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SURFACE FAMILIES AND BOUNDARY BEHAVIOR OF
QUASIREGULAR MAPPINGS

KAI RAJALA

Abstract. We study the boundary behavior of bounded quasiregular
mappings f : Bn(0, 1)→ R

n, n ≥ 3. We show that there exists a large

family of cusps, with vertices on the boundary sphere Sn−1(0, 1), so
that the images of these cusps under f have finite (n− 1)-measure.

1. Introduction

Let Ω ⊂ Rn be a domain, n ≥ 2. We call a mapping f : Ω→ R
n quasireg-

ular, if f ∈W 1,n
loc (Ω,Rn), and if there exists 1 ≤ KO <∞ so that

‖Df(x)‖n ≤ KOJf (x)

for almost all x ∈ Ω. By the results of Reshetnyak, non-constant quasiregular
mappings are discrete, open and locally Hölder continuous, and map sets of
measure zero to sets of measure zero. For the theory of quasiregular mappings
see the monographs [11] and [12].

One of the most interesting open problems on quasiregular mappings is to
find out to what extend one can generalize Fatou’s theorem on the bound-
ary behavior of analytic functions. Recall that Fatou’s theorem says that a
bounded analytic function on the unit disc has radial limits at almost every
boundary point; cf. [9], page 5. This result is not true for planar quasiregular
mappings in this generality; for any ε > 0 there exists a bounded quasiregular
mapping f : D(0, 1)→ C and a set Eε ⊂ S1(0, 1) whose Hausdorff dimension
is smaller ε, so that f fails to have radial limits in S1(0, 1) \Eε; see [9], pages
119–120. The basic reason for this failure is the fact that the boundary exten-
sion of a quasiconformal homeomorphism of the unit disc onto itself may carry
sets of arbitrarily small Hausdorff dimension to sets of full linear measure; see
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[1]. On the other hand, the Stoilow factorization theorem implies that radial
limits do exist in a set of positive Hausdorff dimension.

In dimensions higher than two, it is not even known if there exists a
bounded quasiregular mapping of the unit ball without any radial limits. One
can, though, prove that if a radial limit exists at y ∈ Sn−1(0, 1), then it is also
a non-tangential limit; see [7]. In [7] it is also proved that, if an additional
assumption that there exist C > 0 and 0 < s < n so that

(1.1)
∫
B(0,r)

Jf (x) dx ≤ C(1− r)1−s ∀ 0 < r < 1,

is imposed on a bounded quasiregular mapping f : B(0, 1)→ R
n, then f has

radial limits almost everywhere. This result is sharpened in [5] by providing
an upper bound on the Hausdorff dimension on the exceptional set. For
bounded quasiregular mappings, (1.1) with s = n always holds true. In [12],
VII Theorem 2.7, Assumption (1.1) is weakened to∫ 1

0

(∫
B(0,r)

Jf (x) dx
)

(1− r)n−2
(

log
1

1− r

)n+δ

dr <∞ for some δ > 0.

In the other direction, in [8] and [4] examples of bounded quasiregular map-
pings f : B(0, 1) → R

n, n ≥ 3, are constructed, so that these mappings fail
to have radial limits in subsets of the (n − 1)-sphere of Hausdorff dimension
arbitrarily close to n − 1. For other results on the boundary behavior of
quasiregular mappings see [14] and the references therein.

In this note we take a different viewpoint to the boundary behavior. Namely,
the existence of radial limits at points y on the unit sphere is related to the
stronger property that the curves fLy are rectifiable, where Ly = {ty : t ∈
[0, 1)}. For results on the latter property for analytic functions see [13], [2].
In fact, the proofs of the results in [7] and [12], VII Theorem 2.7, mentioned
above yield the latter property. We study, for n ≥ 3, the behavior of the im-
ages of certain (n−1)-dimensional sets that are symmetric with respect to the
rays Ly. We prove that, under a condition that requires the sets to be slightly
cusplike (compared to cones with vertices at the points y), one finds images of
finite Hn−1-measure for almost all points y ∈ Sn−1(0, 1). The main advantage
of this result is that it holds true for all bounded quasiregular mappings in
dimensions three or higher, without any multiplicity assumptions.

Theorem 1.1. Let f : B(0, 1) → R
n, n ≥ 3, be a bounded quasiregular

mapping. Moreover, let E : (1/2, 1) → (0, 1) be a smooth decreasing function
satisfying |E ′| ≤ 1 and

E(t) ≤ C(1− t) log−β
1

1− t
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for some

β >
3n− 1
n(n− 2)

.

Then, for Hn−1-almost all x ∈ Sn−1(0, 1), there exists a set Vx so that
H1(Vx) = 0 and so that, for each λ ∈ [1, 2] \ Vx,

Hn−1(fSx,λ) <∞,

where

Sx,λ = {tϕt : t ∈ (1/2, 1), ϕt ∈ Sn−1(0, 1), |x− ϕt| = λE(t)}.

In the notation of the theorem, for cones one has E(t) ≈ Cα(1− t), where
α is the opening angle of the cone. The discussion at the beginning of the
introduction shows that results similar to Theorem 1.1 do not in general hold
true for planar quasiregular mappings. Theorem 1.1 is proved by using the
conformal modulus of families of (n − 1)-dimensional sets. For a different
application of this method; see [10].

Notation. We will denote the euclidean norm by | · |, while the operator
norm of a matrix is denoted by ‖ · ‖. Moreover, a k-dimensional ball with
center x and radius r in Rn is denoted by Bk(x, r). When k = n, the notation
B(x, r) is used. Similarly, corresponding k-dimensional spheres are denoted
by Sk(x, r). We denote by Hk the k-dimensional Hausdorff measure.

For notational convenience we denote, for i ∈ N, ri = 1−2−i. Also, we use
the notation Ai = B(0, ri+1) \ B(0, ri). For a Sobolev mapping f : Ω → R

n,
Df(x) denotes the differential matrix of f at x ∈ Ω, Jf (x) the Jacobian
determinant, and D#f(x) the adjoint matrix of Df(x). For a quasiregular
mapping there exists, in addition to KO, a constant 1 ≤ KI ≤ Kn−1

O , so that

‖D#f(x)‖
n
n−1 ≤ K

1
n−1
I Jf (x)

for almost every x ∈ Ω. Finally, we use the notation

N(y, f, U) = card{f−1(y) ∩ U}.

2. Proof of Theorem 1.1

We will consider a quasiregular mapping satisfying the assumptions of The-
orem 1.1. We first define the conformal modulus for (n − 1)-dimensional
sets (surfaces). For a family Λ of Borel measurable subsets V of Rn with
Hn−1(V ) > 0, set

MSΛ = inf
{∫

Rn

ρ(x)
n
n−1 dx | ρ : Rn → [0,∞] is Borel measurable,∫

S

ρ(x) dHn−1(x) ≥ 1 ∀S ∈ Λ
}
.
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Next we describe the families of surfaces that we will be concerned with.
Throughout this paper, we will assume that n ≥ 3. Fix a smooth decreasing
function

E : (1/2, 1)→ (0, 1),
and require that |E ′| ≤ 1 and limt→1 E(t) = 0. We set Et := E(t). Let
E ⊂ Sn−1(0, 1) be a measurable set, and i ∈ N. Assume that there exists a
constant A > 0 and a map F from E to the measurable subsets of [1, 2], so
that (setting F (x) = Fx)

(2.1) H1(Fx) ≥ A for all x ∈ E.

Next, for each x ∈ E and λ ∈ Fx, define a surface Six,λ ⊂ B(0, 1) by

Six,λ = {tϕt : t ∈ [ri, ri+1), ϕt ∈ Sn−1(0, 1), |x− ϕt| = λEt}.

Now, we define ΛiE,F to be the family of all Six,λ where λ ∈ Fx and x ∈ E. Of
course, ΛiE,F depends also on E , but we will consider E to be fixed throughout.

We now have the following lower bound for the conformal modulus of ΛiE,F .

Proposition 2.1. There exists a constant Cn > 0, depending only on n,
so that

(2.2) MSΛiE,F ≥ CnA
n
n−1

(∫ ri+1

ri

En(n−2)
t dt

) −1
n−1Hn−1(E) =: C(i, E, F ).

Proof. Let ρ be a test function for MSΛiE,F . Then we have, for each x ∈ E
and λ ∈ Fx, since |E ′| ≤ 1,

1 ≤
∫
Six,λ

ρ(y) dHn−1(y) ≤ Cn
∫ ri+1

ri

∫
Sn−1(0,t)∩Six,λ

ρ(z) dHn−2(z) dt.

Hence, if we set Gx,t,λ = Sn−1(0, t)∩Six,λ and Hx,t = Sn−1(0, t)∩Bn(xt, 4Et),
integrating over Fx and E yields (in what follows, Cn may vary from line to
line)

AHn−1(E) ≤ Cn
∫
E

∫
Fx

∫ ri+1

ri

∫
Gx,t,λ

ρ(z) dHn−2(z) dt dλ dHn−1(x)

= Cn

∫ ri+1

ri

∫
E

∫
Fx

∫
Gx,t,λ

ρ(z) dHn−2(z) dλ dHn−1(x) dt

≤ Cn
∫ ri+1

ri

Et−1

∫
E

∫
Hx,t

ρ(y) dHn−1(y)dHn−1(x) dt

≤ Cn
∫ ri+1

ri

Etn−2

∫
tE

Mtρ(x)dHn−1(x) dt,

where tE = {tx : x ∈ E}, and Mt is the Hardy-Littlewood maximal function
in (Sn−1(0, t), | · |). By applying Hölder’s inequality, the right hand integral
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can be estimated from above by

Cn

(∫ ri+1

ri

Etn(n−2) dt
) 1
n
(∫ ri+1

ri

(∫
tE

Mtρ(x) dHn−1(x)
) n
n−1

dt
)n−1

n

.

Furthermore, by applying Hölder’s inequality and the Lp-boundedness of the
Hardy-Littlewood maximal function for p > 1, the last term can be estimated
from above by

CnHn−1(E)
1
n

(∫ ri+1

ri

∫
Sn−1(0,t)

(Mtρ(y))
n
n−1 dHn−1(y) dt

)n−1
n

≤ CnHn−1(E)
1
n

(∫ ri+1

ri

∫
Sn−1(0,t)

ρ(y)
n
n−1 dHn−1(y) dt

)n−1
n

≤ CnHn−1(E)
1
n

(∫
B(0,1)

ρ(y)
n
n−1 dy

)n−1
n

.

Combining the estimates yields∫
B(0,1)

ρ(y)
n
n−1 dy ≥ CnA

n
n−1

(∫ ri+1

ri

En(n−2)
t dt

) −1
n−1Hn−1(E).

Since this holds true for every test function ρ, the proof is complete. �

Next we show that the natural generalization of the KO-inequality for path
families (see [12], II Theorem 2.4) holds true in our case.

Lemma 2.2. Let ρ : Rn → [0,∞] be a test function for MSfΛiE,F . Then

C(i, E, F ) ≤ K
1

n−1
I

∫
Rn

ρ(y)
n
n−1 N(y, f, Ai) dy,

where C(i, E, F ) is as in (2.2).

Proof. Fix x ∈ E. Then the restriction of f to Six,λ belongs to W 1,n(Six,λ)
for almost every λ ∈ Fx. Consequently, for such λ we have that, for every
measurable u : fSix,λ → R,

(2.3)
∫
fSix,λ

u(y) dHn−1(y) ≤
∫
Six,λ

u(f(z))‖D#f(z)‖ dHn−1(z);

cf. [6]. Since the exceptional set Tx ⊂ Fx for which (2.3) does not hold true is
of linear measure zero for all x ∈ E, we may assume that Tx = ∅ for all x ∈ E;
the lower bound C(i, E, F ) is not affected by the removal of the surface family
associated to the sets Tx. Define a Borel function ρ′ : Rn → [0,∞] by setting

ρ′(z) = ρ(f(z))‖D#f(z)‖χAi .
By (2.3) we have, for each S ∈ ΛiE,F ,∫
S

ρ′(z) dHn−1(z) =
∫
S

ρ(f(z))‖D#f(z)‖ dHn−1(z) ≥
∫
fS

ρ(y) dHn−1(y) ≥ 1,
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where the last inequality holds true since ρ is assumed to be a test function
for MSfΛiE,F . Moreover, by the quasiregularity of f , and by the change of
variable formula, we have∫

Rn

ρ′(z)
n
n−1 dz =

∫
Ai

ρ(f(z))
n
n−1 ‖D#f(z)‖

n
n−1 dz(2.4)

≤ K
1

n−1
I

∫
Ai

ρ(f(z))
n
n−1 Jf (z) dz

= K
1

n−1
I

∫
Rn

ρ(y)
n
n−1 N(y, f, Ai) dy.

Combining (2.4) and (2.2) completes the proof. �

Now we are ready to prove our main result.

Proof of Theorem 1.1. With the notation as above, fix ri and set, for x ∈
Sn−1(0, 1),

F ix =
{
λ ∈ [1, 2] : Hn−1(fSix,λ) > i−1−α

}
,

where

α =
1
2

(β(n− 2)n
3n− 1

− 1
)
.

By our assumption on β, α > 0. Moreover, set

Ei =
{
x ∈ Sn−1(0, 1) : H1(F ix) > i−1−α

}
.

By Proposition 2.1, we have, for E = Ei and Fx = F ix,

C(i, E, F ) ≥ CnHn−1(Ei)i
−(1+α)n
n−1

(∫ ri+1

ri

(
(1− t) log−β

1
1− t

)n(n−2)

dt
) −1
n−1

(2.5)

≥ CnHn−1(Ei)i
−(1+α)n
n−1 (1− ri)1−n

(
log

1
1− ri

) βn(n−2)
n−1

.

On the other hand we have, by the definition of Ei and F ix,

Hn−1(fS) > i−1−α

for all S ∈ ΛiE,F , and hence the constant function ρ = i1+α is a test function
for MfΛiE,F . Moreover, by the boundedness of f , there exists a constant
C > 0 so that, for all 1/2 < r < 1,∫

B(0,r)

Jf (z) dz ≤ C(1− r)1−n;
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cf. [12], page 172. Hence, by Lemma 2.2,

C(i, E, F ) ≤ K
1

n−1
I i

(1+α)n
n−1

∫
Rn

N(y, f,B(0, ri+1)) dy(2.6)

= K
1

n−1
I i

(1+α)n
n−1

∫
B(0,ri+1)

Jf (z) dz

≤ CK
1

n−1
I i

(1+α)n
n−1 (1− ri)1−n.

By combining (2.5) and (2.6), and by using 1− ri = 2−i, we have

Hn−1(Ei) ≤ C(n,KI)i
2(1+α)n
n−1

(
log

1
1− ri

)−β(n−2)n
n−1

= C(n,KI)i
2(1+α)n
n−1 i

−β(n−2)n
n−1

≤ C(n,KI)i−1−α,

where the last inequality follows from our assumption on β and our choice of
α.

In conclusion, we have, for the set E :=
⋂∞
N=1

⋃
i≥N Ei,

Hn−1(E) ≤ lim
N→∞

∑
i≥N

Hn−1(Ei) ≤ C lim
N→∞

∑
i≥N

i−1−α = 0.

Thus, for almost every x ∈ Sn−1(0, 1), there exists a constant Nx ∈ N, so that

x ∈ Sn−1(0, 1) \
⋃
i≥Nx

Ei.

Fix such an x. Then we have, for the set

Qx := {λ ∈ [1, 2] : there exists i ≥ Nx so that Hn−1(fSix,λ) > i−1−α},

H1(Qx) ≤
∑
i≥Nx

H1(F ix) ≤
∑
i≥Nx

i−1−α.

By choosing, as we may, Nx to be arbitrarily large, we see that, for all λ ∈
[1, 2] \Wx, H1(Wx) = 0, there exists Nx,λ, so that

Hn−1(f(Sx,λ \
Nx,λ⋃
i=1

Six,λ)) ≤
∑

i≥Nx,λ

Hn−1(fSix,λ) ≤
∑

i≥Nx,λ

i−1−α <∞.

Here
Wx =

{
λ ∈ [1, 2] : lim sup

i→∞
Hn−1(fSix,λ)i1+α > 1

}
.

In order to finish the proof, we will show that, for H1- almost all [1, 2] \Wx,

Hn−1
(
f
(Nx,λ⋃
i=1

Six,λ

))
<∞.
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Clearly,

{λ ∈ [1, 2] \Wx : f
(Nx,λ⋃
i=1

Six,λ

)
=∞}

⊂ {λ ∈ [1, 2] \Wx : f(Six,λ) =∞ for some i ∈ N} =: Zx.

Assume that H1(Zx) > 0. Then H1(Zix) > 0 for some i, where

Zix = {λ ∈ [1, 2] \Wx : f(Six,λ) =∞}.

Fix such i. Then the restriction of f to Six,λ belongs to W 1,n(Six,λ) for almost
every λ ∈ [1, 2], and for all such λ we have Hn−1(f(Six,λ)) <∞; cf. [6]. This
is a contradiction. The proof is complete. �

Acknowledgement. We thank Juha Heinonen and Jang-Mei Wu for valu-
able discussions.

References

[1] A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal map-
pings, Acta Math. 96 (1956), 125–142. MR 0086869 (19,258c)

[2] J. Bourgain, On the radial variation of bounded analytic functions on the disc, Duke

Math. J. 69 (1993), 671–682. MR 1208816 (94d:30061)

[3] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171–
219. MR 0097720 (20 #4187)

[4] J. Heinonen and S. Rickman, Geometric branched covers between generalized mani-
folds, Duke Math. J. 113 (2002), 465–529. MR 1909607 (2003h:57003)

[5] P. Koskela, J. J. Manfredi, and E. Villamor, Regularity theory and traces of A-

harmonic functions, Trans. Amer. Math. Soc. 348 (1996), 755–766. MR 1311911
(96g:35063)

[6] M. Marcus and V. J. Mizel, Transformations by functions in Sobolev spaces and lower
semicontinuity for parametric variational problems, Bull. Amer. Math. Soc. 79 (1973),

790–795. MR 0322651 (48 #1013)

[7] O. Martio and S. Rickman, Boundary behavior of quasiregular mappings, Ann. Acad.
Sci. Fenn. Ser. A I (1972), 1–17. MR 0379846 (52 #751)

[8] O. Martio and U. Srebro, Locally injective automorphic mappings in Rn, Math. Scand.
85 (1999), 49–70. MR 1707745 (2000h:30036)

[9] K. Noshiro, Cluster sets, Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F.,

Heft 28, Springer-Verlag, Berlin, 1960. MR 0133464 (24 #A3295)
[10] K. Rajala, The local homeomorphism property of spatial quasiregular mappings with

distortion close to one, Geom. Funct. Anal. 15 (2005), 1100–1127.
[11] Y. G. Reshetnyak, Space mappings with bounded distortion, Translations of Mathe-

matical Monographs, vol. 73, American Mathematical Society, Providence, RI, 1989.

MR 994644 (90d:30067)
[12] S. Rickman, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebi-

ete (3), vol. 26, Springer-Verlag, Berlin, 1993. MR 1238941 (95g:30026)
[13] W. Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955), 235–

242. MR 0079093 (18,27g)

[14] M. Vuorinen, Conformal geometry and quasiregular mappings, Lecture Notes in Math-
ematics, vol. 1319, Springer-Verlag, Berlin, 1988. MR 950174 (89k:30021)



BOUNDARY BEHAVIOR OF QUASIREGULAR MAPPINGS 1153
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