \to D(W)$ , and then  $\tau \circ \chi$  is  $\rho \circ \psi$ . Also, v is  $(\mathbf{x}, \mathbf{y}, \mathbf{0}) \mapsto (\mathbf{x}, \mathbf{0})$ . So the condition of Corollary 3.2 is satisfied. Also, if this condition is satisfied, then we can let s be  $\mathbf{x} \mapsto (\mathbf{x}, \mathbf{0})$ , so that the present Condition (4) is satisfied.

Now suppose instead  $\delta = D$ . Then  $\chi$  is  $(\psi, \pi_1 \circ \psi)$ , where  $\psi$  is  $\upsilon \circ \chi$ . Hence  $\tau \circ \chi$  is  $\phi$ .

In each case then, Condition (4) is equivalent to the corresponding condition in the respective Corollary.  $\Box$ 

### 5. Two operators together

From the theory OF, if we remove the connection between  $\delta$  and  $\sigma$  given by ( $\ddagger$ ), then we lose companionability. Let us say that a structure  $(K, \delta, \sigma)$ is a **differential and difference-field** if  $(K, \delta)$  is a differential field, and  $(K, \sigma)$  is a difference-field. These structures compose an elementary class, say with theory DDF. A required characteristic can be indicated, as usual, by a subscript. If  $(K, \delta, \sigma) \models \text{DDF}_p$ , then  $K^p \subseteq \ker(\delta \circ \sigma^n)$  for each n in  $\omega$ .

LEMMA 5.1. Suppose  $(K, \delta, \sigma)$  is an existentially closed model of DDF. Then:

- (0) K is separably closed;
- (1)  $\bigcap_{n \in \omega} \ker(\delta \circ \sigma^n) \subseteq K^p$ , if char K = p;
- (2)  $K/K^{\sigma}$  is purely inseparable.

Proof. Condition (0) is necessary by Theorems 1.6 and 3.1. For the necessity of (1), suppose  $\alpha \in \bigcap_{n \in \omega} \ker(\delta \circ \sigma^n) \setminus K^p$ , and let  $L = K((\alpha^{\sigma^n})^{p^{-1}} : n \in \omega)$ . Then  $\delta$  extends to L by Lemma 1.4 (1), and  $\sigma$  extends to L so that  $((\alpha^{\sigma^n})^{p^{-1}})^{\sigma} = (\alpha^{\sigma^{n+1}})^{p^{-1}}$ . For (2), suppose  $\beta$  in K is separable over  $K^{\sigma}$ . If  $\beta$  is algebraic over  $K^{\sigma}$ , with minimal polynomial  $f^{\sigma}$ , then the roots of f are in K by Condition (0), and  $\beta$  is the image under  $\sigma$  of one of them. If  $\beta$  is

transcendental over  $K^{\sigma}$ , then let  $\alpha$  be transcendental over K; we can extend  $\delta$  and  $\sigma$  to  $K(\alpha)$  by defining  $\delta \alpha = 0$  and  $\alpha^{\sigma} = \beta$ .

For any prime p, let  $\Gamma_p$  be the type

$$\{p \cdot 1 = 0\} \cup \{\delta(x^{\sigma^n}) = 0 : n \in \omega\} \cup \{\forall y \ y^p \neq x\}.$$

Then Condition (1) in Lemma 5.1 is just that  $(K, \delta, \sigma)$  omits each  $\Gamma_p$ . Let  $\Delta_p$  be the type

$$\{p \cdot 1 = 0\} \cup \{\forall y \ y^{\sigma} \neq x^{p^n} : n \in \omega\}.$$

Condition (2) in the lemma is that each  $\Delta_p$  is omitted.

THEOREM 5.2. No definitional expansion of  $DDF_p$  is companionable.

*Proof.* Let  $K = \mathbb{F}_p(X_n : n \in \omega)$ , and let  $\sigma$  be the endomorphism  $X_n \mapsto X_{n+1}$ . For any k in  $\omega$ , a derivation  $\delta_k$  of K can be defined by

$$\delta_k X_n = \begin{cases} 1, & \text{if } k \leqslant n; \\ 0, & \text{if } n < k. \end{cases}$$

Suppose if possible that T is a definitional expansion of  $\text{DDF}_p$  with a modelcompanion  $T^*$ . Each structure  $(K, \delta_k, \sigma)$  expands to a model of T; this model has an extension  $\mathfrak{M}_k$  that is a model of  $T^*$ . Writing  $X_0$  as X, we have  $X \notin M_k^p$ , since  $\delta_k(X^{\sigma^k}) \neq 0$ ; but for each n, for almost all k, we have  $\delta_k(X^{\sigma^n}) = 0$ . Hence, in a non-principal ultra-product  $\mathfrak{N}$  of the structures  $\mathfrak{M}_k$ , we have  $X \notin N^p$ , although  $\delta(X^{\sigma^n}) = 0$  for all n; so X realizes  $\Gamma_p$  in  $\mathfrak{N}$ . But the reduct of  $\mathfrak{N}$  to the signature of DDF is an existentially closed model of this theory, contradicting Lemma 5.1.

We can argue similarly using  $\Delta_p$ : On  $\mathbb{F}_p(X)$ , let  $\sigma$  be  $x \mapsto x^p$ , and let  $\delta$  be  $f \mapsto f'$ . Say  $(\mathbb{F}_p(X), \delta, \sigma^n) \subseteq (K_n, \delta_n, \sigma_n)$ . Then  $X^{p^{-1}} \notin K_n$ , since  $\delta X = 1$ , so  $\{X^{p^{-k-1}} : k < n\} \cap K_n = \emptyset$ ; therefore  $\{X^{p^k} : k < n\} \cap K_n^{\sigma_n} = \emptyset$ . Hence X realizes  $\Delta_p$  in a non-principal ultra-product of the  $(K_n, \delta_n, \sigma_n)$ .

No definitional expansion of  $\text{DDF}_p \cup \{\forall x \exists y \ y^{\sigma} = x\}$  is companionable either. The changes needed in the argument are that, in Lemma 5.1, in Condition (1), the intersection should be over n in  $\mathbb{Z}$ ; and K in the proof of Theorem 5.2 should be  $\mathbb{F}_p(X_n : n \in \mathbb{Z})$ .

There is no problem in characteristic 0:

THEOREM 5.3. A model  $(K, \delta, \sigma)$  of DDF<sub>0</sub> is existentially closed just in case the following conditions hold:

- (0) K is algebraically closed.
- (1)  $\sigma$  is surjective.

(2) For all varieties V and W over K, if there are rational maps



where  $\phi$  and  $\psi$  are dominant, and s is a section of  $\pi_0$ , then V contains a K-rational point P such that  $s(P) = (P, \delta P)$  and  $\phi(P)^{\sigma} = \psi(P)$ .

*Proof.* The necessity of the conditions is by Lemma 5.1 and because, in Condition (2), the variety V has a generic point with the desired property. For the sufficiency of (2), note that every primitive sentence over  $(K, \delta, \sigma)$  can be written as the statement that a system

$$\bigwedge_f f = 0 \land \bigwedge_{i < k} ((X^i)^\sigma = g^i \land \delta X^i = h^i)$$

has a solution. Now follow the proofs of Theorems 1.8 and 3.1.

The theory  $OF \cup \{p \cdot 1 \neq 0 : p \text{ prime}\}$  is the theory of fields of characteristic zero with a jet-operator; its model-companion is  $OF^* \cup \{p \cdot 1 \neq 0 : p \text{ prime}\}$ . Because of the derivations of Frobenius, there is no corresponding theory of fields of characteristic p with a jet-operator. However, we can look at the structures  $(K, \delta, \sigma)$  where  $(K, \sigma)$  is a difference-field, and  $\delta$  is an additive map such that Equation ( $\dagger$ ) of Section 0 is an identity. Then these structures satisfy:

$$\forall x \ \delta(x^{n+1}) = (n+1)(x^{\sigma})^n \delta x,$$
  
$$\forall x \ \forall y \ (x \cdot y = 1 \to (x^{\sigma})^2 \cdot \delta y = -\delta x);$$

In particular, when defined on a domain,  $\delta$  extends uniquely to the quotient-field. Moreover, the formula of Fact 1.1 (0) becomes:

$$\delta(f(\mathbf{a})) = \sum_{j < n} (\partial_j f(\mathbf{a}))^{\sigma} \cdot \delta a^j + f^{\delta}(\mathbf{a}).$$

All of this is noted in [11] in case  $\sigma$  is a power of  $x \mapsto x^p$ . The arguments of the present section go through to show that the theory of these structures is also not companionable, even if  $\sigma$  is surjective.

#### References

- S. Buechler, *Essential stability theory*, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1996. MR 1416106 (98j:03050)
- [2] A. Buium, Differential function fields and moduli of algebraic varieties, Lecture Notes in Mathematics, vol. 1226, Springer-Verlag, Berlin, 1986. MR 874111 (88e:14010)
- [3] \_\_\_\_\_, Differential algebraic groups of finite dimension, Lecture Notes in Mathematics, vol. 1506, Springer-Verlag, Berlin, 1992. MR 1176753 (93i:12010)

- [4] \_\_\_\_\_, Arithmetic analogues of derivations, J. Algebra 198 (1997), 290–299.
   MR 1482984 (98k:12004)
- Z. Chatzidakis and E. Hrushovski, Model theory of difference fields, Trans. Amer. Math. Soc. 351 (1999), 2997–3071. MR 1652269 (2000f:03109)
- [6] D. Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. MR 1322960 (97a:13001)
- [7] T. W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, Springer-Verlag, New York, 1980. MR 600654 (82a:00006)
- [8] N. Jacobson, Lectures in abstract algebra. III, Springer-Verlag, New York, 1975. MR 0392906 (52 #13719)
- [9] E. R. Kolchin, Differential algebra and algebraic groups, Academic Press, New York, 1973. MR 0568864 (58 #27929)
- [10] P. Kowalski, Some model-theoretic and geometric properties of fields with jet operators. PhD thesis, Wrocław University, 2001.
- [11] \_\_\_\_\_, Derivations of the Frobenius map, preprint, 2004.
- [12] S. Lang, Algebra, Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556 (2003e:00003)
- [13] A. Macintyre, Generic automorphisms of fields, Ann. Pure Appl. Logic 88 (1997), 165–180. MR 1600899 (99c:03046)
- S. Mac Lane, A lattice formulation for transcendence degrees and p-bases, Duke Math. J. 4 (1938), 455–468; reprinted in Selected Papers.
- [15] \_\_\_\_\_, Modular fields I: Separating transcendence bases, Duke Math. J. 5 (1939), 372–393; reprinted in Selected Papers.
- [16] \_\_\_\_\_, Selected papers, Springer-Verlag, New York, 1979. MR 544841 (80k:01064)
- [17] D. Pierce, Differential forms in the model theory of differential fields, J. Symbolic Logic 68 (2003), 923–945. MR 2000487 (2004h:03080)
- [18] D. Pierce and A. Pillay, A note on the axioms for differentially closed fields of characteristic zero, J. Algebra 204 (1998), 108–115. MR 1623945 (99g:12006)
- [19] A. Pillay, Remarks on algebraic D-varieties and the model theory of differential fields; http://www.math.uiuc.edu/People/pillay.html
- [20] T. Scanlon, A model complete theory of valued D-fields, J. Symbolic Logic 65 (2000), 1758–1784. MR 1812179 (2002d:03066)
- [21] H. Simmons, Existentially closed structures, J. Symbolic Logic 37 (1972), 293–310.
   MR 0376342 (51 #12518)
- [22] C. Wood, The model theory of differential fields of characteristic  $p \neq 0$ , Proc. Amer. Math. Soc. **40** (1973), 577–584. MR 0329887 (48 #8227)
- [23] \_\_\_\_\_, Prime model extensions for differential fields of characteristic  $p \neq 0$ , J. Symbolic Logic **39** (1974), 469–477. MR 0357109 (50 #9577)

Mathematics Department, Middle East Technical University, Ankara 06531, Turkey

E-mail address: dpierce@math.metu.edu.tr

URL: http://www.math.metu.edu.tr/~dpierce/