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THE MCSHANE AND THE PETTIS INTEGRAL OF
BANACH SPACE-VALUED FUNCTIONS DEFINED ON R

m

YE GUOJU AND ŠTEFAN SCHWABIK

Abstract. In this paper, we define and study the McShane integral of
functions mapping a compact interval I0 in Rm into a Banach space

X. We compare this integral with the Pettis integral and prove, in
particular, that the two integrals are equivalent if X is reflexive and the
unit ball of the dual X∗ satisfies an additional condition (P). This gives
additional information on an implicitly stated open problem of R.A.
Gordon and on the work of D.H. Fremlin and J. Mendoza.

1. Introduction

The McShane integral of real-valued functions is a Riemann-type integral,
which is equivalent to the Lebesgue integral. R.A. Gordon [5] generalized
the definition of the McShane integral for real-valued functions to abstract
functions from intervals in R to Banach spaces and proved that the McShane
integral and Pettis integral are equivalent when f is strongly measurable or
the Banach space X is separable and contains no copy of c0. The relation
between the Pettis integral and the McShane integral for arbitrary Banach
spaces is unknown.

In this paper, we prove, among other results, the equivalence of Pettis
and McShane integrability of functions mapping an m-dimensional compact
interval I0 into a reflexive Banach space with a certain additional condition
on the closed unit ball of its dual, using the properties of the Pettis integral
appearing in [1], [4], [10] and [14].

2. Definitions and basic properties

Throughout this paper X will denote a real Banach space with norm ‖ · ‖,
and X∗ denotes its dual.
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I0 is a compact interval in Rm and Σ is the set of all µ-measurable subsets
of I0, µ stands for the Lebesgue measure.
B(X∗) = {x∗ ∈ X∗; ‖x∗‖ ≤ 1} is the unit ball in X∗.
We first extend the notion of partition of an interval. A partial M -partition

D in I0 is a finite collection of interval-point pairs (I, ξ) with non-overlapping
intervals I ⊂ I0, where ξ ∈ I0 is the point associated with I. If we require, in
addition, that ξ ∈ I for this point, we get the concept of a partial K-partition
D in I0. We write D = {(I, ξ)}.

A partial M -partition D = {(I, ξ)} in I0 is an M -partition of I0 if the
union of all the intervals I equals I0; a K-partition is defined similarly.

Let δ be a positive function defined on the interval I0. A partialM -partition
(K-partition) D = {(I, ξ)} is said to be δ-fine if for each interval-point pair
(I, ξ) ∈ D we have I ⊂ B(ξ, δ(ξ)), where B(ξ, δ(ξ)) = {t ∈ Rm; dist(ξ, t) <
δ(ξ)} and dist is the metric in Rm.

The m-dimensional volume of a given interval I ⊂ I0 is denoted by µ(I).
Given an M -partition D = {(I, ξ)}, we write

f(D) = (D)
∑

f(ξ)µ(I)

for integral sums over D, whenever f : I0 7→ X.

Definition 1. An X-valued function f is said to be McShane integrable
on I0 if there exists an element Sf ∈ X such that for every ε > 0, there exists
δ(t) > 0, t ∈ I0, such that for every δ-fine M -partition D = {(I, ξ)} of I0 we
have ∥∥∥(D)

∑
f(ξ)µ(I)− Sf

∥∥∥ < ε.

We write (M)
∫
I0
f = Sf , and call Sf the McShane integral of f over I0.

f is said to be McShane integrable on a set E ⊂ I0 if the function f ·χE is
McShane integrable on I0, where χE denotes the characteristic function of E.
We write (M)

∫
E
f = (M)

∫
I0
fχE = F (E) for the McShane integral of f on

E, and denote the set of all McShane integrable functions f : I0 7→ X by M.
Replacing the term “M -partition” by “K-partition” in this definition we

obtain Kurzweil-Henstock integrability and the definition of the Kurzweil-
Henstock integral (K)

∫
I0
f . It is clear that if f : I0 7→ X is McShane in-

tegrable, then it is also Kurzweil-Henstock integrable.

The following theorems describe some of the basic properties of the Mc-
Shane integral. The proofs of these results are virtually identical to the proofs
for functions defined on one-dimensional intervals, and the reader is referred
to R.A. Gordon [5][6] for the details.

Theorem 2. A function f : I0 → X is McShane integrable on I0 if and
only if for each ε > 0 there exists a positive function δ on I0 such that∥∥∥(D1)

∑
f(ξ)µ(I)− (D2)

∑
f(η)µ(J)

∥∥∥ < ε
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whenever D1 = {(I, ξ)} and D2 = {(J, η)} are δ-fine M -partitions of I0.

Theorem 3. Let f and g be functions mapping I0 into X.
(a) If f is McShane integrable on I0, then f is McShane integrable on

every subinterval of I ⊂ I0.
(b) If f is McShane integrable on each of the intervals I1 and I2, where

I1 and I2 are non-overlapping and I1 ∪ I2 = I is an interval, then f
is McShane integrable on I and∫

I

f =
∫
I1

f +
∫
I2

f.

(c) If f and g are McShane integrable on I0 and α and β are real numbers,
then αf + βg is McShane integrable on I0 and∫

I0

(αf + βg) = α

∫
I0

f + β

∫
I0

g.

Theorem 4. Let f : I0 → X be McShane integrable on I0, and let F (I) =∫
I
f for a subinterval I ⊂ I0; F is an X-valued interval function called the

primitive of f on I0. Then for every ε > 0 there exists a positive function
δ defined on I0 such that for any δ-fine partial M -partition D = {(I, ξ)} we
have ∥∥∥(D)

∑
[f(ξ)µ(I)− F (I)]

∥∥∥ < ε;

in particular, if D′ = {(I ′, ξ′)} is a δ-fine M -partition of I0, then∥∥∥(D′)
∑

f(ξ′)µ(I ′)− F (I0)
∥∥∥ ≤ ε.

Theorem 4 is called the Saks-Henstock lemma for the McShane integral.

Theorem 5. Let f : I0 → X be McShane integrable on I0.
(a) If f = g almost everywhere (with respect to the Lebesgue measure µ

in Rm) on I0, then g is McShane integrable on I0 and
∫
I0
f =

∫
I0
g.

(b) If E =
⋃p
j=1Ej, where µ(Ej ∩Ei) = 0 for i 6= j, i, j ∈ {1, . . . , p}, and∫

Ej
f , j = 1, . . . , p, exist, then

∫
E
f exists and∫

E

f =
p∑
j=1

∫
Ej

f.

Definition 6. A set K ⊂ M is called M -equiintegrable (McShane-equi-
integrable) if for every ε > 0 there is a δ : I0 7→ (0,+∞) such that∥∥∥∥(D)

∑
f(ξ)µ(I)−

∫
I0

f

∥∥∥∥ < ε

for every δ-fine M -partition D = {(I, ξ)} of I0 and every f ∈ K.



1128 YE GUOJU AND ŠTEFAN SCHWABIK

Using the concept of M -equiintegrability we have the following convergence
result for the McShane integral (see, e.g., [5]):

Theorem 7. If the sequence of real functions fn : I0 7→ R, n ∈ N, is
M -equiintegrable and

lim
n→∞

fn(t) = f(t) for t ∈ I0,

then f ∈M and

lim
n→∞

∫
I0

fn =
∫
I0

f.

This result can be proved similarly to the analogous theorem for the Kurz-
weil-Henstock integral (see, e.g., [5], [7]).

Definition 8. f : I0 7→ X is called (strongly) measurable if there is a
sequence of simple functions (fn) with limn→∞ ‖fn(t)− f(t)‖ = 0 for almost
all t ∈ I0.
f : I0 7→ X is called weakly measurable if for each x∗ ∈ X∗ the real function

x∗(f) : I0 7→ R is measurable.
Two functions f, g : I0 7→ X are called weakly equivalent on I0 if for every

x∗ ∈ X∗ the relation
x∗(f(t)) = x∗(g(t))

holds for almost all t ∈ I0.

Theorem 9. If f : I0 → X is McShane integrable on I0, then:

(a) For each x∗ in X∗, x∗(f) is McShane integrable on I0 and
∫
I0
x∗(f) =

x∗(
∫
I0
f).

(b) {x∗(f); x∗ ∈ B(X∗)} is M -equiintegrable on I0.
(c) f is weakly measurable.

Proof. Since f : I0 → X is McShane integrable on I0, for every ε > 0 there
exists a positive function δ defined on I0 such that for any δ-fine M -partition
D = {(I, ξ)} we have ∥∥∥∥(D)

∑
f(ξ)µ(I)−

∫
I0

f

∥∥∥∥ < ε.

Hence for any x∗ ∈ X∗ we have∣∣∣∣(D)
∑

x∗(f(ξ))µ(I)− x∗
(∫

I0

f

)∣∣∣∣
≤ ‖x∗‖

∥∥∥∥(D)
∑

f(ξ)µ(I)−
∫
I0

f

∥∥∥∥ < ‖x∗‖ε
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for any δ-fine M -partition D = {(I, ξ)}. Therefore (a) holds. If x∗ ∈ B(X∗),
then the above inequality gives∣∣∣∣(D)

∑
x∗(f(ξ))µ(I)− x∗

(∫
I0

f

)∣∣∣∣ < ε

for every x∗ ∈ B(X∗), so the set {x∗(f); x∗ ∈ B(X∗)} is M -equiintegrable
on I0 and f is weakly measurable because for every x∗ ∈ X∗ the real function
x∗(f) is Lebesgue integrable (see, e.g., [9]). �

Corollary 10. If f : I0 7→ X is McShane integrable on I0 then:
(a) For every subinterval I ⊂ I0 and for every x∗ ∈ X∗ the function x∗(f)

is McShane (= Lebesgue) integrable on I and∫
I

x∗(f) = x∗
(∫

I

f

)
.

(b) If E =
⋃p
j=1 Ij, where Ij are non-overlapping subintervals of I0, then

f is McShane integrable on E with∫
E

f =
p∑
j=1

∫
Ij

f

and for every x∗ ∈ X∗ we have∫
E

x∗(f) =
p∑
j=1

∫
Ij

x∗(f) = x∗

 p∑
j=1

∫
Ij

f

 = x∗
(∫

E

f

)
.

Proof. (a) follows easily from (a) in Theorem 3. For (b) we set f = 0 on
the boundary of every Ij , j = 1, . . . , p, and take Theorem 5 into account. �

3. The Pettis integral and its relation to the McShane integral

We denote by L the set of Lebesgue integrable real functions on I0 (with
respect to the Lebesgue measure µ). It should be noted at this point that a
real function f belongs to L if and only if it is McShane integrable, i.e., we
have L =M (see [7], [8], and [9]).

We use the notation µ(E) for the Lebesgue measure of a (Lebesgue) mea-
surable set E ⊂ I0.

In [1, Definition 10, p. 74] the following concept is introduced.

Definition 11. A set K ⊂ L is called uniformly integrable if

lim
µ(E)→0

∫
E

|f | = 0

uniformly for f ∈ K, where the sets E ⊂ I0 are measurable sets.
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For uniformly integrable sets we have the following well-known result (see,
e.g., [11, p. 168]).

Theorem 12 (Vitali theorem). If on a measurable set E ⊂ I0 a sequence
fj ∈ L, j ∈ N, is given such that fj converges to f in measure, and if the
sequence (fj) is uniformly integrable, then f ∈ L and

lim
j→∞

∫
E

fj =
∫
E

f.

We first give the basic definitions concerning the Pettis integral. We will
take these from the book [1] of Diestel and Uhl or from the extensive survey
paper [10] by K. Musia l.

Definition 13. If f : I0 7→ X is weakly measurable such that x∗(f) ∈ L
for all x∗ ∈ X∗ and if for every measurable set E ⊂ I0 there is an element
xE ∈ X such that

x∗(xE) =
∫
E

x∗(f),

then f is called Pettis integrable and the Pettis integral of f over E is the
element xE ∈ X. We write xE = (P )

∫
E
f and denote by P the set of all

Pettis integrable functions.

Since (I0,Σ, µ) is a finite perfect measure space we can use the result of
Theorem 6 from [4] in the following form.

Theorem 14. The function f : I0 7→ X is Pettis integrable if and only if
there is a sequence (fn) of simple functions from I0 into X with the following
properties:

(a) The set {x∗(fn); x∗ ∈ B(X∗), n ∈ N} is uniformly integrable.
(b) For each x∗ in X∗, limn→∞ x∗(fn) = x∗(f) a.e. on I0.

The following result due to K. Musia l (see [10, Theorem 10.1]) gives im-
portant information on Pettis integrable functions.

Let X be an arbitrary normed space and let f : I0 7→ X be a Pettis integrable
function. Then the following are equivalent:

(i) {x∗(f);x∗ ∈ B(X∗)} is a separable subset of L.
(ii) There exists a sequence (fn) of simple functions from I0 into X, such

that for each x∗ ∈ X∗ one of the following conditions is satisfied:
(a) The sequence {x∗(fn);n ∈ N} is uniformly integrable and con-

verges to x∗(f) almost everywhere.
(b) The sequence {x∗(fn);n ∈ N} is uniformly integrable and con-

verges to x∗(f) in measure.
(c) {x∗(fn);n ∈ N} is convergent to x∗(f) in L.
(d) {x∗(fn);n ∈ N} is convergent to x∗(f) weakly in L.
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(iii) νf (Σ) = {(P )
∫
E
f ∈ X;E ∈ Σ} is a separable subset of X.

In Musia l’s paper [10] it is mentioned that the uniform integrability of the
sets {x∗(fn); n ∈ N} in the conditions (ii)(a) and (ii)(b) may be replaced by
the uniform integrability of the set {x∗(fn); x∗ ∈ B(X∗), n ∈ N}. This leads
to the following formulation of the result of Musia l.

Theorem 15. Let X be an arbitrary normed space and let f : I0 7→ X be
a Pettis integrable function. Then the following are equivalent:

(i) {x∗(f);x∗ ∈ B(X∗)} is a separable subset of L.
(ii) There exists a sequence (fn) of simple functions from I0 into X, such

that for each x∗ ∈ X∗ one of the following conditions is satisfied:
(a) The set {x∗(fn); x∗ ∈ B(X∗), n ∈ N} is uniformly integrable

and the sequence x∗(fn), n ∈ N, converges to x∗(f) almost ev-
erywhere.

(b) The set {x∗(fn); x∗ ∈ B(X∗), n ∈ N} is uniformly integrable and
the sequence x∗(fn), n ∈ N, converges to x∗(f) in measure.

(c) {x∗(fn);n ∈ N} is convergent to x∗(f) in L.
(d) {x∗(fn);n ∈ N} is convergent to x∗(f) weakly in L.

(iii) νf (Σ) = {(P )
∫
E
f ∈ X;E ∈ Σ} is a separable subset of X.

It is possible to combine Theorems 14 and 15 to obtain the following corol-
lary.

Corollary 16. For a function f : I0 7→ X the following are equivalent:
(a) f ∈ P.
(b) {x∗(f);x∗ ∈ B(X∗)} is a separable subset of L.
(c) There exists a sequence (fn) of simple functions from I0 into X such

that for each x∗ ∈ X∗ one of the following conditions is satisfied:
(i) The set {x∗(fn); x∗ ∈ B(X∗), n ∈ N} is uniformly integrable

and the sequence x∗(fn), n ∈ N, converges to x∗(f) almost ev-
erywhere.

(ii) The set {x∗(fn); x∗ ∈ B(X∗), n ∈ N} is uniformly integrable and
the sequence x∗(fn), n ∈ N, converges to x∗(f) in measure.

(iii) {x∗(fn);n ∈ N} is convergent to x∗(f) in L.
(iv) {x∗(fn);n ∈ N} is convergent to x∗(f) weakly in L.

Proof. By Theorem 14 the Pettis integrability of f is equivalent to (ii)(a)
of Theorem 15. Theorem 15 now gives the corollary. �

D.H. Fremlin and J. Mendoza [3, Example 3C] give an example of a Pettis
integrable function with values in l∞(N) which is not McShane integrable.

We will consider the problem when a Pettis integrable function f with
values in X is McShane integrable. By the above mentioned example of
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Fremlin and Mendoza this is a problem related to the properties of the space
X or some additional properties of the function f .

Proposition 17. If f : I0 7→ X is Pettis integrable then the set {x∗(f);
x∗ ∈ B(X∗)} is uniformly integrable.

Proof. By Theorem 14 there is a sequence of simple functions (fn) such
that for each x∗ ∈ X∗ we have

lim
n→∞

x∗(fn) = x∗(f) a.e. in I0,

and the set
{x∗(fn);x∗ ∈ B(X∗), n ∈ N}

is uniformly integrable. Hence

lim
µ(E)→0

∫
E

|x∗(fn)| = 0

uniformly for x∗ ∈ B(X∗), n ∈ N, for measurable E ⊂ I0. By the Vitali
convergence theorem (Theorem 12) we have

lim
n→∞

∫
E

|x∗(fn)| =
∫
E

|x∗(f)|

for every measurable E ⊂ I0. This yields

lim
µ(E)→0

∫
E

|x∗(f)| = lim
µ(E)→0

lim
n→∞

∫
E

|x∗(fn)| = lim
n→∞

lim
µ(E)→0

∫
E

|x∗(fn)| = 0

uniformly for x∗ ∈ B(X∗), and the statement is proved. �

Lemma 18. Assume that f : I0 7→ X is Pettis integrable. Then f is
McShane integrable if and only if the set {x∗(f); x∗ ∈ B(X∗)} is M -equiinte-
grable.

Proof. By (b) in Theorem 9 the set {x∗(f); x∗ ∈ B(X∗)} is M -equiinte-
grable provided f ∈M.

Assume that {x∗(f); x∗ ∈ B(X∗)} is M -equiintegrable. Then, by defini-
tion, for every ε > 0 there exists δ(ξ) > 0, ξ ∈ I0, such that for every δ-fine
M -partition D = {(I, ξ)} of I0 and x∗ ∈ B(X∗) we have∣∣∣∣(D)

∑
x∗(f(ξ))µ(I)−

∫
I0

x∗(f)
∣∣∣∣ < ε.

Since f ∈ P, we have
∫
I0
x∗(f) = x∗((P )

∫
I0
f), and

(D)
∑

x∗(f(ξ))µ(I) = x∗
(

(D)
∑

f(ξ)µ(I)
)
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holds evidently. Hence for every δ-fine M -partition D = {(I, ξ)} of I0 and
x∗ ∈ B(X∗) we have∣∣∣∣x∗((D)

∑
f(ξ)µ(I)− (P )

∫
I0

f

)∣∣∣∣ < ε,

and this yields immediately∥∥∥∥(D)
∑

f(ξ)µ(I)− (P )
∫
I0

f

∥∥∥∥ < ε

for every δ-fine M -partition D = {(I, ξ)}. Consequently we obtain that f is
McShane integrable on I0 (and (M)

∫
I0
f = (P )

∫
I0
f). �

R.A. Gordon [5, Theorem 17] proved the following result:

Theorem 19. Let f : I0 7→ X be (strongly) measurable. If f is Pettis
integrable on I0 then f is McShane integrable on I0.

Remark 20. In fact, Gordon proved the result given in Theorem 19 for
the case when I0 = [a, b] ∈ R is a one-dimensional interval. An inspection
of the proof in [5] shows that the approach of Gordon can be adopted to the
case of a compact interval I0 in Rm.

Lemma 21. Assume that f : I0 7→ X is Pettis integrable. If f is weakly
equivalent to a measurable function g : I0 7→ X then for every sequence x∗m ∈
B(X∗), m ∈ N, the set {x∗m(f); m ∈ N} is M -equiintegrable.

Proof. Since g : I0 7→ X is assumed to be measurable, by Theorem 19 the
function g is McShane integrable, i.e., g ∈M.

By Theorem 9 the set {x∗(g); x∗ ∈ B(X∗)} is M -equiintegrable. Assuming
that (x∗m) ∈ B(X∗), m ∈ N, is an arbitrary sequence, the set {x∗m(g); m ∈ N}
is evidently also M -equiintegrable.

From the weak equivalence of f and g we obtain that for every m ∈ N there
is a measurable Nm ⊂ I0 with µ(Nm) = 0 such that

x∗m(f(t)) = x∗m(g(t)) for t ∈ I0 \Nm.

Let us put N =
⋃∞
m=1Nm. Then µ(N) = 0 and for every m ∈ N we have

x∗m(f(t)) = x∗m(g(t)) for t ∈ I0 \N.

By Theorem 5 the function gχI0\N is McShane integrable, and again by The-
orem 9 we obtain that the set {x∗m(gχI0\N );m ∈ N} is M -equiintegrable.

Let us set

f1(t) =

{
f(t), for t ∈ I0 \N ,
0, for t ∈ N
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and

f2(t) =

{
0, for t ∈ I0 \N ,
f(t), for t ∈ N.

Then f = f1 + f2, x∗m(f1(t)) = x∗m(g(t)χI0\N (t)) for every m ∈ N and t ∈ I0,
and f2(t) = 0 almost everywhere in I0. This yields that {x∗m(f1);m ∈ N} is
M -equiintegrable because of the M -equiintegrability of {x∗m(gχI0\N );m ∈ N}.
By Theorem 5 we have f2 ∈ M, and the set {x∗m(f2);m ∈ N} is also M -
equiintegrable.

Assume that ε > 0 is given. By Definition 6 there is a function δ1 > 0 on
I0 such that ∣∣∣∣(D)

∑
x∗m(f1(t))µ(I)−

∫
I0

x∗m(f1)
∣∣∣∣ < ε

for every δ1-fine M -partition D = {(I, t)} and every m ∈ N, where∫
I0

x∗m(f1) =
∫
I0

x∗m(f) = x∗m

(
(P )

∫
I0

f

)
.

Similarly there is a function δ2 > 0 on I0 such that∣∣∣(D)
∑

x∗m(f2(t))µ(I)
∣∣∣ < ε

for every δ2-fineM -partitionD = {(I, t)} and everym ∈ N, since
∫
I0
x∗m(f2) =

0 for every m ∈ N.
Taking now an arbitrary min(δ1, δ2)-fine M -partition D = {(I, t)}, we get∣∣∣∣(D)

∑
x∗m(f(t))µ(I)− x∗m

(∫
I0

f

)∣∣∣∣
≤
∣∣∣∣(D)

∑
x∗m(f1(t))µ(I)−

∫
I0

x∗m(f1)
∣∣∣∣+
∣∣∣(D)

∑
x∗m(f2(t))µ(I)

∣∣∣
< 2ε

for every m ∈ N. This proves the lemma. �

For the next lemma we need to assume that the ball B(X∗) in X∗ has the
following property.

Property (P). There exists a sequence {x∗m ∈ B(X∗); m ∈ N} such
that for every x∗ ∈ B(X∗) there exists a subsequence {x∗k ∈ B(X∗); k ∈ N}
of {x∗m ∈ B(X∗); m ∈ N} such that

(1) x∗k(x)→ x∗(x) for every x ∈ X if k →∞.

Lemma 22. Let f : I0 7→ X be Pettis integrable. If f is weakly equivalent
to a measurable function g : I0 7→ X and X has the property (P) then the set
{x∗(f); x∗ ∈ B(X∗)} is M -equiintegrable.
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Proof. Assume that x∗ ∈ B(X∗) is given. Then by (1) we have

(2) x∗k(f(t))→ x∗(f(t)) for every t ∈ I0 if k →∞.
By Lemma 21 the set {x∗m(f); m ∈ N} is M -equiintegrable and therefore also

(3) {x∗k(f); k ∈ N} is M -equiintegrable.

Applying the convergence theorem (Theorem 7), (2) and (3), we get

(4) lim
k→∞

∫
I0

x∗k(f) =
∫
I0

x∗(f).

Assume now that ε > 0 is arbitrary. Then, by (2), for any t ∈ I0 there is a
j0 = j0(ε, t) ∈ N such that

(5) k > j0 =⇒ |x∗k(f(t))− x∗(f(t))| < ε.

Since the set {x∗m(f); m ∈ N} is M -equiintegrable, by Definition 6 there is a
positive function δ : I0 7→ (0,∞) such that

(6)

∣∣∣∣∣
p∑
i=1

x∗m(f(ti))µ(Ii)−
∫
I0

x∗m(f)

∣∣∣∣∣ < ε

for every m ∈ N, provided D = {(Ii, ti); i = 1, . . . , p} is a δ-fine M -partition
of I0.

Finally, (4) gives that there is a k0 ∈ N such that for k > k0 we have

(7)
∣∣∣∣∫
I0

x∗k(f)−
∫
I0

x∗(f)
∣∣∣∣ =

∣∣∣∣∫
I0

(x∗k(f)− x∗(f))
∣∣∣∣ < ε.

Let D = {(Ii, ti); i = 1, . . . , p} be an arbitrary δ-fine M -partition of I0 and
let k ∈ N be such that k > max(k0, j0(ε, t1), . . . , j0(ε, tp)). Then using (5),
(6) and (7) we obtain∣∣∣∣∣

p∑
i=1

x∗(f(ti))µ(Ii)−
∫
I0

x∗(f)

∣∣∣∣∣
≤

∣∣∣∣∣
p∑
i=1

[x∗(f(ti))− x∗k(f(ti))]µ(Ii)

∣∣∣∣∣+

∣∣∣∣∣
p∑
i=1

x∗k(f(ti))µ(Ii)−
∫
I0

x∗k(f)

∣∣∣∣∣
+
∣∣∣∣∫
I0

x∗k(f)−
∫
I0

x∗(f)
∣∣∣∣

<

p∑
i=1

|x∗(f(ti))− x∗k(f(ti))|µ(Ii) + ε+ ε

< ε

p∑
i=1

µ(Ii) + 2ε = ε(µ(I0) + 2).

Since x∗ ∈ B(X∗) and ε > 0 can be taken arbitrarily, we obtain the M -equi-
integrability of {x∗(f); x∗ ∈ B(X∗)}. �
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Theorem 23. If f : I0 7→ X is Pettis integrable on I0, f is weakly equiv-
alent to a measurable function g : I0 7→ X, and X has property (P), then f is
McShane integrable on I0, i.e., P ⊂M.

Proof. By Lemma 22 the set {x∗(f); x∗ ∈ B(X∗)} is M -equiintegrable.
Lemma 18 implies that f ∈M and the theorem is proved. �

A weakly measurable function f : I0 7→ X is said to be determined by a
subspace D of X if for each x∗ ∈ X∗ which restricted to D equals zero (i.e.,
x∗|D = 0) the function x∗(f) equals zero almost everywhere on I0.

G.F. Stefánsson [14] proved the following result.

Proposition 24. All weakly measurable functions determined by reflexive
spaces are weakly equivalent to strongly measurable functions.

Since every weakly measurable function f : I0 7→ X is determined by the
space X itself, we conclude easily that the following holds.

Proposition 25. If the Banach space X is reflexive and f : I0 7→ X is
weakly measurable then there exists a strongly measurable function g : I0 7→ X
which is weakly equivalent to f .

Using this result together with Theorem 23 we arrive at the following result.

Theorem 26. If the Banach space X is reflexive, X has the property (P)
and f : I0 7→ X is Pettis integrable, then f is McShane integrable on I0, i.e.,
P ⊂M.

Remark 27. Stefánsson’s Proposition 24 can be used to obtain the fol-
lowing stronger result.

If f : I0 7→ X is Pettis integrable on I0, f is determined by a reflexive space
and X has the property (P) then f is McShane integrable on I0.

According to a remark in Stefánsson’s paper [14, p. 412] an even more
general statement holds.

If f : I0 7→ X is Pettis integrable on I0, f is determined by a subspace of
X which has the Radon-Nikodým Property, and X has the property (P), then
f is McShane integrable on I0.

4. McShane integrable functions are Pettis integrable

In this section we show that the converse inclusion M ⊂ P also holds in
the case of I0 ⊂ Rm. We first prove some some auxiliary results.

Lemma 28. If f : I0 → X is McShane integrable on I0, then for every
ε > 0 there is an η > 0 such that for any finite collection {Jj : 1 ≤ j ≤ p} of
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non-overlapping intervals in I0 with
∑p
j=1 µ(Jj) < η we have∥∥∥∥∥∥

p∑
j=1

∫
Jj

f

∥∥∥∥∥∥ < ε.

Proof. Let ε > 0 be given. Since f is M -integrable on I0, there exists a
positive function δ on I0 such that

∥∥∥(D)
∑
f(ξ)µ(I)−

∫
I0
f
∥∥∥ < ε whenever

D = {(I, ξ)} is an arbitrary δ-fine M -partition of I0. Fix a δ-fine M -partition
of I0

D0 = {(Ii, ti) : 1 ≤ i ≤ q},
put M = max{‖f(ti)‖ ; 1 ≤ i ≤ q} and set η = ε/(M + 1).

Suppose that {Jj : 1 ≤ j ≤ p} is a finite collection of non-overlapping
intervals in I0 such that

∑p
j=1 µ(Jj) < η. By subdividing these intervals if

necessary, we may assume that for each j, Jj ⊆ Ii for some i. For each i,
1 ≤ i ≤ q, let Mi = {j; 1 ≤ j ≤ p with Jj ⊆ Ii} and let

D = {(Jj , ti) : j ∈Mi, i = 1, . . . , q}.
Note that D is a δ-fine partial M -partition of I0.

Using the Saks-Henstock Lemma (Theorem 4), we have∥∥∥∥∥∥
p∑
j=1

∫
Jj

f

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥

p∑
j=1

∫
Jj

f − f(ti)µ(Jj)

∥∥∥∥∥∥+
p∑
j=1

‖f(ti)‖µ(Jj)

≤ ε+M

p∑
j=1

µ(Jj) < ε+Mη < 2ε. �

Remark 29. The above lemma can be reformulated as follows.

If F is the primitive of a McShane integrable function f : I0 7→ X, then
for every ε > 0 there is an η > 0 such that for any finite collection {Jj :
1 ≤ j ≤ p} of non-overlapping intervals in I0 with

∑p
j=1 µ(Jj) < η we have∥∥∥∑p

j=1 F (Jj)
∥∥∥ < ε.

Lemma 30. Assume that F is an X-valued interval function defined for
intervals in I0 such that for every ε > 0 there is an η > such that for any
finite collection {Jj : 1 ≤ j ≤ p} of non-overlapping intervals in I0 with∑p
j=1 µ(Jj) < η we have

∥∥∥∑p
j=1 F (Jj)

∥∥∥ < ε. Then:

(a) For any sequence {Ii : i = 1, 2, · · · } of non-overlapping intervals Ii ⊂
I0, i ∈ N, with

∑∞
i=1 µ(Ii) ≤ µ(I0) the limit

lim
n→∞

n∑
i=1

F (Ii) =
∞∑
i=1

F (Ii) ∈ X
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exists.
(b) If for the sequence {Ii : i = 1, 2, · · · } of non-overlapping intervals we

have
∑∞
i=1 µ(Ii) < η, where η > 0 is the value of η corresponding to

ε > 0 by the assumption, then ‖
∑∞
i=1 F (Ii)‖ ≤ ε.

Proof. Suppose that {Ii : i = 1, 2, · · · } is a sequence of non-overlapping
intervals with

∑∞
i=1 µ(Ii) <∞. Assume that ε > 0 is given and that η > 0 is

the value of η corresponding to ε by the assumption. Since
∑∞
i=1 µ(Ii) <∞,

there is an N ∈ N such that for n > N we have
∑∞
i=n µ(Ii) < η.

Assume that n,m ∈ N, N < n < m. Then∥∥∥∥∥
m∑
i=1

F (Ii)−
n∑
i=1

F (Ii)

∥∥∥∥∥ =

∥∥∥∥∥
m∑

i=n+1

F (Ii)

∥∥∥∥∥ < ε,

because
∑m
i=n+1 µ(Ii) ≤

∑∞
i=n µ(Ii) < η. So

∑n
i=1 F (Ii), n ∈ N, is a Cauchy

sequence in the Banach space X, and (a) is proved.
If
∑∞
i=1 µ(Ii) < η, then

∑n
i=1 µ(Ii) < η for every n ∈ N and therefore∥∥∥∥∥

n∑
i=1

F (Ii)

∥∥∥∥∥ < ε for every n ∈ N.

Since by (a)
∑∞
i=1 F (Ii) ∈ X exists, we obtain ‖

∑∞
i=1 F (Ii)‖ ≤ ε and (b) is

proved. �

Lemma 31. If f is McShane integrable on I0, then for every open set
G ⊂ I0 there is an element xG ∈ X such that∫

G

x∗(f) = x∗(xG)

for every x∗ ∈ X∗.

Proof. From Theorem 9 it follows that f is weakly measurable and for
every x∗ ∈ X∗ the real function x∗(f) is McShane and therefore also Lebesgue
integrable.

Given a λ, 0 < λ < 1, an interval I in Rm is called λ-regular if

r(I) =
µ(I)

[d(I)]m
> λ,

where d(I) = sup{|x− y|; x, y ∈ I}, |x− y| = max{|x1 − y1|, . . . , |xm − ym|},
and x = (x1, . . . , xm), y = (y1, . . . , ym). (r(I) is the regularity of the interval
I.)

Suppose that G is an open subset of I0. For t ∈ G let δ(t) > 0 be such
that B(t, δ(t)) ⊂ G and assume that 0 < δn(t) < δ(t) for n ∈ N, where
δn(t) > δn+1(t), δn(t)→ 0 for n→∞.

Let 0 < λ < 1 be fixed. For n ∈ N define

Φn = {I ⊂ I0, I is an interval; t ∈ I ⊂ B(t, δn(t)), r(I) > λ, t ∈ G} .
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Then Φ =
⋃∞
n=1 Φn is a Vitali cover of G, and if I ∈ Φ then I ⊂ G.

By the Vitali covering theorem (see, e.g., [12, Proposition 9.2.4]) there is a
sequence En, n ∈ N, where En is a finite union of non-overlapping intervals
belonging to Φ, such that

µ(G \ En) <
1
n
,

i.e., µ(G \ En)→ 0 for n→∞ and En ⊂ G for any n ∈ N.
Set E0 =

⋃∞
n=1En. Since G \ E0 ⊂ G \ En for every n ∈ N, we have

µ(G\E0) ≤ µ(G\En) < 1/n for every n ∈ N and consequently µ(G\E0) = 0.
This yields µ(E0) = µ(G).

Let us set Fn =
⋃n
i=1Ei. Then clearly Fn ↗ E0 for n → ∞, and for

every n ∈ N the set Fn can be expressed as a finite union of non-overlapping
intervals in Rm.

Set F0 = ∅ and define Kn = Fn \ F on−1, where F on−1 is the interior of the
set Fn−1. We have E0 =

⋃∞
n=1Kn, Ko

n ∩Ko
l = ∅ for n 6= l, and again Kn can

be expressed as a finite union of non-overlapping intervals in Rm, i.e.,

Kn =
pn⋃
i=1

Ini ,

while {Ini ; i = 1, . . . , pn, n ∈ N} forms an at most countable system of non-
overlapping intervals contained in E0.

Since
⋃p
n=1Kn ⊂ E0, p ∈ N, we have

p∑
n=1

µ(Kn) = µ

(
p⋃

n=1

Kn

)
≤ µ(E0) = µ(G) ≤ µ(I0) <∞.

This gives

∞∑
n=1

µ(Kn) =
∞∑
n=1

µ

(
pn∑
i=1

Ini

)
=
∞∑
n=1

pn∑
i=1

µ(Ini ) <∞,

and by Lemmas 28 and 30 we obtain the existence of the limit

lim
m→∞

m∑
n=1

pn∑
i=1

F (Ini ) = lim
m→∞

m∑
n=1

F (Kn) = xG ∈ X,

where F is the McShane primitive of f .
Given x∗ ∈ X∗, the real function x∗(f) is McShane integrable on I0, and

therefore it is also Lebesgue integrable on I0. Hence the Lebesgue integral∫
G
x∗(f) exists and ∫

G

x∗(f) =
∫
E0

x∗(f),
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because µ(G \ E0) = 0 and E0 ⊂ G. Further we have∫
E0

x∗(f) =
∫
∪∞n=1Kn

x∗(f) =
∫
∪∞n=1

⋃pn
i=1 I

n
i

x∗(f)

= lim
m→∞

∫
⋃m
n=1

⋃pn
i=1 I

n
i

x∗(f) = lim
m→∞

x∗

(∫
⋃m
n=1

⋃pn
i=1 I

n
i

f

)

= lim
m→∞

x∗

(∫
⋃m
n=1 Kn

f

)
= lim
m→∞

x∗

(
m∑
n=1

F (Kn)

)
= x∗(xG),

and
∫
G
x∗(f) = x∗(xG) for every x∗ ∈ X∗. The proof is complete. �

Lemma 32. If f is McShane integrable on I0, then for every closed set
H ⊂ I0 there is an element xH ∈ X such that∫

H

x∗(f) = x∗(xH)

for every x∗ ∈ X∗.

Proof. If H ⊂ I0 is closed then I0 \ H is open and for every x∗ ∈ X∗ we
have (cf. Theorem 9 and Lemma 31)

x∗((M)
∫
I0

f) =
∫
I0

x∗(f) =
∫
H

x∗(f) +
∫
I0\H

x∗(f)

=
∫
H

x∗(f) + x∗(xI0\H),

where for the open set I0 \H the element xI0\H ∈ X is given by Lemma 31.
Hence ∫

H

x∗(f) = x∗((M)
∫
I0

f − xI0\H),

and we can take xH = (M)
∫
I0
f − xI0\H ∈ X. �

Lemma 33. If f is McShane integrable on I0, G ⊂ I0 is open, then for
every ε > 0 there is an η > 0 such that if µ(G) < η, then ‖xG‖ < ε, where
xG ∈ X is such that

∫
G
x∗(f) = x∗(xG) for every x∗ ∈ X∗.

Proof. As in the proof of Lemma 31 we see that there exists a sequence of
sets Kn ⊂ G, n ∈ N, which are finite unions of non-overlapping intervals and
satisfy Ko

n ∩Ko
l = ∅ for n 6= l, such that for every x∗ ∈ X∗ we have∫
G

x∗(f) = lim
m→∞

x∗

(
m∑
n=1

F (Kn)

)
= x∗(xG).

By Lemma 28 and Lemma 30(b), for every ε > 0 there is an η > 0 such that
if
∑∞
n=1 µ(Kn) < η then ‖

∑∞
n=1 F (Kn) ‖=‖xG‖ < ε. Hence the lemma is

proved. �
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Theorem 34. If f is McShane integrable on I0, then f is Pettis integrable,
i.e., M⊂ P.

Proof. By Definition 13 and Theorem 9 it only remains to prove is that for
every measurable subset E of I0 there is an element xE ∈ X which satisfies
x∗(xE) =

∫
E
x∗(f) for every x∗ ∈ X∗.

Suppose that E is a measurable subset of I0. Then there exists a sequence
of open sets Gn ⊂ I0, n ∈ N, such that

E ⊂ · · · ⊂ Gn+1 ⊂ Gn ⊂ · · · and µ(Gn \ E) <
1

2n

and a sequence of closed sets Hn ⊂ I0, n ∈ N, such that

· · · ⊂ Hn ⊂ Hn+1 ⊂ · · · ⊂ E and µ(E \Hn) <
1

2n
.

Then Gn \Hn, n ∈ N, are open sets and

µ(Gn \Hn) = µ(Gn \ E ∪ E \Hn) = µ(Gn \ E) + µ(E \Hn) <
1
n
.

Since Gn ⊂ I0, n ∈ N, are open sets, by Lemma 31 there exist xGn , n ∈ N,
such that ∫

Gn

x∗(f) = x∗(xGn) for every x∗ ∈ X∗.

Let ε > 0 be given and let η > 0 be the value corresponding to ε/2 by Lemma
33. Then there exists N ∈ N, such that 1/n < η if n ≥ N and therefore
µ(Gn \Hn) < η for n ≥ N .

Assume that m1,m2 > N . Then

∣∣x∗(xGm1
− xGm2

)
∣∣ =

∣∣∣∣∣
∫
Gm1

x∗(f)−
∫
Gm2

x∗(f)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Gm1

x∗(f)−
∫
HN

x∗(f)−
∫
Gm2

x∗(f) +
∫
HN

x∗(f)

∣∣∣∣∣
=

∣∣∣∣∣
∫
Gm1\HN

x∗(f)−
∫
Gm2\HN

x∗(f)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Gm1\HN

x∗(f)

∣∣∣∣∣+

∣∣∣∣∣
∫
Gm2\HN

x∗(f)

∣∣∣∣∣
≤ ‖x∗‖

(
‖xGm1\HN ‖+

∥∥∥xGm2\HN

∥∥∥) ≤ ‖x∗‖ε
because Gm1 \ HN ⊂ GN \ HN and µ(Gm1 \ HN ) ≤ µ(GN \ HN ) < η, and
similarly µ(Gm2 \HN ) < η.
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Hence for every x∗ ∈ B(X∗) we have |x∗(xGm1
− xGm2

)| < ε provided
m1,m2 > N and therefore ‖xGm1

− xGm2
‖ < ε for m1,m2 > N . The se-

quence xGn ∈ X, n ∈ N, is therefore Cauchy, and consequently the limit
limm→∞ xGm = xE ∈ X exists.

Moreover, we have E ⊂
⋂∞
m=1Gm and

⋂∞
m=1Gm \ E ⊂ Gn \ E for every

n ∈ N and therefore µ(
⋂∞
m=1Gm \ E) ≤ µ(Gn \ E) < 1/2n, n ∈ N, and

µ(
⋂∞
m=1Gm \ E) = 0. Hence

x∗(xE) = lim
m→∞

x∗(xGm) = lim
m→∞

∫
Gm

x∗(f)

=
∫
⋂∞
m=1 Gm

x∗(f) =
∫
E

x∗(f)

for all x∗ ∈ X∗.
This holds for any measurable E ⊂ I0. Therefore, by definition, f is Pettis

integrable, (P )
∫
E
f = xE , and the theorem is proved. �

5. Remarks on previous results

Let us note that Theorem 19 of R.A. Gordon yields the following result
(see [5]).

Theorem 35. If the Banach space X is separable and f : I0 7→ X, where
I0 ⊂ R, is Pettis integrable, then f is McShane integrable on I0, i.e., P ⊂M.

Let us mention that if X is a separable Banach space, the weak measura-
bility of a function f : I0 7→ X is equivalent to its (strong) measurability and
X has the property (P). For this fact see the Pettis theorem and its proof in
[15, V.5]. Hence, if the conditions of Gordon’s Theorem 35 are fulfilled, then
also the conditions of our Theorem 23 hold, and Theorem 23 implies Theorem
35.

On the other hand, the property (P) does not imply the separability of the
space X. From this point of view our Theorem 23 is slightly more general
than Gordon’s Theorem 35.

D.H. Fremlin and J. Mendoza [3, Theorem 2C] proved our Theorem 34 for
the case of one-dimensional intervals I0.

From Theorems 26, 34 and 35 we obtain the following result:

Theorem 36. Let the Banach space X be reflexive with the property (P)
or separable. Then f : [a, b] 7→ X is McShane integrable on [a, b] if and only
if f is Pettis integrable, i.e., M = P.

D.H. Fremlin [2, Theorem 8] proved the following result for one-dimensional
intervals (i.e., for the case m = 1):
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Theorem 37. Let X be a Banach space. Then f : [a, b] 7→ X is McShane
integrable on [a, b] if and only if it is Pettis integrable and Henstock-Kurzweil
integrable.

By Theorems 26, 35 and 37 this yields that if the Banach space X is reflex-
ive with the property (P) or separable, then every Pettis integrable function
f : [a, b] 7→ X is automatically Henstock-Kurzweil integrable.

Let us denote by B the set of all Bochner integrable functions f : I0 7→ X
(see, e.g., [1], [10]). In our paper [13] we gave some characterizations of B and
we proved the following result.

Theorem 38. The inclusion B ⊂ M holds in general, and we have B =
M if and only if the Banach space X is finite dimensional.

Since finite dimensional Banach spaces are separable, we can combine this
with Theorems 26 and 35 to obtain the following result.

Theorem 39. The inclusion B ⊂ P holds in general, and we have B = P
if and only if the Banach space X is finite dimensional.

Added in proof. Luisa Di Piazza and David Preiss pointed out that the
assumption of reflexivity of the Banach space X together with the property
(P) imply the separability of X. Therefore the result of Theorem 26 is a
consequence of Gordon’s result presented in Theorem 35. The authors express
their thanks to L. Di Piazza and D. Preiss for this essential observation as
well as for their progress in characterizing Banach spaces for which the Pettis
and McShane integrals coincide. As we know, their sophisticated and deep
results in this direction will be published soon.
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[10] K. Musia l, Topics in the theory of Pettis integration, Rend. Ist. Mat. Univ. Trieste 23
(1991), 177–262.

[11] I.P. Natanson, Theory of functions of a real variable, Frederick Ungar, New York,
1955.

[12] W.F. Pfeffer, The Riemann approach to integration: Local geometric theory, Cam-

bridge University Press, Cambridge, 1993.
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