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ON ANALYTIC AND MEROMORPHIC FUNCTIONS AND
SPACES OF QK-TYPE

MATTS ESSÉN AND HASI WULAN

Abstract. Starting from a nondecreasing functionK : [0,∞)→ [0,∞),

we introduce a Möbius-invariant Banach space QK of functions analytic
in the unit disk in the plane. We develop a general theory of these spaces,

which yields new results and also, for special choices of K, gives most
basic properties of Qp-spaces. We have found a general criterion on the
kernels K1 and K2, K1 ≤ K2, such that QK2 $ QK1 , as well as neces-

sary and sufficient conditions on K so that QK = B or QK = D, where
the Bloch space B and the Dirichlet space D are the largest, respectively
smallest, spaces of QK -type. We also consider the meromorphic coun-

terpart Q#
K of QK and discuss the differences between QK -spaces and

Q#
K -classes.

1. Introduction

Let ∆ be the unit disk in the complex plane, and let dA(z) be the Eu-
clidean area element on ∆. Let H(∆) (resp. M(∆)) denote the class of
functions that are analytic (resp. meromorphic) in ∆. The Green’s func-
tion in ∆ with singularity at a ∈ ∆ is given by g(z, a) = log 1/|ϕa(z)|, where
ϕa(z) = (a− z)/(1− āz) is a Möbius transformation of ∆. For 0 < r < 1,
let ∆(a, r) = {z ∈ ∆ : |ϕa(z)| < r} be the pseudohyperbolic disk with center
a ∈ ∆ and radius r.

For 0 < p <∞, we define spaces Qp and Mp by

Qp =

f ∈ H(∆) : sup
a∈∆

∫∫
∆

|f ′(z)|2(g(z, a))p dA(z) <∞

 ,

Mp =

f ∈ H(∆) : sup
a∈∆

∫∫
∆

|f ′(z)|2(1− |ϕa(z)|)p dA(z) <∞

 .
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We know that Q1 = BMOA, the space of all analytic functions of bounded
mean oscillation (cf. [11] and Theorem 5 in [7]). For each p ∈ (1,∞) the space
Qp is the Bloch space B (cf. [2] and [15]), defined as

B =
{
f ∈ H(∆) : ‖f‖B = sup

z∈∆
(1− |z|2)|f ′(z)| <∞

}
.

When we study meromorphic functions in ∆, it is natural to replace |f ′(z)|
in these expressions by the spherical derivative f#(z) = |f ′(z)|/(1 + |f(z)|2)
and obtain the classes Q#

p , M#
p and N , the class of normal functions in ∆,

respectively (see, for example, Aulaskari, Xiao and Zhao [5] and Wulan [19]).
The meromorphic counterpart of BMOA is the set UBC of meromorphic
functions of uniformly bounded characteristic introduced by Yamashita [22].

It turns out that we have

Qp = Mp (Aulaskari, Stegenga and Xiao [3]),

Q#
p $M#

p (Aulaskari, Wulan and Zhao [4] and Wulan [19]).

Is there a more general structure behind these facts? To consider a more
general case, we let K : [0,∞) → [0,∞) be a right-continuous and nonde-
creasing function and define QK and Q#

K as follows.

Definition 1. f ∈ H(∆) belongs to the space QK if

(1.1) ‖f‖2K = ‖f‖2QK = sup
a∈∆

∫∫
∆

|f ′(z)|2K(g(z, a)) dA(z) <∞.

Definition 2. f ∈M(∆) belongs to the class Q#
K if

(1.2) sup
a∈∆

∫∫
∆

(f#(z))2K(g(z, a)) dA(z) <∞.

Modulo constants, QK is a Banach space under the norm defined in (1.1).
Q#
K is not a linear space. It is clear that QK and Q#

K are Möbius invariant.

Remark 1. For 0 < p < ∞, K(t) = tp gives the space Qp and the class
Q#
p . Choosing K(t) = (1− e−2t)p, we obtain Mp and M#

p .

Remark 2. Choosing K(t) = 1, we get the Dirichlet space D and the
spherical Dirichlet class D#. For a fixed r, 0 < r < 1, we choose

K0(t) =

{
1, t ≥ log(1/r),
0, 0 < t < log(1/r).

Then we obtain∫∫
∆

|f ′(z)|2K0(g(z, a)) dA(z) =
∫∫

∆(a,r)

|f ′(z)|2 dA(z),
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and ∫∫
∆

f#2
(z)K0(g(z, a)) dA(z) =

∫∫
∆(a,r)

f#2
(z) dA(z).

We conclude that QK0 = B (cf. Axler [6]) and Q#
K0

= B#, where B# is
the class of spherical Bloch functions (cf. Section 3). It is easy to see that
N $ B# (cf. Lappan [13] and the discussion after Definition 2.1 in Wulan
[19]).

Which properties of K1 and K2 imply that QK1 = QK2 or Q#
K1

= Q#
K2

?
We shall develop a general theory for QK and Q#

K spaces which answers
these questions and which gives most basic properties of Qp, Q#

p , and M#
p .

Examples of functions in QK for different kernels K are given in Theorems
2.2–2.9. A preliminary version of our results can be found in [9]. We note
that problems of this type are also discussed in [18].

Let us introduce the following notation. By writing f(r) ≈ g(r) as r → r0,
we mean that there exist positive constants c1 and c2 such that

c1 ≤
f(r)
g(r)

≤ c2

in a neighbourhood of r0.

2. QK-spaces

For a nondecreasing function K : [0,∞) → [0,∞) we say that the space
QK is trivial if QK contains only constant functions. Whether our space QK
is trivial or not depends on the integral

1/e∫
0

K(log(1/ρ))ρ dρ =

∞∫
1

K(t)e−2t dt. (2.1)

Proposition 2.1.

(i) If the integral (2.1) is divergent, then the space QK is trivial.
(ii) If the integral (2.1) is convergent, then QK ⊂ B.

Proof. (i) Let fa = f ◦ ϕa. Then |f ′a(0)| = |f ′(a)|(1 − |a|2). Assume that
there exists f ∈ QK such that f ′a(0) 6= 0 for some a ∈ ∆. By subharmonicity,
we have∫∫

∆

|f ′(z)|2K(g(z, a)) dA(z) =
∫∫
∆

|f ′a(w)|2K(log |1/w|) dA(w)

≥ 2π |f ′a(0)|2
1/e∫
0

K(log(1/ρ))ρ dρ.
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Thus the integral (2.1) must be convergent and we have proved (i).
(ii) Conversely, if the integral (2.1) is convergent and f ∈ QK , it follows

from the inequality above that ‖f‖B <∞, i.e., we have QK ⊂ B. �

We note that a necessary condition for the space QK to be nontrivial is
that

(2.2) lim
t→∞

K(t)e−2t = 0.

It is easy to see that (2.2) is not a sufficient condition for the space QK to be
nontrivial.

It is also easy to see that the condition K(t)e−2t = O(t−s) for s > 1 is
sufficient for the integral (2.1) to be convergent. The convergence of (2.1)
is related to the growth order of K. The log-order of the function K(r) is
defined as

(2.3) ρ = lim
r→∞

log+ log+K(r)
log r

,

where log+ x = max{log x, 0}. If 0 < ρ < ∞, the log-type of the function
K(r) is defined as

(2.4) σ = lim
r→∞

log+K(r)
rρ

.

Proposition 2.2. Let ρ and σ be the log-order and the log-type of a
nondecreasing function K.

(i) If ρ > 1, then the space QK is trivial.
(ii) If ρ = 1 and σ > 2, then the space QK is trivial.

A proof of this result can be found in [18].

Remark 3. In the critical case ρ = 1 and σ = 2, QK may be trivial or
nontrivial.

From now on and through the remainder of Sections 2 and 3 we assume
that the function K : [0,∞) → [0,∞) is right-continuous and nondecreasing
and that the integral (2.1) is convergent.

Theorem 2.1. Assume that K(1) > 0 and set K1(r) = inf(K(r),K(1)).
Then QK = QK1 .

Proof. Since K1 ≤ K and K1 is nondecreasing, it is clear that QK ⊂ QK1 .
It remains to prove that QK1 ⊂ QK . We note that

g(z, a) > 1, z ∈ ∆(a, 1/e),

g(z, a) ≤ 1, z ∈ ∆ \∆(a, 1/e).
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Thus K(g(z, a)) = K1(g(z, a)) in ∆ \∆(a, 1/e). It suffices to deal with inte-
grals over ∆(a, 1/e). If f ∈ QK1 , f is a Bloch function by Proposition 2.1(ii).
It follows that∫∫

∆(a,1/e)

|f ′(z)|2K(g(z, a)) dA(z)

≤ ‖f‖2B
∫∫

∆(a,1/e)

(1− |z|2)−2K(g(z, a)) dA(z)

= ‖f‖2B
∫∫

∆(0,1/e)

(1− |w|2)−2K(log |1/w|) dA(w)

= 2π‖f‖2B

1/e∫
0

r(1− r2)−2K(log(1/r)) dr.

The right hand member gives a bound for the supremum over a ∈ ∆ of the
first term in this chain of inequalities. Hence f ∈ QK and Theorem 2.1 is
proved. �

Corollary 2.1. An analytic function f belongs to B if and only if there
exists an r, 0 < r < 1, such that K(log(1/r)) > 0 and

sup
a∈∆

∫∫
∆(a,r)

|f ′(z)|2K(g(z, a)) dA(z) <∞.

Proof. If f ∈ B, this supremum is finite for any r ∈ (0, 1), by the argument
in the proof of Theorem 2.1. Conversely, if the supremum is finite, then

sup
a∈∆

∫∫
∆(a,r)

|f ′(z)|2 dA(z) ≤ sup
a∈∆

1
K(log(1/r))

∫∫
∆(a,r)

|f ′(z)|2K(g(z, a)) dA(z).

Since |f ′(z)|2 is subharmonic, we conclude that f ∈ B. �

Theorem 2.2. Let 0 < p <∞. Assume that K(r) ≈ rp as r → 0. Then
QK = Qp.

Proof. By Theorem 2.1, it suffices to compare the functions K(r) and rp

in a neighbourhood of the origin. �

Corollary 2.2 (Aulaskari, Stegenga and Xiao [3]). We have Qp = Mp

for 0 < p <∞.

Proof. We note that

1− exp(−2g(z, a)) = 1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− āz|2
.
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We choose K(t) = (1 − e−2t)p. It is easy to see that (2.1) is convergent
and K(r) ≈ rp as r → 0. By Theorem 2.2, QK = Qp. We conclude that
Qp = Mp. �

Theorem 2.3. QK = B if and only if

(2.5)

1∫
0

K(log(1/r))(1− r2)−2 r dr <∞.

Choosing K(r) = rp, we obtain that (2.5) holds for p > 1 and that (2.5)
fails for 0 < p ≤ 1; that is, we have:

Corollary 2.3 (Aulaskari and Lappan [2] and Aulaskari, Xiao and Zhao
[5]). We have Qp = B when p > 1 and Qp $ B when 0 < p ≤ 1.

Proof of Theorem 2.3. Let us first assume that (2.5) holds. From Proposi-
tion 2.1(ii), we know that QK ⊂ B. To prove that B ⊂ QK , we assume that
f ∈ B and observe that∫∫

∆

|f ′(z)|2K(g(z, a)) dA(z) ≤ ‖f‖2B
∫∫
∆

(1− |z|2)−2K(g(z, a)) dA(z)

= 2π‖f‖2B

1∫
0

(1− r2)−2K(log(1/r))r dr <∞.

Hence f ∈ QK and we have proved that (2.5) is a sufficient condition for
QK = B.

Conversely, assume that QK = B. To prove that (2.5) is a necessary
condition, we study the Bloch function

f(z) =
∞∑
k=1

z2k ,

(cf. Proposition 8.12 in [15]). We introduce

L(r) =
∫ 2π

0

|f ′(reiθ)|2dθ = 2π
∞∑
k=1

22kr2k+1−2.

In the interval [1/2, 1), we have log r ≥ 2(r − 1), and it follows that

r2k+1−2 ≥ exp{2k+2(r − 1)}, r ∈ [1/2, 1),

and thus that there is a positive constant C (which will be specified below)
such that

L(r) ≥ C(1− r)−2, r ∈ [3/4, 1).
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Since QK = B, we have

∞ >

∫∫
∆

|f ′(z)|2K(log(1/|z|))dA(z) =
∫ 1

0

K(log(1/r))L(r)rdr

≥ C
∫ 1

3/4

K(log(1/r))(1− r)−2rdr.

It remains to prove the estimate of L(r) used above. The general term in the
series defining L(r) can be estimated from below by (1 − r)−2t2 exp{−4t},
where t = 2k(1− r). It is easy to see that supt>0 t

2e−4t = (4e2)−1 is assumed
for t = 1/2. For r ∈ [3/4, 1), we find k so that 1/2 ≤ 2k(1− r) < 1. For this
k we have

22k(1− r)2 exp{−4(2k)(1− r)} ≥ e−4,

and
L(r) ≥ 2πe−4(1− r)−2 = C(1− r)−2, r ∈ [3/4, 1).

Hence (2.5) holds and we have proved Theorem 2.3. �

Let us now consider the space QK,0, defined as f ∈ H(∆) :
∫∫
∆

|f ′(z)|2K(g(z, a)) dA(z)→ 0, |a| → 1

 ,

and the relation between this space and the space B0, defined as

B0 =
{
f ∈ H(∆) : lim

|z|→1
|f ′(z)|(1− |z|2) = 0

}
.

Theorem 2.4.

(i) QK,0 ⊂ B0.
(ii) An analytic function f belongs to B0 if and only if there exists an r,

0 < r < 1, such that

lim
|a|→1

∫∫
∆(a,r)

|f ′(z)|2K(g(z, a)) dA(z) = 0.

Proof. To prove (i), we note that if f ∈ QK,0 and K(1) > 0, then

K(1)
∫∫

∆(a,1/e)

|f ′(z)|2 dA(z) ≤
∫∫
∆

|f ′(z)|2K(g(z, a)) dA(z)→ 0, |a| → 1.

By subharmonicity,

(1− |z|2)2|f ′(z)|2 ≤ Const ·
∫∫

∆(z,1/e)

|f ′(ζ)|2 dA(ζ)→ 0, |z| → 1,

which proves the first part of Theorem 2.4.
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To prove the second part, we note that∫∫
∆(a,r)

|f ′(z)|2K(g(z, a))dA(z)

≤ sup
∆(a,r)

{
(1− |z|2)2|f ′(z)|2

}
2π
∫ r

0

ρ(1− ρ2)−2K(log(1/ρ))dρ,

(see the computation in the last part of the proof of Theorem 2.1). If f ∈ B0,
the supremum term tends to zero as |a| → 1 and the integral in (ii) will tend
to zero. Conversely, if the limit of the integral in (ii) is zero, it follows that

lim
|a|→1

∫∫
∆(a,r1)

|f ′(z)|2dA(z) = 0, |a| → 1,

where r1 ∈ (0, r] is chosen so that K(log(1/r1)) > 0. Since |f ′(z)|2 is subhar-
monic, we must have f ∈ B0. �

Theorem 2.5. QK,0 = B0 if and only if (2.5) holds.

Proof. Let us first assume that (2.5) holds. By Theorem 2.4, it suffices to
prove that B0 ⊂ QK,0. Suppose that f ∈ B0. Since (2.5) holds, for given
ε > 0 there exists an r, 0 < r < 1, such that

1∫
r

K(log(1/ρ))/(1− ρ2)−2ρ dρ < ε.

Thus, ∫∫
∆\∆(a,r)

|f ′(z)|2K(g(z, a)) dA(z)(2.6)

≤ ‖f‖2B
∫∫

∆\∆(a,r)

(1− |z|2)−2K(g(z, a)) dA(z)

= ‖f‖2B
∫∫

r≤|w|<1

(1− |w|2)−2K(log(1/|w|))dA(w)

= 2π‖f‖2B

1∫
r

K(log(1/ρ))(1− ρ2)−2ρ dρ

< 2π‖f‖2B ε.
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Since f ∈ B0, |f ′(ϕa(w))|(1− |ϕa(w)|2)→ 0 as |a| → 1 uniformly in |w| < r.
Making the change of variables z = ϕa(w), we see that

∫∫
∆(a,r)

|f ′(z)|2K(g(z, a)) dA(z)

(2.7)

=
∫∫
|w|<r

|f ′(ϕa(w))|2(1− |ϕa(w)|2)2(1− |w|2)−2K(log(1/|w|)) dA(w)

≤ 2π sup
|w|<r

|f ′(ϕa(w))|2(1− |ϕa(w)|2)2

1∫
0

K(log(1/ρ))(1− ρ2)−2ρ dρ

≤ Const · sup
|w|<r

|f ′(ϕa(w))|2(1− |ϕa(w)|2)2.

Combining (2.6) and (2.7), we get

lim
|a|→1

∫∫
∆

|f ′(z)|2K(g(z, a)) dA(z) = 0,

which shows that f ∈ QK,0. Thus (2.5) is a sufficient condition for QK,0 = B0

to hold.
Conversely, we shall assume that (2.5) does not hold and prove that there

exists a function in B0 \QK,0.
If (2.5) does not hold, we can find a continuous, strictly decreasing function

h : [0, 1)→ (0, 1] tending to zero at 1 such that

(2.8)
∫ 1

0

h(r)K(log(1/r))(1− r2)−2rdr =∞.

For a given r ∈ [3/4, 1) we find an integer k such that 1/2 ≤ 2k(1 − r) < 1.
Then 1− 2−k < r. We define ak = h(1− 2−k)1/2 and consider the gap series

f0(z) =
∞∑
1

akz
2k .

Since ak → 0 as k →∞, it is clear that f0 ∈ B0 (cf. Proposition 8.12 in [15]).
If

L0(r) =
∫ 2π

0

|f ′0(reiθ)|2dθ = 2π
∞∑
1

a2
k22kr2k+1−2,

we argue in the same way as in the second half of the proof of Theorem 2.3
to deduce that

L0(r) ≥ 2πh(r)(1− r)−2e−4 = Ch(r)(1− r)−2, r ∈ [3/4, 1).
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It follows that∫∫
∆

|f ′0(z)|2K(log(1/|z|))dA(z) ≥ C
∫ 1

3/4

h(r)K(log(1/r))(1− r2)−2rdr =∞.

Hence f0 ∈ B0 \QK,0, which shows that QK,0 $ B0 and finishes the proof of
Theorem 2.5. �

In a natural way, the Bloch space B is the largest Möbius-invariant subspace
in the linear space of analytic functions on ∆ equipped with the topology
of uniform convergence on compact sets (cf. Rubel and Timoney [17] and
Arazy, Fisher and Peetre [1]). In our work, this is clear, since QK ⊂ B holds
for all nondecreasing functions K. The smallest Möbius-invariant subspace
in our scale is the Dirichlet space D (modulo constants) under the norm
‖f‖D = {

∫∫
∆

|f ′(z)|2dA(z)}1/2 (cf. Remark 2).

Theorem 2.6. Let K1 ≤ K2 in (0, 1) and assume that K1(r)/K2(r)→ 0
as r → 0 and that the integral in (2.5) is divergent when K = K2. Then
QK2 $ QK1 .

Corollary 2.4.

(i) (cf. [5]) Qs $ Qq, 0 ≤ s < q < 1 .
(ii) D ⊂ QK . Furthermore, we have D = QK if and only if K(0) > 0.
(iii) Let

K(t) =

{
t/| log t|, 0 < t ≤ 1/e,
t, t > 1/e.

Then BMOA = Q1 $ QK $ B.

Proof of Corollary 2.4. (i) Choose K2(r) = rs and K1(r) = rq and apply
Theorem 2.6.

(ii) If K(0) > 0, it is an immediate consequence of Theorem 2.1 that
QK = QK(0) = D. Conversely, if K(0) = 0, we choose K2(r) = K(1) and
K1(r) = K(r) and apply Theorem 2.6 to conclude that D $ QK .

(iii) We choose K1(t) = K(t) and K2(t) = t and apply Theorem 2.6 to
conclude that BMOA $ QK . From Proposition 2.1(ii), we know that QK ⊂
B. With K as above, the integral (2.5) is divergent. It is now clear from
Theorem 2.3 that QK $ B. �

Proof of Theorem 2.6. We note first that it is clear that QK2 ⊂ QK1 . We
assume that QK2 = QK1 and apply the open mapping theorem (cf. 1.1.4 in
[23]), which tells us that the identity map from one of these spaces into the
other one is continuous. Thus there exists a constant C such that ‖ · ‖K2 ≤
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C‖ · ‖K1 . If K1(t) ≤ (2C)−1K2(t), 0 < t ≤ t0, we can choose r0 = e−t0 and
deduce that if f ∈ QK2 , then

sup
a∈∆

∫∫
∆

|f ′(z)|2K2(g(z, a))dA(z)

≤ C sup
a∈∆

∫∫
∆(a,r0)

|f ′(z)|2K1(g(z, a))dA(z)

+
1
2

sup
a∈∆

∫∫
∆

|f ′(z)|2K2(g(z, a))dA(z).

Consequently,∫∫
∆

|f ′(z)|2K2(g(z, a))dA(z) ≤ 2C sup
a∈∆

∫∫
∆(a,r0)

|f ′(z)|2K1(g(z, a))dA(z).

Since QK2 ⊂ B, we use the fact that we must have f ∈ B to deduce that the
right hand side of this inequality is majorized by

4πC‖f‖2B
∫ r0

0

t(1− t2)−2K1(log(1/t))dt.

Hence there exists a constant C ′ such that

sup
a∈∆

∫∫
∆

|f ′(z)|2K2(g(z, a))dA(z) ≤ C ′‖f‖2B, f ∈ QK2 .

If h ∈ B and hr(z) = h(rz), 0 < r < 1, then ‖hr‖B ≤ ‖h‖B. Since hr ∈
QK2 , 0 < r < 1, we can choose f = hr in this inequality. Using Fatou’s
lemma, we deduce that

sup
a∈∆

∫∫
∆

|h′(z)|2K2(g(z, a))dA(z) ≤ C ′‖h‖2B, h ∈ B.

We have proved that if h ∈ B, then h ∈ QK2 , which means that QK2 = B.
It follows from Theorem 2.3 that the integral (2.5) with K = K2 must be
convergent, which contradicts our assumptions. We conclude that we must
have QK2 $ QK1 . This finishes the proof of Theorem 2.6. �

Theorem 2.7. D ⊂ QK,0 if and only if K(0) = 0.

An immediate consequence of Theorem 2.7 is that we have D ⊂ Qp,0 for
all p, 0 < p <∞.
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Proof of Theorem 2.7. Let us first assume that K(0) = 0 and that f ∈ D.
For 0 < r < 1 we have∫∫

∆\∆(a,r)

|f ′(z)|2K(g(z, a)) dA(z)

≤ K(log(1/r))
∫∫

∆\∆(a,r)

|f ′(z)|2 dA(z) ≤ ‖f‖2DK(log(1/r)).

For given ε > 0 we recall our assumption that K is right-continuous and
K(0) = 0. We can choose an r0, 0 < r0 < 1, such that∫∫

∆\∆(a,r0)

|f ′(z)|2K(g(z, a)) dA(z) ≤ ‖f‖2DK(log(1/r0)) < ε

for all a ∈ ∆.
It is easy to see that f ∈ B0 if f ∈ D (see the proof of Theorem 2.4). Thus,

for ε > 0 given, we can find δ(ε) such that |f ′(z)|(1−|z|2) < ε if 1−|z| < δ(ε).
For |a| close to 1, we deduce that∫∫

∆(a,r0)

|f ′(z)|2K(g(z, a)) dA(z) ≤ ε2

∫∫
∆(a,r0)

K(g(z, a))(1− |z|2)−2dA(z)

= ε2

∫∫
|w|<r0

K(log(1/|w|))(1− |w|2)−2dA(w) = Const · ε2.

Hence

lim
|a|→1

∫∫
∆

|f ′(z)|2K(g(z, a)) dA(z) = 0,

which means that f ∈ QK,0.
Conversely, assuming that K(0) > 0 and that f ∈ D, we see that∫∫

∆

|f ′(z)|2dA(z) ≤ K(0)−1

∫∫
∆

|f ′(z)|2K(g(z, a))dA(z).

Thus, if f ∈ D is nonconstant, we must have f /∈ QK,0 because if f ∈ QK,0
we would have ∫∫

∆

|f ′(z)|2K(g(z, a))dA(z)→ 0, |a| → 1.

We have thus proved Theorem 2.7. �

For α ∈ [0,∞), we let Bα denote the space of all functions f ∈ H(∆)
satisfying

‖f‖Bα = sup
z∈∆

(1− |z|2)α|f ′(z)| <∞.
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It is well known that if α ∈ [0, 1), Bα will coincide with the classical (1− α)-
Lipschitz class (cf. Theorem 5.1 in [8]). We mention the following result of
Yamashita (cf. [21]).

Theorem Y1. Let f(z) =
∑∞

1 ajz
nj , where nj+1/nj ≥ λ > 1, j =

1, 2, . . .. Then f ∈ Bα, 0 < α <∞, if and only if

(2.9) sup
j∈N
|aj |n1−α

j <∞.

The following discussion of the relation between α-Bloch spaces Bα and
QK-spaces will also give us several examples of functions in QK for different
kernels K.

Theorem 2.8. Let 1/2 ≤ α < 1. The following statements are equivalent:
(i) We have

(2.10) I(K,α) =
∫ 1

0

K(log(1/r))(1− r2)−2αrdr <∞.

(ii) Bα ⊂ QK,0.
(iii) Bα ⊂ QK .
Furthermore, we have:
(iv) Let f(z) = fα(z) =

∑∞
j=1 2−j(1−α)z2j . If (2.10) holds, then f ∈ QK,0.

Conversely, if (2.10) does not hold, then f /∈ QK .

We note that if 0 ≤ α < 1/2, then Bα ⊂ D ⊂ QK , where the last inclusion
is a consequence of Corollary 2.4(ii). If it is also known that K(0) = 0, then
by Theorem 2.7 we have Bα ⊂ QK,0.

Proof of Theorem 2.8. Assume that (2.10) holds. Changing variables in
the integral, we see (with |w| = r and f ∈ Bα) that∫∫

∆

|f ′(z)|2K(g(z, a))dA(z) ≤ ‖f‖2Bα
∫∫

∆

(1− |z|2)−2αK(g(z, a))dA(z)

=‖f‖2Bα
∫ 1

0

K(log(1/r))(1− r2)−2αI(r, α)rdr,

where

I(r, α) =
∫ 2π

0

(1− |a|2)2−2α

|1− āreiθ|4−4α
dθ.

Let δ be a small positive number. If r < 1 − δ, it is clear that I(r, α) tends
to 0 uniformly as |a| → 1. For {1 − δ < r < 1} and |a| near 1, we have the
following estimates of I(r, α):

(a) I(r, α) ≤ C(1− |a|)2−2α, 3/4 < α < 1,
(b) I(r, α) ≤ C(1− |a|)1/2 log π/(1− |a|), α = 3/4,
(c) I(r, α) ≤ C(1− |a|)2α−1, 1/2 ≤ α < 3/4.
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Thus, if 1/2 ≤ α < 1, I(r, α) is bounded and the integral over the interval
{1− δ < r < 1} is majorized by

Const ·
∫ 1

1−δ
K(log(1/r))(1− r2)−2αrdr.

Since (2.10) holds, this expression can be made as small as we like by choosing
δ close to 0. It follows that f ∈ QK,0. We have thus proved that (ii) follows
from (i).

It is clear that (ii) ⇒ (iii). To prove that (iii) ⇒ (i), let us assume that
Bα ⊂ QK . Here, we need the following result of J. Xiao (cf. Theorem 2.1.1
in [20]).

Theorem X. Let α ∈ (0,∞). Then there are f1, f2 in Bα with

(2.11) |f ′1(z)|+ |f ′2(z)| ≈ (1− |z|2)−α, z ∈ ∆.

For α = 1, this is proved in Ramey and Ullrich [16] via a study of gap
series. Combining this technique with Theorem Y1, Xiao proved Theorem X.

Let f1 and f2 be as in Theorem X. Our assumptions show that these
functions will also be in QK , and we see that

∞ > 2
∫∫

∆

(|f ′1(z)|2 + |f ′2(z)|2)K(log(1/|z|))dA(z)

≥
∫∫

∆

(|f ′1(z)|+ |f ′2(z)|)2K(log((1/|z|))dA(z)

≥ C
∫∫

∆

(1− |z|2)−2αK(log(1/|z|))dA(z)

= C

∫ 1

0

(1− r2)−2αK(log(1/r))rdr.

Hence (2.10) holds for 1/2 ≤ α < 1 and we have proved (i).
To prove (iv), we apply Theorem Y1 to deduce that fα ∈ Bα. If 1/2 ≤

α < 1, it follows from the first part of the theorem that if (2.10) holds, then
fα ∈ QK,0.

Let us now assume that 1/2 ≤ α < 1 and that I(K,α) = ∞. Arguing as
in the proofs of Theorems 2.3 and 2.5, we wish to estimate

L(r) =
∫ 2π

0

|f ′α(reiθ)|2dθ = 2π
∞∑
j=1

2j2αr2j+1−2.
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For r ∈ [3/4, 1), we find k so that 1/2 ≤ 2k(1 − r) < 1. Using the inequality
log r ≥ 2(r − 1), 1/2 < r < 1, we see that

(1− r)2αL(r) ≥ 2π
∞∑
j=1

(2j(1− r))2α exp (−2j+2(1− r))

≥ 2−2α+1π
∞∑
j=1

2(j−k)(2α) exp (−2j−k+2)

≥ 2−2α+1π
∞∑
0

(2j2α exp (−2j+2)) = C.

Hence ∫∫
∆

|f ′α(z)|2K(log(1/|z|))dA(z) =
∫ 1

0

K(log(1/r))L(r)rdr

≥ C
∫ 1

3/4

(1− r2)−2αK(log(1/r))rdr.

If the last integral is divergent, we conclude that fα /∈ QK . This concludes
the proof of Theorem 2.8. �

Remark 4. Theorems Y1 and 2.8 and Corollary 2.4(i) should be com-
pared to Theorem 6 in Aulaskari, Xiao and Zhao [5], which says that the gap
series

f(z) =
∞∑
k=0

akz
nk , nk+1/nk ≥ λ > 1, k = 0, 1, . . . ,

is in Qp, 0 < p ≤ 1, if and only if
∞∑
k=1

2k(1−p)
∑

nj∈I(k)

|aj |2 <∞,

where I(k) = {n : 2k ≤ n < 2k+1, n ∈ N}. These results are used in [5] to
prove that

(2.12) Qs $ Qq, 0 ≤ s < q < 1.

One generalization of (2.12) was given in Theorem 2.6. Theorem 2.8 can
be used to give another generalization of this fact. If K1 ≤ K2 in the interval
(0, 1), it is known that QK2 ⊂ QK1 . Under what conditions on the kernels is
this inclusion strict?

Corollary 2.5. Let K1 ≤ K2 in (0, 1) and assume that for some α ∈
[1/2, 1), I(K1, α) is finite while I(K2, α) is infinite. Then QK2 $ QK1 .

Proof. It follows from Theorem 2.8 that Bα 6⊂ QK2 and that Bα ⊂ QK1 . �
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To see that Corollary 2.5 is a generalization of (2.12), we note that if
K(t) = Kp(t) = tp, 0 ≤ p < 1, then I(Kp, α) is finite if p > 2α−1 and infinite
if p ≤ 2α − 1. Choosing α ∈ [1/2, 1) such that s < 2α − 1 < q, and applying
Corollary 2.5 to Kq ≤ Ks, we obtain (2.12).

Theorem 2.9. log(1− z) ∈ QK if and only if

(2.13)
∫ 1

0

(1− r2)−1K(log(1/r))rdr <∞.

Choosing K(t) = tp, we obtain:

Corollary 2.6. log(1− z) ∈ Qp for all p ∈ (0,∞).

Proof of Theorem 2.9. A classical rearrangement theorem of Hardy (cf.
10.2 and 10.13 in [12]) tells us that

sup
a∈∆

∫∫
∆

|1− z|−2K

(
log
(

1
|ϕa(z)|

))
dA(z),

is assumed for 0 < a < 1. For a in this range, a change of variables in this
integral gives the expression∫ 1

0

K(log(1/r))rdr
∫ 2π

0

(1 + a)2dθ

|1 + reiθ|2|1− areiθ|2
.

A computation shows that the supremum over a of the inner integral is (mod-
ulo constants) essentially (1− r)−1, and the theorem is proved. �

Corollary 2.7. If (2.13) holds, then QK,0 $ QK .

Proof. By Theorems 2.4 and 2.9, we have log(1 − z) ∈ QK \ B0 ⊂ QK \
QK,0. �

We do not know whether we have QK,0 = QK when (2.13) does not hold.
In Essén and Xiao [10], some relations between the spaces Qp and the mean

Lipschitz spaces A(p, α) were discussed. Here, A(p, α), α ∈ [0, 1], consists of
functions f analytic in ∆ satisfying

‖f ′r‖p = O((1− r)α−1), r → 1,

where f ′r(e
iθ) = f ′(reiθ) and

‖f‖p =


(∫ 2π

0
|f(eiθ)|pdθ

)1/p

, 0 < p <∞,
essθ sup |f(eiθ)|, p =∞.

It is easy to see that log(1− z) ∈ A(2p, α) for 0 < α < 1/2p with 1 ≤ p <∞,
and that log(1 − z) 6∈ B0. By Theorem 2.4(i) we have QK,0 ⊂ B0. It follows
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that
A(2p, α) 6⊂

⋂
1−2α<q<1

Qq,0,

for α ∈ (0, 1/2p) with p ∈ [1,∞). This answers in the negative a question
asked in the remark on p. 187 of [10].

While the function log(1 − z) is univalent in the unit disk, the gap series
of Theorem 2.7(iv) is “∞-valued” there. Comparing (2.5) of Theorem 2.3
with (2.13) of Theorem 2.9, it is natural to conjecture that a much weaker
assumption on K is needed to prove that f ∈ B is in QK if we also assume
that f is univalent. We shall study the relation between univalent (or q-valent)
functions and QK-classes in a separate paper.

3. The meromorphic case: Q#
K classes

It is necessary to know for which functions K the classes Q#
K will be triv-

ial. Here, the square of the spherical derivative f#(z)2 is not necessarily
subharmonic, so the proof of Proposition 2.1(ii) does not work. The following
theorem also answers a question of Wu and Wulan (cf. [18, Remark 2]).

Theorem 3.1. If the integral (2.1) is divergent, then the space Q#
K con-

tains only constant functions.

Proof. Let fa = f ◦ ϕa. If Q#
K is not trivial, we may assume that f ∈ Q#

K

is a nonconstant meromorphic function in ∆ and we can find a ∈ ∆ such that
f#(a) > 0. Consequently, f#

a (0) = f#(a)(1− |a|2) > 0. By the continuity of
f#
a , we can find a positive number r such that f#

a (w) > f#
a (0)/2 in ∆(0, r).

It follows that∫∫
∆

f#2
(z)K(g(z, a)) dA(z) ≥

∫∫
∆(a,r)

f#2
(z)K(g(z, a)) dA(z)

=
∫∫
|w|<r

f#
a

2
(w)K(log 1/|w|) dA(w)

≥ (π/2)f#
a (0)2

r∫
0

ρK(log(1/ρ))dρ =∞.

This is a contradiction, and the proof is complete. �

Again, we assume from now on that the function K is right-continuous and
nondecreasing and that the integral (2.1) is convergent. We are interested in
the class of normal functions

N =
{
f ∈M(∆) : ‖f‖N = sup

z∈∆
(1− |z|2)f#(z) <∞

}



1250 MATTS ESSÉN AND HASI WULAN

and the class of spherical Bloch functions

B# =

 f ∈M(∆) : sup
a∈∆

∫∫
∆(a,r)

f#2
(z) dA(z) <∞ for some r ∈ (0, 1)

 .

We clearly have N ⊂ B#. In the analytic case, we know that the correspond-
ing definitions with f#(z) replaced by |f ′(z)| both give the space of Bloch
functions B. In the meromorphic case, the situation is different. There exists
a locally univalent and analytic function f0 ∈ B# \ N (cf. Lappan [13]). S.
Yamashita [22] proved that there is an essential difference between N and B#:

Theorem Y2. A meromorphic function f belongs to N if and only if

sup
a∈∆

∫∫
∆(a,r)

f#2
(z) dA(z) < π

for some r ∈ (0, 1).

Remark 5. What can we say about the meromorphic analogue of Corol-
lary 2.1? Is the condition that there exists r ∈ (0, 1) such that

(3.1) sup
a∈∆

∫∫
∆(a,r)

f#(z)2K(g(z, a))dA(z) <∞

necessary and sufficient for f ∈ B#?
If (3.1) holds, we argue as in the proof of Corollary 2.1 to conclude that

we must have f ∈ B#. In particular, it follows that Q#
K ⊂ B#. (In the

analytic case, we have QK ⊂ B.) Conversely, if we assume that f ∈ B# and
that K is bounded, it is easy to see that (3.1) will hold. If K is unbounded
and f ∈ B# \ N , we claim that the supremum in (3.1) will be infinite for all
r ∈ (0, 1). To prove the claim, we note that it follows from Theorem Y2 that
if f ∈ B# \ N , then

sup
a∈∆

∫∫
∆(a,r)

f#(z)2dA(z) ≥ π for all r ∈ (0, 1).

If 0 < ρ < r, we see that∫∫
∆(a,r)

f#(z)2K(g(z, a))dA(z) ≥ K(log(1/ρ))
∫∫

∆(a,ρ)

f#(z)2dA(z).

Using the observation above, we deduce that

sup
a∈∆

∫∫
∆(a,r)

f#(z)2K(g(z, a))dA(z) ≥ πK(log(1/ρ)), 0 < ρ < r.

Letting ρ → 0, we conclude that (3.1) cannot hold for any r ∈ (0, 1) which
proves our claim.
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We conclude that (3.1) is a sufficient condition for f ∈ B#. It is also a
necessary condition when K is bounded, but not when K is unbounded.

Finally, if we assume that f ∈ N , it is easy to prove that (3.1) will hold
(see the proof of Theorem 3.3(ii) below).

We note that Theorem 2.1 and Theorem 2.2 do not remain valid in the
meromorphic case and that it can occur that Q#

K 6⊂ N . We quote a theorem
from Wu and Wulan [18], a result which in turn is an immediate consequence
of the main result in Aulaskari, Wulan and Zhao [4].

Theorem WW. Let 0 < p < ∞. Assume that K is bounded and that
K(r) = O(rp) as r → 0. Then there exists a non-normal function f0 ∈ Q#

K .

Which additional conditions on K are required for the inclusion Q#
K ⊂ N ?

When are the classes Q#
K1

and Q#
K2

identical for K1 6= K2? The following
relevant result was proved in [18].

Proposition 3.1. Assume that K(r)→∞ as r →∞. Then Q#
K ⊂ N .

If the function K is bounded, Theorem WW tells us that Q#
K ⊂ N does

not hold in the general case. However, we have the following result:

Theorem 3.2. Assume that K(∞) = 1. Then f ∈ N if and only if

(3.2) sup
a∈∆

∫∫
∆(a,r)

f#2
(z)K(g(z, a)) dA(z) < π,

for some r ∈ (0, 1).

Proof. Suppose that f is a normal function. Then for 0 < r < 1,∫∫
∆(a,r)

f#2
(z)K(g(z, a)) dA(z) ≤ ‖f‖2N

∫∫
∆(a,r)

(1− |z|2)−2K(g(z, a))dA(z)(3.3)

= ‖f‖2N
∫∫
|w|<r

(1− |w|2)−2K(log
1
|w|

)dA(w)

≤ 2π‖f‖2N (1− r2)−2

∫ r

0

K(log(1/ρ)) ρ dρ.

Since ∫ r

0

K(log(1/ρ)) ρ dρ→ 0, r → 0,

we may choose r small enough such that the left hand member in the first
inequality in (3.3) is less than π/2 . Thus (3.2) holds.
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Conversely, let C(< π) be the supremum in (3.2) assumed for some r0 ∈
(0, 1). Now consider r ∈ (0, r0). Since ∆(a, r) = {z ∈ ∆ : g(z, a) > log(1/r)},

∫∫
∆(a,r)

f#2
(z) dA(z) ≤

(
K(log(1/r))

)−1
∫∫

∆(a,r0)

f#2
(z)K(g(z, a)) dA(z)

≤ C
(
K(log(1/r))

)−1
< π

if r is small enough. Hence f ∈ N according to Theorem Y2. The proof is
complete. �

Corollary 3.1. Assume that K(∞) = 1. If f ∈ Q#
K and

sup
a∈∆

∫∫
∆

f#2
(z)K(g(z, a)) dA(z) < π,

then f ∈ N .

The meromorphic analogue of Theorem 2.1 is given by the following result:

Theorem 3.3. Assume that K(1) > 0 and set K1(r) = inf(K(r),K(1)).

(i) If K is bounded, then Q#
K = Q#

K1
.

(ii) If K is unbounded, then Q#
K = N ∩Q#

K1
.

Proof. (i) If K is bounded, we have

K1(r) ≤ K(r) ≤ K(∞)
K(1)

K1(r),

and it is clear that Q#
K = Q#

K1
.

(ii) By Proposition 3.1, we have Q#
K ⊂ N ∩ Q

#
K1

. Now assume that
f ∈ N ∩Q#

K1
. We note that K(g(z, a)) = K1(g(z, a)) in ∆\∆(a, 1/e). (In this

domain, we have g(z, a) ≤ 1.) To compare the two suprema in the integrals
defining Q#

K and Q#
K1

, it suffices to deal with integrals over ∆(a, 1/e). Using
our assumption that f ∈ N , we see that
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∆(a,1/e)

f#(z)2K(g(z, a)) dA(z)

≤ ‖f‖2N
∫∫

∆(a,1/e)

(1− |z|2)−2K(g(z, a)) dA(z)

= ‖f‖2N
∫∫

∆(0,1/e)

(1− |w|2)−2K(log |1/w|) dA(w)

= 2π‖f‖2N

1/e∫
0

r(1− r2)−2K(log(1/r)) dr.

The right hand member gives a bound for the supremum over a ∈ ∆ of the
first term in this chain of inequalities. Hence f ∈ Q#

K and Theorem 3.3 is
proved. �

Next, we state conditions on K1 and K2 which imply that Q#
K1

= Q#
K2

.

Theorem 3.4. Assume that K1 and K2 are either both bounded or both
unbounded and that K1(r) ≈ K2(r) as r → 0. Then Q#

K1
= Q#

K2
.

Corollary 3.3. Let 0 < p < ∞ and assume furthermore that K is
bounded and that K(r) ≈ rp as r → 0. Then Q#

K = M#
p .

Combining Theorems 3.3 and 3.4 and Corollary 3.3, we obtain (cf. Theorem
2.2.2 in Wulan [19]):

Corollary 3.4. Let 0 < p < ∞ and assume furthermore that K is
unbounded and that K(r) ≈ rp as r → 0. Then Q#

K = Q#
p = N ∩M#

p .

Proof of Theorem 3.4. We define Ki,1(r) = inf(Ki(r),Ki(1)), i = 1, 2. If
K1 and K2 are bounded, it follows from our assumptions that 0 < c ≤
K1(r)/K2(r) ≤ c′ <∞, 0 < r <∞, and it is clear that we have Q#

K1
= Q#

K2
.

If K1 and K2 are unbounded, we use Theorem 3.3 to deduce that

Q#
K1

= N ∩Q#
K1,1

= N ∩Q#
K2,1

= Q#
K2
.

We thus have proved Theorem 3.4. �

Theorem 3.5.

(i) If K is unbounded and (2.5) holds, then Q#
K = N .

(ii) If K is bounded and (2.5) holds, then Q#
K = B#.

(iii) In (i) (resp. (ii)), (2.5) is a necessary condition for Q#
K = N

(resp. Q#
K = B#).
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Corollary 3.5 (Aulaskari and Lappan [2] and Wulan [19]).

(i) Q#
p = N when p > 1 and Q#

p $ N when 0 < p ≤ 1.
(ii) M#

p = B# when p > 1 and M#
p $ B# when 0 < p ≤ 1.

Proof of Theorem 3.5. (i) By Proposition 3.1 we have Q#
K ⊂ N . Con-

versely, if f ∈ N , we know that f#(z) ≤ Const · (1− |z|2)−1 and we can use
the argument in the proof of Theorem 2.3 to prove that f ∈ Q#

K .
(ii) By Remark 5 we have Q#

K ⊂ B#. It suffices to prove that B# ⊂ Q#
K .

If f ∈ B#, there exists r ∈ (0, 1) such that

(3.4)
∫∫

∆(a,r)

f#(z)2dA(z) ≤ B <∞, for all a ∈ ∆.

Let us first prove that there exists a constant C1 depending on r and K (see
below) such that

(3.5)
∫∫
∆

f#(z)2K(log(1/|z|))dA(z) ≤ B‖K‖∞ + C1.

Our first observation in the proof of this estimate is that∫∫
|z|<r

f#(z)2K(log(1/|z|))dA(z) ≤ B‖K‖∞.

Let Ωn = {z : 1 − (1 − r)n ≤ |z| ≤ 1 − (1 − r)n+1}. We wish to cover
Ωn with disks ∆(a, r) with |a| = 1 − (1 − r)n+1; it suffices to use roughly
C(r(1 − r)n+1)−1 such disks, where C is an absolute constant, n = 1, 2, . . ..
Hence ∫∫

Ωn

f#(z)2K(log(1/|z|))dA(z)

≤ K(log
1

1− (1− r)n
)BC(r(1− r)n+1)−1

≤ K((1− r)nγ(r))BC(r(1− r)n+1)−1,

where γ(r) = (1− r)−1 log(1/r). It follows that
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r≤|z|≤1

f#(z)2K(log(1/|z|))dA(z)

≤ BCr−1
∞∑
1

(1− r)−n−1K((1− r)nγ(r))

≤ BCr−2(1− r)−2

1∫
0

t−2K(tγ(r))dt

= BCγ(r)r−2(1− r)−2

γ(r)∫
0

s−2K(s)ds = C1 <∞.

The convergence of the integral follows from (2.5). We have proved that (3.5)
holds for all f ∈ B# satisfying (3.4). Since for all b ∈ ∆,

sup
a∈∆

∫∫
∆(a,r)

(f ◦ ϕb)#(z)2dA(z) = sup
a∈∆

∫∫
∆(a,r)

f#(z)2dA(z) = B,

it follows from (3.4) and (3.5) with f# replaced by (f ◦ ϕb)# that

sup
b∈∆

∫∫
∆

f#(z)2K(log
1

|ϕb(z)|
)dA(z)

= sup
b∈∆

∫∫
∆

(f ◦ ϕb)#(z)2K(log 1/|z|))dA(z) ≤ C1 +B‖K‖∞.

This proves Theorem 3.5(ii).
(iii) By Lappan and Xiao [14], there exist functions f1 and f2 in N such

that

(3.6) c0 = inf
z∈∆

(1− |z|2)(f#
1 (z) + f#

2 (z)) > 0.

If Q#
K = N or Q#

K = B# ⊃ N , we have

∞ > sup
a∈∆

∫∫
∆

(f#
1 (z)2 + f#

2 (z)2)K(g(z, a))dA(z)

≥ 1
2

∫∫
∆

(f#
1 (z) + f#

2 (z))2K(g(z, 0))dA(z)

≥ (c20/2)
∫∫

∆

(1− |z|2)−2K(g(z, 0))dA(z)

= πc20

∫ 1

0

(1− r2)−2K(log(1/r))rdr.

Hence (2.5) holds which finishes the proof of Theorem 3.5(iii). �
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Remark 6. There is an analogue of (3.6) for Bloch functions with the
spherical derivatives f#

1 and f#
2 replaced by |f ′1| and |f ′2| (cf. Proposition 5.4

in Ramey and Ullrich [16]), which could have been used in the proof of the
necessity of (2.5) in Theorem 2.3 instead of the direct argument which we
used. The proofs of Proposition 5.4 in [16] and Theorem X are related. The
proof of (3.6) in [14] is different.

Finally we consider the classes

B#
0 =

f ∈M(∆) : lim
|a|→1

∫∫
∆(a,r)

f#(z)2 dA(z) = 0 for some r ∈ (0, 1)

 ,

Q#
K,0 =

f ∈M(∆) : lim
|a|→1

∫∫
∆

f#(z)2K(g(z, a))dA(z) = 0

 ,

N0 =
{
f ∈M(∆) : (1− |z|2)f#(z)→ 0, |z| → 1

}
,

and the spherical Dirichlet class

D# =

f ∈M(∆) :
∫∫
∆

f#(z)2 dA(z) <∞

 .

By Lemma 3.2 in Yamashita [22] we have N0 = B#
0 . Arguing as in the proof

of Theorem 2.4, we deduce:

Theorem 3.6. Q#
K,0 ⊂ B

#
0 = N0.

Theorem 3.7. If (2.5) holds, then Q#
K,0 = N0.

Remark 7. It suffices to prove that N0 ⊂ Q#
K,0. We deduce this using

the same argument as in the first part of the proof of Theorem 2.5. We note
that in this argument, the growth of K at infinity is unimportant since we
have N0 = B#

0 .

We have the following analogue of Corollary 2.4(ii) and Theorem 2.7. Our
classes are not linear and we cannot use the open mapping theorem.

Theorem 3.8.

(i) If K(0) > 0, then D# = Q#
K .

(ii) D# ⊂ Q#
K,0 if and only if K(0) = 0.

(iii) Assume that Q#
K 6= Q#

K,0. If D# = Q#
K , then K(0) > 0.

(iv) If D# = Q#
K = Q#

K,0, then K(0) = 0.
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We do not know whether the situation in (iv) can ever occur (see the
question after Corollary 2.7).

Proof of Theorem 3.8. To prove (i), we assume that K(0) > 0 and note
that D# ⊂ B#

0 = N0 ⊂ N . If K is bounded, it is clear that Q#
K = D#. If K

is unbounded, we use Theorem 3.3 and the fact that Q#
K1

= D# (we use the
notation of Theorem 3.3) to deduce that Q#

K = N ∩ Q#
K1

= N ∩ D# = D#.
This finishes the proof of (i).

The proof of (ii) uses the same argument as the proof of Theorem 2.7 except
that we again use the fact that D# ⊂ B#

0 = N0.
To prove (iii), we note that our assumptions imply that D# 6⊂ Q#

K,0 and
use (ii).

If the assumptions of (iv) hold, we have D# ⊂ Q#
K,0, and the conclusion

follows from (ii). �

Corollary 3.6. D# ⊂ Q#
p,0 for all p, 0 < p <∞.
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[12] G.H. Hardy, J.E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, Lon-
don/New York, 1934.

[13] P. Lappan, A non-normal locally uniformly univalent function, Bull. London Math.

Soc. 5 (1973), 291–294.

[14] P. Lappan and J. Xiao, Q#
α -bounded composition maps on normal classes, Note Mat.

20 (2000/01), 65–72.
[15] C. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, Berlin,

1992.
[16] W. Ramey and D. Ullrich, Bounded mean oscillation of Bloch pull-backs, Math. Ann.

291 (1991), 591–606.
[17] L. Rubel and R. Timoney, An extremal property of the Bloch space, Proc. Amer. Math.

Soc. 75 (1979), 45–49.
[18] H. Wulan and P. Wu, Characterizations of QT spaces, J. Math. Anal. Appl. 254

(2001), 484–497.

[19] H. Wulan, On some classes of meromorphic functions, Ann. Acad. Sci. Fenn. Math.
Diss. 116 (1998). 1–57.

[20] J. Xiao, Holomorphic Q classes, Lecture Notes in Mathematics, vol. 1767, Springer-

Verlag, Berlin, 2001.
[21] S. Yamashita, Gap series and α-Bloch functions, Yokohama Math. J. 28 (1980), 31–36.

[22] , Functions of uniformly bounded characteristic, Ann. Acad. Sci. Fenn. Ser. A

I Math. 7 (1982), 349–367.
[23] K. Zhu, Operator theory in function spaces, M. Dekker, New York, 1990.

M. Essén, Department of Mathematics, Uppsala University, P.O. Box 480, S-

75106, Uppsala, Sweden

H. Wulan, Department of Mathematics, Shantou University, Shantou, Guang-

dong 515063, P.R. China

E-mail address: wulan@stu.edu.cn


