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GEOMETRIC CHARACTERIZATIONS OF EXISTENTIALLY
CLOSED FIELDS WITH OPERATORS

DAVID PIERCE

ABSTRACT. This paper concerns the basic model-theory of fields of ar-
bitrary characteristic with operators. Simplified geometric axioms are
given for the model-companion of the theory of fields with a derivation.
These axioms generalize to the case of several commuting derivations.
Let a D-field be a field with a derivation or a difference-operator, called
D. The theory of D-fields is companionable. The existentially closed
D-fields can be characterized geometrically without distinguishing the
two cases in which D can fall. The class of existentially closed fields
with a derivation and a difference-operator is elementary only in char-
acteristic 0.

0. Introduction

On a field, a jet-operator is, roughly, a function whose behavior at sums and
products is determined by polynomials, and whose value at 0 and 1 is 0. The
term is from Alexandru Buium [4], who shows that on a field of characteristic
0, every jet-operator is equivalent to a derivation or a difference-operator.
Piotr Kowalski [10] shows that this remains true in positive characteristic,
provided that one generalizes the notion of a derivation.

The present paper is concerned with a uniform and geometric treatment
of fields with derivations and difference-operators.

Thomas Scanlon [20] provides a way to begin, defining a D-field as a
structure (K, e, D), where K is a field, e € K, and D is an endomorphism of
the additive group of K satisfying

(%) D(z-y)=Dzx-y+ (x+e-Dx)- Dy.

If e = 0, then D is a derivation, and (K, D) is a differential field. In any
case, e - D is the map x — x? — z for some endomorphism ¢ of K, so e- D is
the difference-operator associated with o, and (K, o) is a difference-field.
As Scanlon notes, ‘this formal connection [between differential and difference-
fields|] supports the view that differential and difference-algebra are instances
of the same theory.’
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By piecing together what is known about differential and difference-fields,
one can show that the theory of D-fields is companionable. (The definition is
reviewed at the end of this section.) Then the model-companion of this theory
is a mathematically motivated model-complete theory whose completions are,
respectively, (0) w-stable; (1) stable, but not super-stable; and (2) simple, but
not stable.

For the model-companion DCFy of the theory DF of differential fields of
characteristic 0, geometric axioms are given in a paper with Anand Pillay
[18]. Here, ‘geometric’ means that the axioms refer to varieties, which for us
are just zero-sets of polynomials; they are irreducible when this matters. Say
(K, D) is a differential field. If V' is a variety over K, then the prolongation
7(V) is the variety obtained by applying D to the polynomials over K that
are 0 on V. If (K, D) = DCFy, then K is algebraically closed, and every sub-
variety of 7(V') that projects generically onto V' contains a K-rational point
(a, Da); and these observations characterize the models of DCFy among the
models of DFy.

A derivation on a field of characteristic 0 extends uniquely to the algebraic
closure of the field. Because of this, in Section 1 below, we can streamline
the geometric approach of [18], giving axioms of DCF that refer to varieties
alone, and not to their prolongations. These re-formulated axioms can be seen
as a special case of the axioms in [17] for DCF{’, the model-companion for the
theory of fields of characteristic 0 with m commuting derivations. Rather, the
new axioms for DCFj suggest a neater way to express the axioms for DCFy"
in general, given in Section 2.

In the case of positive characteristic p, Carol Wood [22] shows how to come
to terms with the fact that a non-trivial differential field cannot be perfect.
She gives axioms for DCF, using Seidenberg’s elimination-theory for differ-
ential equations (as Abraham Robinson did for DCFy; Wood gives simpler
axioms for DCF,, in [23], parallel to those of Blum for DCFy). Geometric
axioms for DCF,, are a special case in Kowalski’s analysis [11] of derivations
of powers of Frobenius. These are additive maps ¢§ satisfying

() 8(z-y) =0x-y° +2° - by,

where ¢ is a power of the Frobenius map x — 2P, so that ' o and oo "
are derivations in the usual sense (albeit not on the same field). In case o is
the identity, Kowalski’s axioms correspond to those of [18]; in particular, they
involve prolongations.

As in the characteristic-zero case, we can write geometric axioms for DCF,,
without reference to prolongations. We can also write the axioms indepen-
dently of characteristic, getting the theory DCF of existentially closed differ-
ential fields of arbitrary characteristic. Likewise, we shall axiomatize DCF™,
the model-companion of the theory of fields of arbitrary characteristic with
m commuting derivations.
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We can approach the theory of fields with distinguished automorphism o
in the same spirit. This theory has the model-companion ACFA, for which
Angus Macintyre [13] and Zoé Chatzidakis and Ehud Hrushovski [5] have
published geometric axioms. These axioms inspired the original geometric
axioms for DCFy. Where the latter axioms refer to 7(V'), the former refer to
V x V9. In the present paper, as we re-formulate the axioms for DCFy, so
too, in Section 3, for ACFA. In contrast to the case of a derivation, we cannot
avoid applying ¢ to a variety. Still, we need not form the Cartesian product.
(Thus, logically, we can strengthen the axioms for ACFA. The main point is
that we can simplify them, at least slightly; the corresponding simplification
in the case of derivations is much greater.)

In Section 4, we shall also adjust the definition of D-field so that there are
two additional named operators present. There will be a derivation é and an
endomorphism o, of which, however, at least one is trivial. Then D is § if this
is non-trivial; otherwise D is x — 2% — x. In the larger language, we shall be
able to axiomatize the existentially closed D-fields without distinguishing the
cases in which D can fall.

Finally, in Section 5, of the class of fields with a derivation and an endo-
morphism that have no required interaction, we can say enough about the
sub-class of existentially closed members to see that it is not elementary. For
example, if (K4, 0) is in this class, let K be the image of 0. Then K/K°
is purely inseparable; but if char K = p, then there need be no n such that
KP" C K. In characteristic 0, such problems disappear, so there is a model-
companion.

The notational conventions of the present paper are as in [17]; in particular,
tuples are bold-face, indices on their entries may be superscripts, and indices
start with 0.

Words being defined (perhaps implicitly) are in bold; technical terms being
emphasized, but not defined, are slanted; other emphasized words are in the
usual italic.

Functions are generally written to the left of their arguments, although the
field-endomorphism o is written as a superscript (as above), by analogy with
the Frobenius endomorphism x +— zP.

If V is a variety over K, and x is an n-tuple of elements of the function-
field K(V), then x is the generic point over K of a sub-variety W of affine
n-space A™. Also, x can be understood as a rational map from V to A",
and as a dominant rational map into W. Finally, x determines an embedding
fr f(x): K(W) — K(V), which can be considered as an inclusion; then
the rational map x is separable if K (V) is separable over K(W). (All field-
extensions in characteristic 0 are separable; in characteristic p, the extension
L/K is separable if and only if LP and K are linearly disjoint over KP?.) If
K (V) is separable over K, then V itself may be called separable.
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Over a theory T', a model 2 is existentially closed if 2 <7 6 whenever
A C B and B = T. (This definition can be found in [21, § 2]. Here A <1 B
means that quantifier-free formulas with parameters from A have solutions in
A, provided they have solutions in 98; equivalently, all primitive sentences over
A that are true in %8 are true in 2.) A structure can be called existentially
closed if it is an existentially closed model of its own universal theory (by [21,
Theorem 2.4]). If the class of existentially closed models of an V3 theory T is
elementary, then the theory of the class is the model-companion of T. More
generally, a theory T' has model-companion 7™ if Ty = T and T* is model-
complete (T* U diag M is complete whenever 9 = T™*); model-complete
theories are always V3.

The existentially closed models of any theory are just those models that
omit certain types. Indeed, a model 9t of T is an existentially closed model
just in case, for all primitive formulas ¢(x) in the language of T, for all tuples
a from M, if T UdiagMM U {¢(a)} is consistent, then M = ¢(a). Now, the
following conditions are equivalent:

(0) TUdiagM U {¢(a)} is inconsistent.
(1) T E 6(a,b) — —¢(a) for some open formula 0 and some tuple b from
M such that 9 = 6(a, b).
(2) T = Vx (¢(x) — Vy —0(x,y)) for some open 6 such that MM =
Jy b(a,y).
For any primitive ¢, let ©, be the set of universal consequences of T'U {¢}.
Condition (2) is that 9t omits ©4. So a model M of T is an existentially
closed model if and only if 9t omits each type O, U {—¢}.
I thank the anonymous referee for reading carefully and for insisting on
the spelling out of some details; this led to some important corrections and
improvements, as for example in the development of Lemma 1.2.

1. Differential fields

The co-domain of a derivation on a field need only be a vector-space over
that field. Let an extension of a derivation be a derivation of which the
first is a restriction. On any field K, the zero-derivation has the extension
f— [’ to K(X) and, more generally, has the n extensions 9/0X7 or 9; to
K(XY ..., X""1). Moreover, any derivation § on K has the unique extension
fr f%to K(X° ...,X" 1) that takes each X7 to 0.

Fact 1.1.  Suppose 6 is a derivation on a field K.
0) If fe K(X°,...,X" 1), and a € K", then

5(F(@) = 30, f(a) - 50 + f(a)

j<n
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if f(a) is defined. In case n =1, this is

(1) 3(f(a) = f'(a) - ba + f°(a).
(1) If a is transcendental over K, or if char K = p and a € KY/? K and
d(aP) = 0, then the formula (1) uniquely determines an extension of
0 to K(a), once the derivative da is chosen arbitrarily.
(2) If a € K5°P, then § extends uniquely to K(a); and if f is the minimal
polynomial of a over K, then da = —f%(a)/f'(a).

Proof. See for example [12, ch. VIII, § 5, p. 369]. O

Fact 1.1 (1) suggests an analogy between differential fields of null and posi-
tive characteristic; the analogy can be described in terms of closure-operators
(as defined for example in [1, Definition 3.1.4, p. 53]). If L is a field with
subfield K, then L becomes a pre-geometry when equipped with the closure-
operator

cl(;;g cAr— K(A)YeNL:P(L) — P(L).
Therefore L has a basis—a maximal independent subset—with respect to this
closure-operator; such a basis is precisely a transcendence-basis of L/K. (See
also [14] for an early account of transcendence-bases along these lines.) If
char K = p, then another closure-operator that makes L/K a pre-geometry is

ol i Ar— LPK(A) : P(L) — P(L);

a basis of this pre-geometry can be called a p-basis of L/K (or of L/LPK).
An (absolute) p-basis of L is then a p-basis of L/LP. (See also [15, § 4].)
That B is a p-basis of L/K means that L, as a vector-space over LPK, has a
basis consisting of the monomials

H ms(az)’

rEB

where s is a map from B to p whose support B~ s~1(0) is finite. That L/K is
separable means that any (absolute) p-basis of K is p-independent in L—is
included in a p-basis of L.

Every separating transcendence-basis in characteristic p is a p-basis, by
[15, Lemma 3, p. 382]. The converse holds if L/K has a finile separating
transcendence-basis, but not generally [15, p. 385], since the field F,,(X,, : n €
w) has the p-basis (X,, — X}, : n € w), over which the field is not algebraic.

It may be worth noting that, in the sense of Kolchin [9, ch. 0, § 2, pp. 3-4],
an inseparability-basis of L/K is a minimal generating set of L with respect
to the closure-operator A — K(A)**PN L. This operator fails generally to have
the exchange property, since F,(X)*P \ Fj*P contains XP?, but F,(X?)%*P
does not contain X. So the operator does not make L a pre-geometry, and
inseparability-bases are not guaranteed to exist. Indeed, there is a standard
counterexample: The extension F,(X)? ~ /F, has no inseparability-basis.
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For any field L that includes K, on P(L) define

el — Cl%g, if char K = 0;
K clhe, if char K = p.

Henceforth, let independence in L/K and bases of L/K be understood
with respect to clg. In characteristic p, the following is a generalization of [8,
ch. IV, § 7, Theorem 17, p. 181]:

LEMMA 1.2. Suppose L/K is a field-extension, B is a basis of L/ K, and
6 is a derivation from K to L.

(0) If 0 extends to L and sends B into L, then L becomes a differential
field.

(1) If char K =0, then 0 extends to L.

(2) If 6 extends to L, then § extends uniquely to L after arbitrary choice
of those dx such that x € B.

(3) Hence, if 6 extends to L, or if char K = 0, then 0 extends so as to
make L a differential field.

Proof. Claim (0) follows from Fact 1.1 (0) and (2).

Suppose now char K = 0. By induction on a well-ordering of B and by
Fact 1.1 (1), we can extend 0 to K(B) after arbitrary choice of dz when
x € B; and the extension of § is then unique. Then § extends further, and
uniquely, to L by Fact 1.1 (2). This proves Claim (2) when char K = 0, and
also Claim (1).

For the other case of Claim (2), suppose char K = p and § extends to L.
Then § is zero on LP, and this determines the extension to LPK by Fact 1.1 (0);
this extension still has co-domain L; so we can replace K with LPK. Now we
can use induction and Fact 1.1 (1) as before to extend ¢ uniquely to K(B)
after arbitrary choice of the dz with z in B. But now K(B) = L (since we
assumed K = LPK); so Claim (2) is established in all cases.

So now, by Claim (1), if char K = 0, then ¢ extends to L. In any case,
if § extends to L, then by Claim (2), it extends so as to send B into L;
then by Claim (0), the extension makes L a differential field. This establishes
Claim (3) and the theorem. O

For any field-extension L/K, let Der(L/K) be the vector-space over L
consisting of derivations from L to itself that are 0 on K. The universal
K-linear derivation on L (as defined in [6, § 16, p. 386]) can be understood
as the map dg : L — Der(L/K)* given by

D(dk x) = Dz.

If S C Der(L/K)*, let {S)* be the L-linear span of S. Then there is a uniform
definition of clg:
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LEMMA 1.3. Let L/K be a field-extension, and let di be the universal
K -linear derivation on L. Then clg is the map

Ar—{zeL:dgz e (dga:ac AL} P(L) — P(L).

Proof. Being a derivation on L that is 0 on K, the map dx takes dependent
sets to L-linearly dependent sets, by Fact 1.1 (0); it takes independent sets to
L-linearly independent sets, by Lemma 1.2 (2). O

The subspace {(dz : z € L)L of Der(L/K)* can be denoted

0%/
This can be understood as the space of Kahler differentials of L over K, and
its dual is naturally isomorphic to Der(L/K).
In the following, the kernel of a derivation is its constant-field, that is, its
kernel as a homomorphism of abelian groups.

LEMMA 1.4. Suppose (K,0) is a differential field, and K C L.

(0) Ifd extends to 6 on L, then ker é is linearly disjoint from K over ker §.
(1) If char K = p, and LP(ker¢) is linearly disjoint from K over kerd,
then 0 extends to L.

Proof. That (0) is true is a special case of [9, ch. II, § 1, Corollary 1, p. 87].
For an alternative proof, suppose ¢ does extend to don L. Let a be an n-tuple
of elements of ker § that are linearly dependent over K. Shortening the tuple
as necessary, we may assume that its null-space

{xe K":a-x=0}

has dimension 1. Then we may assume that this space is spanned by a single
element b whose first entry b° is 1. But da = 0, so

0=4d(a-b)=a-db.

Thus db is in the null-space of a and is therefore a multiple of b. But §6° = 0,
so 0b = 0, which means b € (kerd)”. Thus a is linearly dependent over ker J.
This proves (0).

Suppose now that the hypotheses of (1) hold. Let B be a p-basis of K/ ker §.
Then 6 on K is determined by d|p, by Lemma 1.2. Also, B is included in a
p-basis of L/ ker d; so the zero-derivation on ker § extends to L to agree with
6 on K. O

In the terminology of [22], the differential field (K, §) is (differentially)
perfect if char K = 0, or else char K = p and kerd C KP. The terminology
is chosen because of the following lemma (which is equivalent to a slight
generalization of [9, ch. IT, § 3, Proposition 5(a), p. 92]).
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LEMMA 1.5.  Suppose (K, 6) is a differential field. The following are equiv-
alent:
(0) If 6 extends to L, then L/K is separable.
(1) If 6 extends to L, and L/K is algebraic, then L/ K is separable.
(2) (K,0) is differentially perfect.

Proof. We may assume that char K = p. Trivially, (0) implies (1).

Suppose (2) fails. Then there is 8 in ker§ . KP. Let L = K(3'/?). Then
L/K is algebraic; also L? C kerd, so ¢ extends to L by Lemma 1.4 (1).
Thus (1) fails.

Finally, if (2) holds, and § extends to L, then LP is linearly disjoint from
K over KP? by Lemma 1.4 (0), so L/K is separable; thus (0) holds. O

The following theorem will turn out to be a special case of Corollary 2.7
below. (Rather, it is almost a special case; the weakening of Condition (2) in
the theorem uses Lemma 1.2, which doesn’t generalize to several commuting
derivations.)

THEOREM 1.6. A differential field (K,0) is existentially closed just in case
it satisfies the following conditions:
(0) K is separably closed.
(1) (K,0) is differentially perfect.
(2) For every variety V over K, if there are rational maps

TN
A" A"

for some n, where ¢ is dominant and separable, then V has a K-
rational point P such that ¢ and v are regular at P, and

b0 ¢(P) =y(P).

In Condition (2), it is sufficient to assume n = dim V.

Proof. Existentially closed differential fields meet Condition (0) by Fact
1.1 (2) and Lemma 1.2; they meet Condition (1) by Lemmas 1.2 and 1.5.

Condition (2) is that if an n-tuple x of elements of K (V') extends to a
separating transcendence-basis of this field over K, and y is an arbitrary n-
tuple of elements of K(V), then V' has a K-rational point a such that each
member of each equation

(8) i(z"(a)) =y'(a)
is well-defined, and the equations hold.

Suppose for the moment that a is a generic point of V. Then the set of
elements x’(a) of K(a) extends to a separating transcendence-basis B of this
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field over K. By Fact 1.1, we can extend ¢ to K(a). By Lemma 1.2 (2) then,
since the y*(a) are in K(a), we can extend § so that the equations (§) hold
and 0 maps all of B into K (a). This extension makes K (a) a differential field
by Lemma 1.2 (0).

Moreover, each of the % or y’ is an equivalence-class of quotients f,/fa
or gn/ga of polynomials over K; so the equations (§) are implied by the
satisfaction, by a, of some quantifier-free formulas of the form

(6fa-fa—fo-0fd) ga=f1 GuAfa#£O0NGga#0

in the signature of rings with constants from K. Hence existentially closed
differential fields meet Condition (2) as well.

Suppose conversely that (K, ) meets the given conditions. We have to
look at primitive sentences over (K, §). We can simplify such a sentence as
in [17, Lemma 5.5]: we can replace the inequations by equations, using the
Rabinowitsch-trick, and we can replace each derivative with a new variable.
The result is the statement that a system

(1) Nrf=0n \ox' =g
f

i<k

has a solution, where the (finitely numerous) f and the g* are in the polynomial-
ring K[X°,..., X" for some r, and k < r. Suppose the system () has a
solution b from an extension of (K, §); we have to find a K-rational solution.

Now, we are assuming that & extends to K (b) so as to map K (b°,..., b 1)
into K(b). By Lemma 1.2 (3), we may assume that § has been extended so
as to map all of K(b) into itself.

By Lemma 1.5, the extension K(b)/K is separable. Let (h?(b) : j < n)
be a basis of K(b)/K, and say dh?(b) = ¢’(b) when j < n, for some rational
functions A/ and ¢ over K. These equations determine the extension of §
from K to K(b). In particular, they determine the equations db* = g'(b)
where i < k. Indeed, let F be irreducible polynomials over K such that
Fi(h°(b),...,h""1(b),b") = 0. By Fact 1.1, we have

ST F (RO(b), ... A" (b),b7) - ¢ (b)+
j<n + 8, F'(h°(b),..., A"~ (b),b") - g*(b)+
+ (FYO(hO(b),..., A" (b),b") =0,

and these equations can be solved for g¢(b).

Let U be the algebraic set over K consisting of those specializations of b
where the h/ and the ¢/ are well-defined and the 9, F'(h°,... h"! X?) are
not 0. Suppose x € U. Then the z¢ are separable over K (h%(x),...,h" 1(x))
when i < k; and if § extends to this field so that §h/(x) = ¢/(x), then &
extends further to the z°, and dz° = g*(x).
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Now, there is a variety V over K consisting of precisely one tuple (x,y)
for each x in U. By the weak form of Condition (2), with (A", ..., h""1) as
¢, and with (¢%,...,¢" ') as v, we can conclude that () has a K-rational
solution. O

In the weak form of Condition (2), if ¢ is written as a tuple c, then there
is a variety W with a generic point (c,d) such that d € K(c)*P, and there is
a birational map y : W — V such that ¢ o x is (x,y) — x. In Condition (2)
then, we can replace ¢ with ¢ oy, and V' with an open subset of W (namely,
the set of regular points of x). So, we can write the conditions of Theorem 1.6
in a more explicitly first-order way:

(0) Vz Jy (f'(z) = 0V f(y) = 0) for all polynomials f in one variable
(over the universe).
(1) Ve Iy (p- 1 =0Ad0x =0 — yP = x) for all primes p.
(2) Ix (f(x) =0 A g'(x) #0A ) ¢'(x) - 2" = h'(x)) for all polyno-
i<n <n
mials f, g* and h® in n + 1 variables such that 9, f # 0 and f t ¢, for
all n in w.
So the theory DF of differential fields has a model-companion, DCF, which is
the theory of differentially closed fields of arbitrary characteristic.

We shall generalize to several derivations in the next section. Meanwhile,
for the sake of an analogy with difference-fields, we give an alternative axiom-
atization of DCF.

Let (K, ) be an arbitrary differential field. Suppose the variety V over K
is the zero-set of the prime ideal I of the ring K[X]. If f is in this ring, then
0f € K[X,0X]. The zero-set of all f and ¢ f such that f € I has been denoted
7(V), presumably by analogy with the tangent-bundle T'(V'); but here I shall
just write 0(V'). I shall also write mo for the map (x,y) — x:§(V) — V.

The next lemma (in case of positive characteristic) is related to [11, Fact 1.6].

LEMMA 1.7. Let (K,9) be a differential field. Suppose V is a variety over
K containing a tuple a, and b is a tuple of the same length. If § extends to
K(a) so that da = b, then (a,b) € §(V). The converse holds, provided a is a
generic point of V.

Proof. See [12, ch. VIII, § 5], or use [8, ch. IV, § 6, Theorem 14, p. 172]. O

Certain generalizations of the lemma are not possible:

e Though ¢ extend to K(a) so that da = b, if char K = p, it may
be that § does not extend further to K(a,b). For example, if « is
transcendental over K, we can define §(af) = «, but then da cannot
be defined [11, Remark after Fact 1.6].

e The map 7y : 6(V) — V need not be dominant. Let K = F,(«, 3),
where {a, 8} is algebraically independent. Define o = 63 = 1. Let
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f=a-XP4+3-YP and let V be the zero-set of f. Since 6 f = XP+YP,
the image of 6(V') under 7 is {(0,0)}.
In characteristic 0, the following can be seen as a corollary of [18, Theo-
rem 2.1].

THEOREM 1.8. In Theorem 1.6, we can replace Condition (2) with:

(3) For every variety V over K, if s : V. — 6(V) is a rational section of
7o, then V' has a K-rational point P such that s(P) = (P,0P).

Proof. The necessity of Condition (3) is by Lemma 1.7. For its sufficiency,
consider the system (9)—with the attendant notation—of the proof of The-
orem 1.6. In that proof, once the solution b is chosen, it is noted that, by
Lemma 1.2 (3), we may assume that 6 maps b into K(b). This means we
may assume that g% in K(X) exist also when k < i < r so that §b' = g'(b)
for all 4 less than 7. Let s be x — (x,g(x)) on V. Then s(b) € §(V) by
Lemma 1.7, so s is a section of my. Condition (3) now yields a K-rational
solution of (). O

Following [2, (1.1), p. 4] and [3, (0.6), pp. 3f.], we can refer to the pair
(V,s) in Condition 3 as a d-variety, and to the point P as a K-rational 6-
point. So the condition is that J-varieties have K-rational d-points. Also, if
(V,8)f ={P €V :s(P)=(P,6P)} as in [19, p. 3], then the condition is that
(V,s)* contains a K-rational point.

A corollary will be needed for the uniform treatment in Section 4. First,
note that, if f is a rational map on V', then § f can be understood as a rational
map on §(V). Moreover, by Lemma 1.7, if ¢ is a rational map from V onto
W, then (¢, d¢) is a rational map from §(V') into §(WW) making the following
diagram commute:

Vo §(V)

a{ l(dn&ﬁ)

%% R (W)
COROLLARY 1.9. In Theorem 1.6, we can replace Condition (2) with:
(4) If $ : V — W is a rational map of varieties over K, and if s : V —
3(V') is a rational section of my, then V' has a K-rational point P such
that d¢ o s(P) = o ¢(P).
It is sufficient to require ¢ to be dominant.

Proof. Condition (4) is sufficient, since Condition (3) is the special case
when ¢ is the identity. For the necessity, suppose b is a generic point of V.
Then ¢ extends to K (b) so that (b,db) = s(b). Hence d o ¢(b) = d¢(b, db) =
0¢ o s(b). O
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2. Fields with several derivations

We can generalize Theorem 1.6 to several derivations, because we can gen-
eralize the relevant arguments of [17] to arbitrary characteristic. Indeed, let us
remove from [17] the blanket assumption that rings and fields have character-
istic 0. In particular, let us allow models of DF™ to have any characteristic.
(We can specify characteristic with a subscript, as in DFg* or DF}'.) In
characteristic p, all transcendence-bases should be replaced with p-bases, and
‘transcendence-degree’ should be read as p-dimension—the size of a p-basis.
Also, the following additional changes should be made:

In [17, Fact 3.1], by Lemmas 1.2 and 1.4 above, if char K = p, then the ex-
tension f — f? exists just in case L? is linearly disjoint from K over ker §; such
a condition is also required for the conclusion about more general extensions
of 6.

Now [17, Fact 3.3] is incorrect as it stands, by [22, Theorem 2]. But replace
DF! with the theory of perfect differential fields (with one derivation); then
the claim holds by [22, Lemma 5].

In [17, Lemma 3.4, the field K* (that is, K*8) should be K*°P.

To generalize [17, Lemma 3.6], we generalize the definition of perfect: A
model (K, Dy,...,Dp—1) of DF™ can be called (differentially) perfect if
char K = 0, or if char K = p and K? = (,_, ker D;. So being perfect here
means satisfying the sentence

Vedy (p-1=0A /\ Dix=0—y? =2x)
i<m
whenever p is prime. Let us refer to the theory of differentially perfect models
of DF™ as PDF™. In [17, Lemma 3.6], the theories PDF"U{a} are consistent,
having the models (F,(X°, ..., X™ 1), 8y,...,0p-1). Also, it is now PDF™U
{a} that has the amalgamation property. The proof in characteristic 0 should
have noted that the fields L; can and must be assumed free over K. The same
is true in positive characteristic, but only by Lemma 2.3 below.

In [17, § 4], the first two sub-sections require no change. In particular, if
(K, Dy,...,Dy-1) = DF™ and the D; span E over K, then (K, FE) is also
called a differential field and is equipped with the derivation d : K — E*
given by D(dx) = Dx; if char K = p, then (K, F) is perfect if and only if
kerd C KP.

In [17, Lemma 4.7], Condition (1) could have been given more simply as:
There is also an additive map d : E* — A%(E) such that d(dy-z) =dzAdy
when z,y € K. It should be noted then that, if this condition holds, so
that (0) also holds, then d is given by the equation near the bottom of [17,
p. 933], so that

(Do, D1) d 0 = Do(D16) — D1(Do8) — [Do, D1]6

when 0 € E*. This observation is needed in proving [17, Lemma 4.9].
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In the sub-section called ‘Extensions’ [17, p. 935], the discussion leading
up to the ‘Frobenius Theorem’ [17, 4.11] needs some modification. It is as-
sumed here that (K, F) is a differential field, and L/K is a field-extension.
If char K = p, then possibly the restriction-map D — D|g : Der(L) —
L ®k Der(K) is not surjective. The definition of Der(L/FE) stands in any
case; but the ensuing [17, Lemma 4.10] for characteristic 0 should be sup-
plemented with the following, where p-dim(L/K) denotes the p-dimension of
L/K if char K = p:

LEMMA 2.1.  Suppose (K, E) is a differential field, char K = p, and L/K
s a field-extension.

(0) If L/K is separable, then the map
U:D+— D|g :Der(L/E) — L@k E

1S surjective;
(1) 4f U is surjective, then dimg, Der(L/FE) = dimg E + p-dim(L/K).

Proof. By Lemma 1.4 (1), the map is surjective; by [17, Fact 3.1] for char-
acteristic p, or Lemma 1.3, the dimension of its kernel is p-dim(L/K). O

In the remainder of [17, § 4], if char K = p, then it should be assumed that
the map ¥ in Lemma 2.1 is surjective. It should be noted that Der(L/FE) is
naturally isomorphic to the dual of QE/E. If (27 : j < p) is a basis of L/K,
then (dz? : j < p) is a basis of QF /p Dot simply, (as wrongly suggested six
lines before [17, Lemma 4.11],) but modulo E* ®k L, by [17, Fact 3.1]. In
fact,

QlL/E = QlL/K @®(E" ®K L),
though not canonically; E* ®x L is the kernel of the restriction-map from
QlL/E to Q}J/K (whose dual is the embedding of Der(L/K) in Der(L/E)).

Again, [17, Lemma 4.12] can be taken as a definition of integrable. (A
minor correction in the proof is that [17, p. 937, 1. 3] should read ‘...its
further restriction to K is in L' Qg E...’.) In particular, if QlL/E has an
integrable subspace, then the map ¥ in Lemma 2.1 is surjective.

We now have the following generalization of Lemma 1.4 above.

LEMMA 2.2.  Suppose (K, Dy, ..., Dy,—1) is a differential field, the D; span
FE, and K C L.
(0) If each D; extends to D; on L, then
from K over kerd.
(1) If char K = p, and LP(kerd) is linearly disjoint from K over kerd,
then (K, E) has an extension (L, E).

i <m KT D; is linearly disjoint

Proof. Claim (0) is [9, ch. II, § 1, Corollary 1, p. 87]. Alternatively, un-
der the assumptions, each ker D; is linearly disjoint from K over ker D;, by
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Lemma 1.4 (0). Suppose then that (a,b) from (,_, ker D; is minimally lin-
early dependent over K. Then a is independent over K, but b is a (ker D;)-
linear combination of a for each i. It should be the same combination in each
case (otherwise subtraction yields a dependence for a); so the combination is
over (), ,, ker D;, which is kerd.

Suppose now that the hypotheses of (1) hold. Then LP(ker D;) is linearly
disjoint from K over ker D; (by [7, Lemma VI.2.3, p. 319]) for each i less than
n; so each D; extends to an element of Der(L), and E* ® ¢ L embeds in QlL/E.
Let B be a p-basis of L/K. Let W be the span of the dz such that « € B.
Then QlL/E =Wa (E*®k L), and dW = QlL/E AW, so (L,ker W) extends
(K, E) by [17, Theorem 4.11]. O

Then Lemma 1.5 also generalizes:

LEMMA 2.3.  Suppose (K, E) is a differential field. The following are equiv-
alent:
(0) If (K,E) C (L, E), then L/K is separable.
(1) If (K,E) C (L, E), and L/K is algebraic, then L/K is separable.
(2) (K, E) is differentially perfect.

Proof. As for Lemma 1.5. O

The generalization of [17, Lemma 5.2] is the following:

LEMMA 2.4. In any existentially closed model of DF™, the D; are linearly
independent, the model itself is differentially perfect, and the underlying field
s separably closed.

Proof. The original proof of [17, Lemma 5.2] yields the first and last points;
the middle point is by Lemma 2.3. O

In the ensuing discussion in [17], we may therefore assume that (K, Dy,

..y Dm—1) is a model of PDF™ U {a} U SCF (where SCF is the theory of

separably closed fields). We can drop [17, Theorem 5.3] for now. We can
generalize [17, Lemma 5.5] as Theorem 2.5 below.

First, I correct a flaw in the definition of ‘eliminable’ on [17, p. 939]. There
(and everywhere else in the paper), the word ‘place’ should be understood
more generally than usual. If W C Qi /B> and L is K (a), and b is a specializa-
tion of a over K, then W is eliminable if it vanishes under the substitution-
map f(a) — f(b). This map is well-defined on the localization O of KJa]
at the ideal {f(a) : f(b) = 0}. This ideal generates in O its unique max-
imal ideal m, the field ©/m being isomorphic to K(b) over K. Now, O is
not generally a valuation-ring; but nothing in [17] requires it to be. So, for
‘valuation-’, read ‘local’ everywhere. In particular, in [17, Lemma 5.4], the
ring O need only be a local ring such that K C © C L. (Strictly, O need
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not even be local; m should just be some maximal ideal.) For the additive
map of that lemma to be surjective, it is enough that the extension L/K be
separable; but this case is all that is needed for the following.

THEOREM 2.5.  The ezistentially closed models of DF™ are just the differ-

ential fields (K, Dy, ...,Dpy—1) such that:

(0) K is separably closed;

(1) (K, Dg,...,Dpm—1) is differentially perfect;

(2) the span E over K of the derivations D; has dimension m;

(3) for any finitely generated extension L of K, every integrable subspace

W of QlL/E 1s eliminable.

The last condition can be weakened by requiring W to have, modulo E* @ L,
a basis of the form (d X* : k < r), where (X* : k < r) is independent in L/K.

Proof. Except for the weakening of Condition (3), the argument of [17]
remains correct in arbitrary characteristic, provided that we make the ter-
minological corrections just noted. (Also, on [17, p. 940, 1. —1], the word
‘integrable’ should be ‘eliminable’.)

In the original argument that, with the other conditions, the weak form
of (3) is sufficient, an integrable subspace W of some Q} /g is found. Here
L = K(a,b);—rather, L = K(A U B) for some finite sets A and B, and
W =(da—6%:ac A)L for some 0% in E* @ L. Then L/K is separable, by
[17, Lemma 4.12] and Lemma 2.3. Suppose char K = p. If a € L? N A, then
0¢ =0. Let W = (da — 0% : a € A~ LP)E. Since W is integrable, so is W';
also, if W’ is eliminable, then so is W. Now, A has a p-independent subset
C such that W/ = (da — 0 : a € C)L, by Lemma 1.3. So the weak form of
Condition (3) is enough in general. O

Let (K, FE) be a differential field such that dim £ = m, and let V be a vari-
ety over K. A rational map from V to A™ over K is an element of A" (K (V)).
This space can also be written A" (K) ®x K(V). Now, A™(K) 2 E* as
vector-spaces. Let us say that the elements of E* @ x K (V') are the rational
maps from V to E*. If V is separable, then this space embeds in Q}((V)/E.

Then [17, Theorem 5.7] becomes the following.

THEOREM 2.6. Let (K, E) be a differential field, and let V be a variety
over K. Suppose x is a dominant separable rational map from V to A", and
y is an r-tuple of rational maps from V to E*. Let W be the subspace of
Q}((V)/E spanned by the forms y* — da®. Then the following are equivalent:

(0) W is integrable, that is, the differential field (K, E) has an extension
in which dx* = y* in each case.

(1) The subspace AW of Q%(V)/E is linearly disjoint from A*(E) @k
K(V).
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Proof. The tuple x is an initial segment of a basis (z* : k < n) of K(V)/K.
With the z* in place of the X*, the argument of [17, Theorem 5.7] now goes
through. Condition (3) there is equivalent to Condition (1) above, by [17,
Lemma 4.8]. O

In the lemma, let us denote d W by dy/dx. Then Condition (1) is that
dy/dx contains no non-trivial rational map from V to A*(E).
To Theorem 2.5, we now have:

COROLLARY 2.7. The existentially closed models of DF™ are just the dif-
ferential fields (K, Dy, ..., Dy—1) such that:
(0) K is separably closed;
(1) (K, Dg,...,Dm—1) is differentially perfect;
(2) the span E over K of the derivations D; has dimension m;
(3) for every variety V' over K, if there are rational maps

1%
% x
AP (E*)n

where ¢ is dominant and separable, then V' has a K-rational point P
such that d op(P) = 1 (P), provided that dv/d ¢ does not contain a
non-trivial rational map from V to A*(E).

As the conditions are first-order, DF™ is companionable.
Proof. The maps ¢ and v correspond to x and y in Theorem 2.6. O

REMARK 2.8. An element of AY(E) @k K (V) induces, for each field L
that includes K, a partial map from V(L) to AY(F) ® x L. More generally,
an element of Q}Q(V) /i can be written as 6(b), where b is a generic point of
V; by [17, Lemma 5.4], if a € V(L), then we have a partial map

O(b) — 6(a) : Q -» Q1

g((V)/E - L/E"

So a particular form 6(b) induces

ar——0(a): V(L) --» QqL/E.

As we can consider A™ as a functor L — A™(L) from the category of fields
that include K (with inclusions) to the category of vector-spaces (with inclu-
sions), so we have a functor L — Qf /i Which we might denote Q9. But this
is not a variety, and the map a — 6(a) is not generally a rational map from V'
to Q%. Indeed, the map a — 6(a) generally involves differentiation, as when

6 is d f for some non-constant f in K(V): then #(a) = d(f(a)).
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3. Difference-fields

If o is an endomorphism of the field K, then: (0) ¢ extends to the algebraic
closure of K; (1) o extends to a field of which it is an automorphism; (2) if
{a®, ..., 0971} is algebraically independent over K, then o extends uniquely
to K(a?,...,a%"1) after algebraically independent choices are made for the
oa’. As mentioned in Section 0, these give us the following, a slight simplifi-
cation of a known result:

THEOREM 3.1. The difference-field (K, o) is existentially closed just in
case the following hold:

(0) K is algebraically closed.

(1) o is surjective.

(2) IfV and W are irreducible varieties over K for which there are dom-
mant rational maps

Vv
) N
W we

then V' has a K -rational point P such that ¢(P)° = ¢ (P).

Proof. For the necessity of Condition (2), let a and ¢ be generic points of W
and W7; then as in [13, § 1.5, Lemma 5], we can extend o to an isomorphism
from K(a) to K(c), which extends further to an automorphism of a field that
includes K (V).

For the sufficiency of the conditions, follow the pattern of the proof of
Theorem 1.6. Every primitive sentence over a difference-field (K, o) says that
a system

(I NF=0r N(x)7 =g

f i<k
has a solution, where the f and the ¢g° are in K[X° ..., X""1], and k < 7.
Suppose the system (]|) has a solution b. Let V have generic point b over K,
and let W have generic point (b* : i < k). By Condition (1), we have that
(¢'(b) : i < k) is a generic point of W¥; so we can apply Condition (2), letting
¢ be x — (2" :i < k), and letting ¢ be x — (g% (x) 1 i < k). O

In the original geometric treatment, Condition (2) is weakened by the fur-
ther hypothesis that ¢ and v are the projections from a sub-variety of W xW?.
The weakened condition is still sufficient, since, in the proof, for the system
(]l), one may assume that r = 2k, and each g* is X**.

The same assumption can be made for the system () in the proof of
Theorem 1.6; then one is led to the axioms in [18]. A similar assumption
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could be made in the presence of several derivations, but this was not fruitful
in the search for Corollary 2.7.

We have a map f — f7 — f : K[X] — K[X,X?]. We can write the
co-domain as a quotient

K[X,X°, DX]/(DX — X’ + X),

or as K[X, DX]; in the latter case, we can write f7 — f as Df. For a variety
V over K, we can define D(V) by analogy with 6(V). Then we have an
isomorphism

(x,y)— (x,x+y): D(V) =V x V.
Let p be the composition of this with the projection onto V7, so p(x,y) =
x+y. As with §(V), let mg be the projection of D(V') onto V. We can now
recast Theorem 3.1:

COROLLARY 3.2. In Theorem 3.1, we can replace Condition (2) with:

3) If ¢ : V. — W s a dominant rational map of varieties over K, and
YV — D(W) is a rational map such that p o ¢ is dominant and
mo o = ¢, then V has a K-rational point P such that ¢(P) =

(¢(P), Do ¢(P)).
Thus, both Corollaries 1.9 and 3.2 concern a commutative diagram

v

¢l x
W <—= D(W)
where ¢ is dominant. In the former case, where D is a derivation, the map

1 should have a section of the projection of D(V) as a factor. In the latter
case, p o ¢ should be dominant.

4. D-fields

As in Section 0, we can equip any D-field (K, e, D) with the map = —
x 4 e - Dz, which is an endomorphism o of K. As mentioned in [20, Remark
2.6], we can now describe D as an additive map satisfying the identity

(%) D(z-y)=Dx-y+z° - Dy.

Let an operator-field be a structure (K, o, D, d), where o and § are respec-
tively an endomorphism and a derivation of K, and both (xx) and

(1) ox +x2° =2+ Dx

are identities. Then for any endomorphism ¢ and derivation § of K, the
structures (K, 0,0 — idg,0) and (K,idg,d,0) are operator-fields. In fact,
these are the only possibilities:
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THEOREM 4.1.  Suppose (K, 0, D, ) is an operator-field. Then either o =
idg and D =9, or d =0 and D = 0 — idg.

Proof. From (xx), since xy = yx, we get
Dz-y+2° -Dy=D(x-y)=Dy-z+y° - Dzx.

Therefore

(27 —2)- Dy = (y" —y) - Dz,
that is, D and o — idi are linearly dependent. By (1) then, § and o — idg
are linearly dependent. So either § =0, or e -0 = 0 — idg for some non-zero
e. In the latter case, (K, e,d) is a D-field, and as we have (xx), so we have
the identity

6(z-y) =dz-y+a°-0y;

this holds trivially if 6 = 0. Since § is also a derivation, we have 0(x - y) =
éx -y —+x-dy, so

(1) (27 —x) - 0y =0,
that is, either o = idg or § = 0. The remainder follows from (7). d

Note then that the name ‘operator-field’ is not ideal, since it doesn’t cover
fields with derivations of a power of the Frobenius map.

Let OF be the theory of operator-fields, and let 6 be the sentence Vx 27 = .
Then OF has a model-companion, OF*, whose axioms are:

OFU{—-0 — ~:~v€ ACFA} U {0 — ~v:~v € DCF}.

Towards a more uniform axiomatization, let (K, o, D, ) be an operator-field
in which D # 0, and let V' be a variety over K. We can define

{(%,¥,0): (x,y) e D(V)}, ifd=0onK;

o= {{(X,y,Y) Hxy)€D(V)}, ifo=DonK.

This is not uniform either; but we can also define (D, )V as the zero-set of
the polynomials f, Df, 6f and dg - (Dh — 6h) in K[X, DX, 0X], where the
polynomials f define V', and the g and h are from K U X. We have a map
7 from (D,§)V to V7 taking (x,y,z) to x +y — z. We also have a map
v:(D,0)V — 6(V) taking (x,y,2z) to (x,2).

THEOREM 4.2. The existentially closed models of OF are just those models
(K, D,¥,0) such that the following conditions hold:
(0) D is non-trivial.
(1) K is separably closed.
(2) (K,0) is perfect.
(3)

o 18 surjective.
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(4) Suppose ¢ : V. — W and x : V — (D,5)W are rational maps of
varieties over K, and s is a section of wy : (V) — V', such that the
diagram

vV —= (V)
¢l | @59
W< 6(W) <—= (D, )W ——W*

commutes and ¢ and T o x are dominant. Then V has a K-rational
point P such that x(P) = (¢(P), D o ¢(P),5 o ¢(P)).

Proof. The claim follows from Corollaries 1.9 and 3.2. Consider in partic-
ular the diagram in Condition (4).

Suppose first that § =0 on K. Then x is x — (¢(x),0) for some ¢ : V —
D(W), and then 7o x is po . Also, v is (x,y,0) — (x,0). So the condition
of Corollary 3.2 is satisfied. Also, if this condition is satisfied, then we can let
s be x — (x,0), so that the present Condition (4) is satisfied.

Now suppose instead § = D. Then x is (¢, 71 0¢)), where 1) is vo x. Hence
Tox is ¢.

In each case then, Condition (4) is equivalent to the corresponding condi-
tion in the respective Corollary. (]

5. Two operators together

From the theory OF, if we remove the connection between ¢ and o given
by (f1), then we lose companionability. Let us say that a structure (K, d, o)
is a differential and difference-field if (K,0) is a differential field, and
(K, o) is a difference-field. These structures compose an elementary class, say
with theory DDF. A required characteristic can be indicated, as usual, by a
subscript. If (K,0,0) = DDF,, then K? C ker(d o ¢™) for each n in w.

LEMMA 5.1.  Suppose (K,d,0) is an ezistentially closed model of DDF.
Then:

(0) K is separably closed;
(1) N,en ker(doc™) C KP, if char K = p;
(2) K/K° is purely inseparable.

Proof. Condition (0) is necessary by Theorems 1.6 and 3.1. For the neces-
sity of (1), suppose a € [, ker(d o 0™) \ KP, and let L = K((ao )™
n € w). Then ¢ extends to L by Lemma 1.4 (1), and o extends to L so that
((@®")P ") = (a®""")P"". For (2), suppose 8 in K is separable over K. If
[ is algebraic over K7, with minimal polynomial f?, then the roots of f are
in K by Condition (0), and § is the image under o of one of them. If § is
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transcendental over K7, then let o be transcendental over K; we can extend
0 and o to K(«) by defining da = 0 and o = . O

For any prime p, let I';, be the type

{p-1=0yU{6(z"")=0:n¢cwU{Vyy? +z}.

Then Condition (1) in Lemma 5.1 is just that (K, 6, o) omits each I';. Let A,
be the type

{p-1=0YU{Vyy’ #2" :necw}

Condition (2) in the lemma is that each A, is omitted.
THEOREM 5.2.  No definitional expansion of DDF,, is companionable.

Proof. Let K = Fp(X,, : n € w), and let o be the endomorphism X,,
Xp+1. For any k in w, a derivation d; of K can be defined by

1, ifk<n
0, ifn<k.

Suppose if possible that 7" is a definitional expansion of DDF,, with a model-
companion T*. Each structure (K, d, o) expands to a model of T'; this model
has an extension 91, that is a model of T*. Writing Xy as X, we have X ¢ M7,

since 5k(X"k) # 0; but for each n, for almost all k, we have dx(X°") = 0.
Hence, in a non-principal ultra-product 9 of the structures 9;, we have
X ¢ NP, although §(X°") = 0 for all n; so X realizes ', in M. But the
reduct of D to the signature of DDF is an existentially closed model of this
theory, contradicting Lemma 5.1. O

We can argue similarly using A,: On F,,(X), let 0 be z — 2P, and let ¢ be
[ — f'. Say (F,(X),d,0™) C (Ky,6n,0,). Then X? ' ¢ K,, since 6X =1,
so {X?"" 1 k < n}NK, = @; therefore {X?" : k < n} N KJ" = . Hence
X realizes A, in a non-principal ultra-product of the (K, dp, 0n).

No definitional expansion of DDF, U {Vx 3y y° = z} is companionable
either. The changes needed in the argument are that, in Lemma 5.1, in
Condition (1), the intersection should be over n in Z; and K in the proof of
Theorem 5.2 should be F,,(X,, : n € Z).

There is no problem in characteristic O:

THEOREM 5.3. A model (K,d,0) of DDFy is existentially closed just in
case the following conditions hold:

(0) K is algebraically closed.
(1) o is surjective.
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(2) For all varieties V and W over K, if there are rational maps

Vv —>2=§(V)

i N

where ¢ and Y are dominant, and s is a section of wg, then V contains
a K-rational point P such that s(P) = (P,dP) and ¢(P)° = ¢(P).

Proof. The necessity of the conditions is by Lemma 5.1 and because, in
Condition (2), the variety V' has a generic point with the desired property.
For the sufficiency of (2), note that every primitive sentence over (K, §,0) can
be written as the statement that a system

Nf=0n N(X)7 =g N6X =1
f

i<k

has a solution. Now follow the proofs of Theorems 1.8 and 3.1. O

The theory OFU{p-1 # 0 : p prime} is the theory of fields of characteristic
zero with a jet-operator; its model-companion is OF* U {p-1 # 0 : p prime}.
Because of the derivations of Frobenius, there is no corresponding theory of
fields of characteristic p with a jet-operator. However, we can look at the
structures (K, d,0) where (K, 0) is a difference-field, and § is an additive map
such that Equation () of Section 0 is an identity. Then these structures
satisfy:

Vo §(z" ) = (n 4 1)(27) "6,
Ve Vy (z-y=1— (27)? 5y = —6x);

In particular, when defined on a domain, § extends uniquely to the quotient-
field. Moreover, the formula of Fact 1.1 (0) becomes:

6(f(a)) =D (9;f(a))" b’ + f°(a).
j<n
All of this is noted in [11] in case ¢ is a power of  — zP. The arguments of
the present section go through to show that the theory of these structures is
also not companionable, even if ¢ is surjective.
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