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ON THE DYNAMICS OF e2™sin(z)

GAOFEI ZHANG

ABSTRACT. We prove that for any bounded type irrational number 0 <
6 < 1 the boundary of the Siegel disk of 2™ sin(z) is a quasi-circle
which passes through exactly two critical points 7/2 and —m /2.

1. Introduction

In this paper, we consider the Siegel entire function fy(z) = €27 sin(z),

where 0 < 0 < 1 is a bounded type irrational number. Here an irrational
number 0 < 6 < 1 is said to be of bounded type if sup{a,} < oo, where
[a1,...,a,...] s its continued fraction. Clearly, fy has a Siegel disk centered
at the origin which has rotation number 6. This function was studied in [10],
where it was shown that the boundary of the Siegel disk of fy must contain
a critical point for every diophantine number 6. For bounded type rotation
numbers 6, the existence of the critical points on the boundary of the Siegel
disk also follows from a recent result of Graczyk and Swiatek [5]. There are
still two unresolved questions:

(1) Is the boundary of the Siegel disk of fy a Jordan curve?

(2) Which critical point lies on the boundary of the Siegel disk?

In this paper, we will answer these two questions under the assumption
that 0 is of bounded type. We prove the following result:

MAIN THEOREM. Let 0 < 6 < 1 be an irrational number of bounded type.
Then the boundary of the Siegel disk of the entire function fo(2) = €*™ sin(z)
is a quasi-circle which passes through exactly two critical points /2 and —m /2.

The main idea of our proof can be sketched as follows. We consider the map
g(z) = (sinz)/2. The map g(z) has an attracting fixed point at the origin.
Let ©Q be the maximal linearizable domain of g(z) which is centered at the
origin. It will be proved that €2 is a bounded and simply connected domain,
and, moreover, that the boundary 912 is a quasi-circle which passes through
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exactly two critical points /2 and —m/2. Let £ = g(—7/2) and ' be the
unbounded component of C- g(09). Then for each n € 9Q, by the Riemann
mapping theorem, there exists a unique conformal map u, : ' — C-0Q
such that p,(§) = 1 and p,(c0) = oo (see Figure 1). Let F,, = p,0g. By
Proposition 11.1.9 [6], it follows that there exists a unique 1 € 99 such that
the map Fy|oq : 02 — 0Q is a topological circle homeomorphism of rotation
number # (Lemma 5). Using the map F;, we will construct a model map o
that, when restricted to €2, is quasiconformally conjugate to the rigid rotation

Ry on the unit disk, and, moreover, satisfies fy(z+7) = — fo(2). The proof is
then completed by showing that the map fp is quasiconformlly conjugate to
fo.

We would like to mention that A. Cheritat had provided a similar con-
struction in his Ph.D. thesis, by which one can construct Blascke fractions
that serve as models for a certain class of maps with Siegel disks. The reader
may refer to [4] for the details of his construction. The new feature of our
construction in this case is that the model map fg preserves the periodicity,
which plays a crucial role in the whole proof, but which does not hold for the
Blaschke model constructed in [4].

2. Proof of the Main Theorem

Notations and definitions. We use A, C, C to denote the unit disk,
complex plane, and the Riemann sphere, respectively. An irrational number
0 < 0 < 1is said to be of bounded type if sup{a,} < oo, where 8 = [a1, as, .. .,]
is its continued fraction. For any entire function f(z) we say that 3 is an
asymptotic value of f if there exists a continuous curve v(¢) C C, 0 < t < oo,
such that y(¢) — oo and f(v(¢)) — 8 as t — co.

Let g(z) = (sinz)/2. Then ¢g(0) = 0 and ¢’(0) = 1/2. It follows that g
has an attracting fixed point at the origin. Let 2 be the maximal linearizable
domain of g at the origin and ¢ : 2 — A be a holomorphic homeomorphism
which conjugates g to the linear map L;/; : 2 — 2/2 on A. We may assume
that ¢’(0) > 0. It follows that ¢ must be unique.

LEMMA 1. sinz does not have any finite asymptotic value.

Proof. Assume [ is a finite asymptotic value of sin z. Then, by definition,
there exists a continuous curve (t) C C, 0 < t < oo, such that y(t) — oo
as t — oo and sin(y(t)) — [ as t — oo. Let y(t) = x(t) + iy(f). Since
|sin(z)| — oo as |S(z)] — oo, it follows that |y(¢)] < M for some constant
M > 0. This implies that x(t) — oo. By a simple calculation, we have

ey 4 o—u(t)

eyt _ e—u(t)
; =

sin(y(t)) = sinz(t) [ 9

} +icosa(t) [
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Since z(t) — oo, there is a sequence t;; — oo such that z(tx) = kn, and it
follows that $(5) = 0. On the other hand, there is a sequence t; — oo such
that x(ty) = 2k'w + 7/2. Since

ey(tk’) + e_y(tk’)

Rsin(y(tw)) = — s > 1,

it follows that 3 > 1. This is a contradiction. O

LEMMA 2. The domain 2 is bounded and symmetric about the origin.
Moreover, 9 contains exactly two critical points of g, w/2 and —m /2.

Proof. The fact that ) is bounded follows from Lemma 1, since otherwise
g(09) would contain a finite asymptotic value of g and this would imply that
sin z has a finite asymptotic value, a contradiction. By the uniqueness of the

linearization map of g near the origin and the fact that g(—z) = —g(2), it
follows that € is symmetric about the origin.
Now let us prove the second assertion of the lemma. Let t(z) = ¢(Z)

be defined in a small neighborhood of the origin. By the assumption that
¢'(0) > 0 we have ¢/(0) = ¢'(0). Since in a small neighborhood of the origin,

t™to Lyjzot(z) = g(2),

it follows that ¢(z) = ¢(z). This implies that the restriction of ¢ to the real
line is a real function, and so is ¢~'. Since € is bounded and g has no finite
asymptotic value, there must be at least one critical point of g on 9 (Theorem
2.4.1in [9]). Let /2 + km be a critical point of g on 02, with k being some
integer. Since ¢~1((—1,1)) C R, it follows that [0,7/2 + kr) C €. Since g is
univalent on €, it follows that k = 0 or k = —1. This implies that 7/2 € 9Q
or —7/2 € 9Q. Since 2 is symmetric, it follows that 9Q contains both 7/2
and —m/2, and, moreover, that these are the only critical points of g on 9.
This proves Lemma 2. U

Let ¢; = —7/2 and ¢3 = w/2. Let € = g(c1) = —1/2 € g(99).

Let v C C be an open curve segment. We say that v is real-analytic if
there exists a domain D such that v C D and a univalent map h: D — U
such that h(y) C R. Now let C1/5 = {2 | |2| = 1/2} and

' =09(Q) = ¢~ (Ciya).
It follows that any open subarc of 4" = g(99) is real-analytic.

LEMMA 3. 0% is a quasi-circle.

Proof. In fact, 99 is real-analytic everywhere except at the two critical
points 7/2 and —7 /2, where 9 has right angles up to a conformal coordinate
transformation. The lemma then follows from Theorem 8.7 of [8]. O
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Let ' be the unbounded component of C \ 7. Recall that £ = g(c1) € v'.
By the Riemann mapping theorem, it follows that for each n € 9€) there exists
a unique conformal map f1,, : ' — C\Q such that p,(00) = oo and p, (£) = 7.

LEMMA 4. p,, is odd.

Proof. Since g(z) is odd, it follows from Lemma 1 that both €’ and C\ Q
are symmetric about the origin. Let 7(z) = —p,(—z2). Thenr: Q' — @\ﬁ is
a conformal isomorphism and 1’(00) = iy (00). It follows that r(z) = pu,(2).
This proves Lemma 4. O

Note that for each n € 0Q, the restriction of F,, = p, o g to 08 is a
homeomorphism. Since {F),},con is a continuous and monotone family of
topological circle homeomorphisms as 7 varies on 0f2, by Proposition 11.1.9
[6] we have:

LEMMA 5. There exists a unique 1 € 052 such that the rotation number of
E,:00 — 0Q is 0.

The following lemma is a generalized version of the Schwarz symmetry
principle (see [1]):

LEMMA 6. Let U be a domain such that v C OU is an open and real-
analytic curve segment. Suppose f is a holomorphic function defined on U
such that f can be continuously extended to v and f(7) is a real-analytic curve
segment. Then f can be holomorphically continued to a larger domain which
contains vy in its interior.

Let 1) : C\ A — C\ Q be the Riemann map such that ¢(c0) = oo and
(1) = ¢1. Using the same argument as in the proof of Lemma 4, we obtain:

LEMMA 7. 1 is odd.

From Lemma 7 we get that ¥)(—1) = co. The following lemma plays a key
role in the proof of Theorem 1:

LEMMA 8. The circle homeomorphism f = ¢~ o F, 01 : 0A — A can
be analytically extended to an open neighborhood of OA such that f has two
double critical points at 1 and —1.

Proof. Take z € OA. There are two cases.

In the first case, z ¢ {1, —1}. Then f is holomorphic in a half neighborhood
N7 of z which is attached to the unit circle from the outside. We can take Ny
small enough such that f maps N{ homeomorphically to a half neighborhood
NS of f(z) which is also attached to the unit circle from the outside. By
the Schwarz reflection lemma, f can be holomorphically extended to an open
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FIGURE 1. The construction of F;, = u, o g : 9Q — 0Q

neighborhood N7 of z such that f maps N; homeomorphically to an open
neighborhood Nj of f(z). This proves Lemma 8 in the first case.

In the second case, we have z = 1 or z = —1. Say z = 1; the case for z = —1
can be proved by the same argument. Write f = (¢ "' o y1,)) o (g0 1)). Take a
small half neighborhood Nj of 1 as in the first case. Note that if N7 is small
enough, the boundary segment of N{ which lies on the unit circle is mapped
by go) to a real-analytic curve segment on ~'. Applying Lemma 6 to go), we
see that got can be holomorphically extended to an open neighborhood N; of
1 such that got maps Ny 3 : 1 to an open neighborhood Ny of £ = (go)(1).
We may take N; small enough so that the following holomorphic continuation
is valid. Let N C Q' be the half neighborhood of N,. Note that the boundary
segment of N4 which lies on 7/ is real-analytic and is mapped by ¢ ~1o iy to an
Euclidean arc segment, so by Lemma 6 again 1)~ o iy can be holomorphically
continued to No and maps Ny homeomorphically to some neighborhood of
f(1) =71 o p,(€). This proves the second case and Lemma 8 follows. [

By Lemma 8 we know that f is a real-analytic critical circle homeomor-
phism with rotation number 6 of bounded type. We now apply the Herman-
Swiatek quasisymmetric linearization theorem to f (see [7], [11]).

LEMMA 9. Let f: A — OA be a real-analytic critical circle homeomor-
phism of rotation number 6. Then f is quasisymmetrically conjugate to the
rigid rotation Ry if and only if 0 is of bounded type.

It follows that f = ¢! o F, 01 : 9A — OA is quasi-symmetrically con-
jugate to the rigid rotation Ry. Let h : 0A — OA be the quasi-symmetric
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homeomorphism such that k(1) = 1, and f = ho Ry o h~!. Note that h is
unique.

LEMMA 10. h is odd.

Proof. First let us show that h(—1) = —1. Let U(NN) be the number of
points in {f*(1) ‘ k=1,...,N} which lie in the upper half circle. Let L(N)
be the number of the points in {f¥(—1)|k =1,..., N} which lie in the lower
half circle. Since f is odd, it follows that U(N) = L(N). Since the angle
length of the image of the upper half circle under & is equal to the limit of
2rU(N)/N as N — oo, and the angle length of the image of the lower half
circle under h is equal to the limit of 2nrL(NN)/N as N — oo, it follows that
the angle length of the images of the upper half circle and the lower half circle
under h are equal to each other. This implies that h(—1) = —1.

To show that A is odd, let ¢(z) = —h(—z). We have t(1) =1 = h(1). Since

toRgot '(z) = —f(~2) = f(2),
it follows that ¢ = h. This proves Lemma 10. O

LEMMA 11.

[@X

(1) py can be extended to a quasiconformal homeomorphism i, : C—
such that fiy(—z) = —fin(2).

(2) ¥ can be extended to a quasiconformal homeomorphism 7,/; :C - C
such that )(—z) = —(2).

(3) h can be extended to a quasiconformal homeomorphism H : A — A
such that H(—z) = —H (z).

In particular, ¥ (0) = i,(0) = H(0) = 0.

Proof. We only prove (1); (2) and (3) can be proved by the same argument.
Let ©” be the bounded component of C \ 7. Clearly, " is symmetric about
the origin. Let ¢1 : A — Q”, ¢ : A — Q be the conformal isomorphisms
such that ¢1(0) = ¢2(0) = 0. Since both of Q and Q" are symmetric about
the origin, it follows that both of ¢; and ¢, are odd. Then the map s =

gzbgl oty © @1 : OA — OA is a homeomorphism. Since p,, is odd, we have

s(—z) = —s(2).
By the Douady-Earle extension [3] the map s can be quasiconformally ex-
tended to a homeomorphism § : A — A such that §(—z) = —3(z). Now let
fin(2) = pn(2) for z € C\ Q" and (i, (2) = ¢g 050 ¢ *(2) for z € Q. Clearly,
fin is a desired extension. O

Let Qi = {z + kr | z € Q} for k € Z. Note that Qo = Q.

LEMMA 12.  The sets Q, k € Z, are disjoint.
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Proof. Assume this is not true. Then Q¢ N Q; # () for some | € Z. Take
x € Qg N ;. There are two cases. In the first case, [ is even. It follows that
g(z) = g(x — Ir). Since z,x — I € Qp, and ¢ is univalent on g, we get a
contradiction. In the second case, I is odd. Then g(—z) = g(x — Im). Since
Qg is symmetric about the origin, it follows that —z € Q. Since z — Iw € Q,
this is again a contradiction to the fact that g is univalent on . O

Define

~ (N/ln 0g)(2) ~ for 2 € C\ UkeZ Qp,
fo(z) = vYoHoRyo H Loy~ (z— kn) for z € Qp, k even,
—tpoHoRyo H o)~ (z—km) for z € Qy, k odd.

From the definition we obtain:

LEMMA 13. fo is odd and fo(z + ) = —fo(2). Moreover, the set of the
zeros of fo is {km | keZ}.

Now let us define a fy—invariant complex structure v as follows. For z € €,
define v to be the complex structure given by (’(/N} o H)*(vy), where vy is the
standard complex structure. For z € C\ Q, there are two cases. In the
first case, there is an m > 1 such that x = fgm(z) € Q. In this case, we
define v(z) to be the pull-back of the complex structure at x by fgm. In the
second case, the forward orbit of z under fg does not enter €. In this case,
we define v(z) = 0. Clearly, the complex structure v defined in this way is
fo—invariant with [|v|. < 1. By the measurable Riemann mapping theorem
(see [2]), there exists a unique quasiconformal homeomorphism of the sphere
w : C — C which fixes 0, 27 and co and solves the Beltrami equation given
by v.

Since ¢ o H is odd, the infinitesimal ellipse field in given by 1; o H is
symmetric about the origin. Since fy is odd and fy(z + 7) = —fa(2), we
obtain:

LEMMA 14. v(z) =v(—2) and v(z +7) = v(z).
LEMMA 15. w(z+7) =w(z) + 7.

Proof. Consider r(z) = w(z+m). Let v,.(z) be the Beltrami coefficient of r.
It follows that v,.(z) = v(z + 7) = v(z). Since r(00) = w(c0) = o0, it follows
that r(2) = aw(z) + b for some constants a and b.

Let us first show that a = 1. To see this, note that for |z| large enough,
the annulus

A, ={w]|m <|w—(z+7/2)| <|z]/2}

separates {z,z + 7} and {0,00}, and mod (A4,) — o0 as z — oo. It follows
that the annulus w(A,) separates {w(z),w(z + m)} and {0,00}. Moreover,
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since ||V]|o = K < 1, we have mod (w(A4,)) — oo as z — oo. This implies
w(z+m)/w(z) = 1 as z — oo. It follows that a = 1. Since, by assumption,
w(27) = 27 and w(0) = 0, we have b =7 and w(z + 7) = w(z) + 7. O

LEMMA 16. w is odd.

Proof. Let t(x) = —w(—2x). Let 1 be the Beltrami coefficient of ¢. From
Lemma 14 it follows that v, = v. Since ¢(0) = w(0), it follows that t(z) =
aw(z). On the other hand, by Lemma 15 we have w(—n) = —n. It follows
that t(r) = —w(—m) = # = w(w). This implies that « = 1 and Lemma 16
follows. O

LEMMA 17. w(m/2) =7/2, and w(—7/2) = —7/2.

Proof. By Lemma 16 we have w(—n/2) = —w(7/2). By Lemma 15, we
have w(n/2) = w(—7/2 + ) = w(—7/2) + 7. It follows that w(n/2) = 7/2
and w(—m/2) = —m/2. O

LEMMA 18. T =wo fg ow™! is odd and periodic of period 2.

Proof. From Lemmas 13 and 16 it follows that T is odd. From Lemmas 13
and 15 it follows that T is periodic of period 2. O

LEMMA 19.  The set of the zeros of T is {kn | k € Z}.

Proof. From the definition of 7" and Lemma 13 it follows that T'(z) = 0 if
and only if w(z) € {kn|k € Z}. So the set of the zeros of T'is {w ™' (k7) |k € Z},
and this set is equal to {km | k € Z} by Lemma 15. O

Proof of the Main Theorem. Applying Mori’s theorem to T'(z) in a neigh-
borhood of co, we get
T(w(z)] < CeO1",
where C' and K are some constants dependent only on ||v||. It follows that
T is of finite order. From Lemma 19 we have
T(z) = CeP@sin 2,

where P(z) is some polynomial and C' is some constant. Since T'(z) is periodic
of period 27, for each z there is an integer k£ such that

P(z+27) — P(z) = 2kmi.

Since T'(z) varies continuously as z varies, there is a fixed k such that for all
z’

P(z+27) — P(z) = 2kmi.
This can only hold when P(z) = ikz + b for some constant b. On the other
hand, Lemma 18 implies that e”***? is even. This can be true only when
k=0.
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The above observations imply that T'(z) = C'sinz. Since T'(z) has a Siegel
k centered at the origin which has rotation number 6, it follows that C' =

A = 2™ Therefore, T(z) = Asinz. It follows that the boundary of the
Siegel disk of Asinz is a quasi-circle, and by Lemmas 17 and 2 it passes
through exactly two critical points 7/2, and — /2. This finishes the proof of
the Main Theorem. (]
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