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MONOTONICITY RESULTS FOR THE PRINCIPAL
EIGENVALUE OF THE GENERALIZED ROBIN PROBLEM

TIZIANA GIORGI AND ROBERT G. SMITS

Abstract. We study domain monotonicity of the principal eigenvalue
λΩ

1 (α) corresponding to ∆u = λ(α)u in Ω, ∂u
∂ν

= αu on ∂Ω, with Ω ⊂
Rn a C0,1 bounded domain, and α a fixed real. We show that contrary

to intuition domain monotonicity might hold if one of the two domains
is a ball.

1. Introduction

We are interested in studying the domain monotonicity properties of the
principal eigenvalue, λΩ

1 (α), of the following eigenvalue problem:

(1)
{

∆u = λ(α)u in Ω,
∂u
∂ν = αu on ∂Ω,

where throughout the regime −∞ < α <∞ and ν denotes the external normal
vector.

Following [7], we say that a bounded domain Ω ⊂ Rn, n ≥ 2, and its
boundary are of class Ck,β , 0 ≤ β ≤ 1, if at each point x0 ∈ ∂Ω there is a ball
B = B(x0) and a one-to-one mapping Ψ of B onto D ⊂ Rn such that:

(i) Ψ(B ∩ Ω) ⊂ Rn+;
(ii) Ψ(B ∩ ∂Ω) ⊂ ∂Rn+;
(iii) Ψ ∈ Ck,β(B),Ψ−1 ∈ Ck,β(D).

Unless otherwise stated, we will assume Ω to be a C0,1 bounded domain.
For α < 0 one has λΩ

1 (α) < 0, and, via the Rayleigh principle,

(2) λΩ
1 (α) = sup

u∈H1(Ω;R)

α
∫
∂Ω
u2 dσx −

∫
Ω
|∇u|2 dx∫

Ω
u2 dx

.
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It is well-known that λΩ
1 (α) is simple, and that an eigenfunction φΩ

1 (α;x) can
be chosen with a single sign and normalized by letting

∫
Ω

(
φΩ

1

)2
dx = 1. In

addition, as α → −∞, λΩ
1 (α) converges to the principal eigenvalue, λΩ

D < 0,
for the Dirichlet problem:

(3)
{

∆u = λu in Ω,
u = 0 on ∂Ω.

For α = 0, we are in the case of the Neumann problem, and λΩ
1 (0) = 0 is

achieved by taking u identically equal to a constant.
For α > 0, one continues to have a single-signed eigenfunction correspond-

ing to a principal eigenvalue, which verifies the variational formulation (2);
see [9], [6].

Traditionally, the study of λΩ
1 (α) for α positive is separated from the one

for α negative, since they arise in different application contexts, and for ex-
ample the limits of λΩ

1 (α) as α → ∞ or α → −∞ depend differently on the
geometry of the domain Ω. When α < 0, the value of −λΩ

1 (α) corresponds
to the fundamental frequency for an elastically supported membrane [8], [11],
and is also seen as the exponential decay rate for heat in a non-perfectly in-
sulated region. When α > 0, the eigenvalue λΩ

1 (α) describes a growth rate for
reaction-diffusion models with nonlinear boundary sources [9]. (For applica-
tions related to superconductivity see also [6].)

A classical result in the literature tells us that the Dirichlet eigenvalue λΩ
D

satisfies a so-called domain monotonicity property, namely

(4) if Ω1 ⊆ Ω2 then λΩ1
D − λ

Ω2
D ≤ 0.

On the other hand, for our principal eigenvalue λΩ
1 (α) any kind of domain

monotonicity property fails in general for any value of α and even for convex
domains, as intuition suggests and as the following constructions show.

We start by noticing that

(5) lim
α→0

λΩ
1 (α)
α

=
|∂Ω|
|Ω|

.

The above limit is a consequence of Theorem 2.1 in [6], where the limit from
the right is obtained, and the following two inequalities. The first one, which
holds for α < 0, is due to Sperb [13]:

(6) λΩ
1 (α) ≤ 1

1
µ2

+ |Ω|
α |∂Ω|

, α < 0,

where µ2 < 0 denotes the second eigenvalue of the Neumann problem for the
positive Laplacian. (Note that we quote the Sperb result rewritten in our
notation, where α is negative.) The second one is trivially obtained by taking
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in (2) as test-function u ≡ 1:

(7) λΩ
1 (α) ≥ α |∂Ω|

|Ω|
, for any α 6= 0.

For α > 0 fixed, inequality (7) shows that one can find a sequence of
regions B(0, 1) ⊂ Ωn ⊂ B(0, 2) with |∂Ωn| → ∞, so that eventually λΩn

1 (α) >
λ
B(0,1)
1 (α) > λ

B(0,2)
1 (α) > 0, and thus in general monotonicity with respect

to domains fails for any positive α.
For α < 0 fixed, due to the scaling property we can find an ε > 0 for which

λ
B(0,1+ε)
D < λ

B(0,1)
1 (α) < λ

B(0,2)
1 (α) < 0, and following Dancer and Daners [5]

we can construct Ωn with |∂Ωn| → ∞ and B(0, 1) ⊂ Ωn ⊂ B(0, 1+ε), so that

lim
n→∞

λΩn
1 (α) = λ

B(0,1+ε)
D .

This implies that for fixed α < 0 one eventually has λΩn
1 (α) < λ

B(0,1)
1 (α) <

λ
B(0,2)
1 (α) < 0. Hence in general monotonicity with respect to domains fails

for both positive and negative α. On the other hand, balls are smooth enough
to expect monotonicity for sub-domains for all α 6= 0, as well as for certain
classes of containing regions. However, while one might hope that balls can
be replaced by simple objects such as convex sets, this is not the case as our
next construction shows.

By decomposing a convex polygon P , containing a ball B, into triangles
with a vertex at the center of B, we can see that

|∂P |/|P | ≤ |∂B|/|B|,
with equality if and only if all faces of P are tangent to B. We take a square
S that circumscribes a ball B, and consider a polygon C obtained by cutting
from S a corner in a way so that B ⊂ C ⊂ S, and with the new side of C not
touching B, so that

(8) |∂C|/|C| < |∂B|/|B| = |∂S|/|S|.
For α < 0, the inequalities (8), (6) and the limit (5) then imply that

λC1 (α)− λS1 (α) is positive for α < 0 small. On the other hand, since domain
monotonicity holds for the Dirichlet problem, for α large negative λC1 (α) −
λS1 (α) is negative.

For α > 0, since C has a face which is not tangent to B and has corners,
the work of Lacey et al. [9] implies that

λC1 (α)− λB1 (α) > 0

for large α. At the same time, the inequality (8) with (5) shows that for α > 0
small we have

λC1 (α)− λB1 (α) < 0.
Therefore

λC1 (α)− λB1 (α)
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switches sign.
In the positive direction, in this work we show, among other results, that

the domain monotonicity property of the Dirichlet problem can be partially
recovered if Ω2 is a ball. In particular, we prove the following results.

Let B ⊂ Rn, n ≥ 2, be a ball and Ω ⊂ B. If α < 0 then λΩ
1 (α) ≤ λB1 (α) <

0, while if α > 0 we know λΩ
1 (α) ≥ λB1 (α) > 0. (See Theorem 1 and Theo-

rem 2.5 in [6].)
Let α < 0. If Ω ⊂ Rn, n ≥ 2, is a convex domain that contains a ball B,

then
λB1 (α) ≤ λΩ

1 (α) < 0.
(See Theorem 2 and Corollary 3.)

Let α < 0 and Ω1 ⊂ B ⊂ Ω2, where B ⊂ Rn, n ≥ 2 is a ball and Ω1,Ω2

are convex domains, we have that λΩ1
1 (α) ≤ λΩ2

1 (α) < 0. (See Corollary 4.)

Remark 1. In general, Corollary 4 is not true if a suitable ball separating
the two convex domains does not exist, as evidenced in the discussion above.
A similar effect regarding the Neumann heat kernel is presented in [3], where
Bass and Burdzy show that one can find convex domains Ω1 ⊂ Ω2, points
x, y ∈ Ω1, and a time t for which PΩ1

N (t, x, y) ≤ PΩ2
N (t, x, y). In words, this

says that contrary to expectation it is more likely that a Brownian motion
with reflection will move from x to y within the larger domain Ω2.

Remark 2. For α > 0 a weaker version of Corollary 3 holds, provided in
our Theorem 2.7 in [6], namely:

Let α > 0. If P ⊂ Rn, n ≥ 2, is a convex polyhedron that circumscribes a
ball B, then

λΩ
1 (α) ≥ λB1 (α) > 0.

The set C in (8) is a convex polyhedron, so our previous construction
implies that for α > 0 the hypothesis of circumscribing can not be relaxed in
general.

We summarize part of our results in Figure 1, where we show the relation
between the eigenvalues λΩ

1 (α) for the square [−1, 1]× [−1, 1], the ball it cir-
cumscribes, B(0, 1), and the ball B(0, 2). Our work implies that a similar
picture holds for every dimension and every convex polyhedron and corre-
sponding balls.

2. Domain monotonicity results

Theorem 1. Let B ⊂ Rn, n ≥ 2, denote a ball. If Ω ⊂ B is a C0,1

domain, then for α < 0 one has λΩ
1 (α) ≤ λB1 (α) < 0, while for α > 0 one has

λΩ
1 (α) ≥ λB1 (α) > 0.
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Figure 1. Graphs y = λΩ
1 (α): the larger ball contains the

square, which circumscribes the smaller ball

Proof. By scaling and translation, we can assume B = B(0, 1). It is well-
known that the eigenfunction φB1 (α;x) is radially symmetric and single signed,
so that it can be taken positive, and considered as a function of its radial
component r = |x|, say φ(r) := φB1 (α;x).

Case α < 0: Since we have ∆φB1 = λB1 (α)φB1 < 0 that is φB1 superhar-
monic, we know that φ is decreasing as a function of r. Moreover, using the
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fact that φB1 is log-concave [12], we deduce that

∂

∂r
log φ(r) =

φ′(r)
φ(r)

< 0

is decreasing, and hence has its minimum in B at r = 1, where it equals α < 0.
For x ∈ ∂Ω, we define

α∗(x) =
∂φB1
∂ν (α;x)
φB1 (α;x)

,

where ν = ν(x) is the normal at x to ∂Ω. Since

∇φB1 (α;x) = φ′(r)
x

r
,

φ′(r) < 0, and ∣∣∣x
r
· ν
∣∣∣ ≤ 1,

we have that
∂φB1
∂ν

(α;x) = φ′(r)
x

r
· ν ≥ φ′(r);

from φ > 0 we conclude

α∗(x) ≥ φ′(r)
φ(r)

≥ φ′(1)
φ(1)

= α.

The function φB1 (α;x) is a classical solution to{
∆φB1 (α;x) = λB1 (α)φB1 (α;x) in Ω,
∂φB1 (α;x)

∂ν = α∗(x)φB1 (α;x) on ∂Ω,

and since Ω is a C0,1 domain, classical results say that λB1 (α) is the principal
eigenvalue of the above eigenvalue problem, and it is given by the Rayleigh
quotient. Therefore, we have:

λB1 (α) =

∫
∂Ω
α∗(x)

(
φB1 (α;x)

)2
dσx −

∫
Ω
|∇φB1 (α;x)|2 dx∫

Ω

(
φB1 (α;x)

)2
dx

= sup
u∈H1(Ω;R)

∫
∂Ω
α∗(x)u2(x) dσx −

∫
Ω
|∇u(x)|2 dx∫

Ω
u2(x) dx

≥ sup
u∈H1(Ω;R)

α
∫
∂Ω
u2(x) dσx −

∫
Ω
|∇u(x)|2 dx∫

Ω
u2(x) dx

= λΩ
1 (α).

Case α > 0: In this case, we have ∆φB1 = λB1 (α)φB1 > 0, that is, φB1
is subharmonic, and φ is an increasing function of r. We set η = n

2 − 1 and
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√
λ =

√
λB1 (α). Then, using the explicit representation in terms of modified

Bessel functions of the eigenfunction of a circle, we have that

φ(r) =
Iη

(√
λ r
)

(√
λ r
)η ,

and the recursive relation d
dr (r−η Iη(r)) = r−η Iη+1(r) (see [10, p. 110])

implies that (φ′(r)/φ(r))′ > 0 (see equation (15), p. 242, in [1]).
For x ∈ ∂Ω, and α∗(x) defined as before, since φ′(r) > 0, we now conclude

that

α∗(x) ≤ φ′(r)
φ(r)

≤ φ′(1)
φ(1)

= α,

and proceeding as in the previous case we obtain λB1 (α) ≤ λΩ
1 (α).

Remark 3. The sketch of the proof of Theorem 1 for α > 0 is given for
the benefit of the reader, and was obtained by the authors in [6].

We have seen in the introduction that in general domain monotonicity fails
if we allow the larger domain to have arbitrary geometry, and even fails for
general convex domains. We do have a positive result for general larger convex
domains if the smaller domain is a ball.

Theorem 2. Let α < 0 and let B ⊂ Rn, n ≥ 2, denote a ball. If P is a
convex polyhedron and B ⊂ P , then

λB1 (α) ≤ λP1 (α) < 0.

Proof. From scaling and up to translations, we can assume B ≡ B(0, 1)
and take as eigenfunction the radially symmetric function

φ
B(0,1)
1 (α;x) =

Jn
2−1

(√
−λB(0,1)

1 (α) |x|
)

(√
−λB(0,1)

1 (α) |x|
)n

2−1
,

where Jη denotes the Bessel function of order η.
As remarked in the proof of Theorem 1, the eigenfunction φ

B(0,1)
1 is radi-

ally symmetric everywhere, and strictly positive and radially decreasing on
B(0, 1). The eigenvalue λB(0,1)

1 (α) satisfies the implicit equation

(9)
−
√
−λB(0,1)

1 (α) Jn
2

(√
−λB(0,1)

1 (α)
)

Jn
2−1

(√
−λB(0,1)

1 (α)
) = α
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(see [10]), which for n = 1 and (−1, 1) reduces to

−
√
−λB(0,1)

1 (α) tan
(√
−λB(0,1)

1 (α)
)

= α.

Moreover, φB(0,1)
1 is analytic on all of Rn and verifies

(10) ∆φB(0,1)
1 (α;x) = λ

B(0,1)
1 (α)φB(0,1)

1 (α;x) in Rn.

To prove our theorem, we look at the domain P̃ = P ∩{φB(0,1)
1 (α;x) > 0}.

Due to convexity of the domains and the fact that the eigenfunction is radially
decreasing up to the values when is zero, there are three possible distinct cases,
which we consider separately.

Case 1: If ∂P̃ ∩∂P 6= ∅ and ∂P̃ = ∂P , that is, if {φB(0,1)
1 (α;x) > 0} ⊃ P ,

then P̃ = P , and we can define

α∗(x) :=
∂φ

B(0,1)
1
∂ν (α;x)

φ
B(0,1)
1 (α;x)

< 0 for a.e. x ∈ ∂P,

where ν = ν(x) is the normal at x to ∂P . Via integration by parts we get

λ
B(0,1)
1 (α) =

∫
∂P

α∗(x)
(
φ
B(0,1)
1 (α;x)

)2

dσx −
∫
P
|∇φB(0,1)

1 (α;x)|2 dx∫
P

(
φ
B(0,1)
1 (α;x)

)2

dx
.

If we can show that on ∂P one has α∗(x) ≤ α < 0, then the above will yield

λ
B(0,1)
1 (α) ≤

∫
∂P

α
(
φ
B(0,1)
1 (α;x)

)2

dσx −
∫
P
|∇φB(0,1)

1 (α;x)|2 dx∫
P

(
φ
B(0,1)
1 (α;x)

)2

dx

≤ sup
u∈H1(P ;R)

α
∫
∂P

u2(x) dσx −
∫
P
|∇u(x)|2 dx∫

P
u2(x) dx

= λP1 (α),

which is the desired inequality.
Recalling that we are working on a convex domain where φB(0,1)

1 (α;x) > 0,
we can use that φB(0,1)

1 (α;x) is radially decreasing in P . For any x ∈ ∂P ,
we consider the hyperplane Tx tangent to P at x, and we define by T̃x the
closest hyperplane parallel to Tx and tangent to B(0, 1). We then consider
the intersection point, x̃, between T̃x and the ray from the center of the ball

through x (note that |x̃| ≥ 1). Set η = n
2 − 1,

√
λ =

√
−λB(0,1)

1 (α), and

φ(r) = φ
B(0,1)
1 (α;x), so that the eigenfunction is simply

(11) φ(r) =
Jη

(√
λ r
)

(√
λ r
)η .
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In this notation, using the log-concavity of the eigenfunction for a ball (as in
Theorem 1), we know that φ′(r)

φ(r) is radially decreasing. Therefore, if r̃ = |x̃|
we have that

α∗(x) =
∂φ

B(0,1)
1
∂ν (α;x)

φ
B(0,1)
1 (α;x)

≤ φ′(r̃)
φ(r̃)

1
r̃
.

This allows us to reduce the problem of showing α∗(x) ≤ α for x ∈ ∂P to
proving

φ′(r)
r φ(r)

≤ α for 1 ≤ r < first positive zero of φ(r).

Since at r = 1,
φ′(r)
r φ(r)

= α < 0,

we will have the wanted result if
φ′(r)
r φ(r)

is decreasing as a function of r > 1. If we consider in (11) the change of
variables s =

√
λr, the previous property is shown if we derive that

ψ′(s)
sψ(s)

is decreasing for 0 < s < jη,1, where ψ(s) = s−ηJη(s) and jη,1 is the first
positive zero of Jη(s).

The following recursive relation [10, p. 100] verified by the Bessel functions

d

ds

(
s−η Jη(s)

)
= −s−η Jη+1(s)

changes the problem to proving that

ψ′(s)
sψ(s)

=
d
ds (s−η Jη(s))
s s−η Jη(s)

= −s
−η Jη+1(s)
s s−η Jη(s)

= −Jη+1(s)
s Jη(s)

is decreasing, or equivalently that Jη+1(s)/(s Jη(s)) is increasing for 0 < s <
jη,1, where jη,1 is the first positive zero of Jη(s). But this last statement is
exactly Lemma 2.4 in the second proof of the Payne-Pólya-Weinberger Con-
jecture by Ashbaugh and Benguria [2] (with appropriate changes in notation),
hence the theorem follows.

Case 2: If ∂P̃ ∩ ∂P 6= ∅ and ∂P̃ ∩ ∂P 6= ∂P , then ∂P̃ ∩ ∂B(0, 1) 6= ∅
as well. On ∂P̃ ∩ ∂P the eigenfunction φ

B(0,1)
1 is positive. Hence on this

part of the boundary we can consider α∗(x), and show as in Case 1 that for
x ∈ ∂P̃ ∩ ∂P we have α∗(x) ≤ α < 0. Since on ∂P̃ ∩ ∂B the eigenfunction
φ
B(0,1)
1 is zero, we can define a function v ∈ H1(P ;R) as v(x) = φ

B(0,1)
1 for
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x ∈ P̃ , and v(x) = 0 for x ∈ P \ P̃ . We then multiply (10) by φ
B(0,1)
1 , and

integrate by parts, to obtain

λ
B(0,1)
1 (α) =

∫
∂P̃∩∂P α

∗(x)
(
φ
B(0,1)
1 (α;x)

)2

dσx −
∫
P̃
|∇φB(0,1)

1 (α;x)|2 dx∫
P̃

(
φ
B(0,1)
1 (α;x)

)2

dx

≤
α
∫
∂P̃∩∂P v

2(x) dσx −
∫
P
|∇v(x)|2 dx∫

P
v2(x) dx

≤ sup
u∈H1(P ;R)

α
∫
∂P

u2(x) dσx −
∫
P
|∇u(x)|2 dx∫

P
u2(x) dx

= λP1 (α).

Case 3: If ∂P̃ ∩∂P = ∅, then P̃ = B(0, r+) ⊂ P , with r+ > 1, and φB(0,1)
1

verifies the Dirichlet problem on B(0, r+). Therefore λB(0,1)
1 (α) = λ

B(0,r+)
D ≤

λ
B(0,r+)
1 (α). We then look at P̃ = P ∩ {φB(0,r+)

1 (α;x) > 0}, and repeat our
division into three possible cases. After a finite number of steps we are either
in Case 1 or in Case 2.

Remark 4. If P is a triangle or a regular polygon, the previous theorem
provides a sharp bound for λP1 (α) for α small, in view of the limit (5), since
one can take as B the inscribed ball.

Corollary 3. Let α < 0 and let B ⊂ Rn, n ≥ 2, denote a ball. If Ω is a
C0,1 convex domain such that B ⊂ Ω, then

λB1 (α) ≤ λΩ
1 (α) < 0.

Proof. This corollary is a consequence of Theorem 2 and Corollary 3.7 in
[5], where Dancer and Daners present domain perturbation results for the
Robin boundary condition.

Remark 5. If a polyhedron P circumscribes a ball B, then a similar
result holds for α > 0 (see [6], and recall Figure 1). However, this cannot
be generalized to convex domains following the idea of Corollary 3, since, for
fixed α > 0 and Ω, the small perturbations of the boundary results, in the
spirit of the study for α < 0 done by Dancer and Daners in [5], would not
hold. In fact, if we consider the rectangle Rε = (−ε, ε) × (−1, 1), separation
of variables yields λRε1 (α) = λ

(−ε,ε)
1 (α) + λ

(−1,1)
1 (α). Fix α > 0. The scaling

property of the principal eigenvalue tells us that

λ
(−ε,ε)
1 (α) =

λ
(−1,1)
1 (αε)

ε2
=
α

ε

λ
(−1,1)
1 (αε)
αε

,

and using equation (5) we see that

lim
ε→0+

λRε1 (α) =∞.
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An immediate corollary of Theorem 1 and Corollary 3 is the monotonicity
of the eigenvalues for convex domains that are separated by a ball.

Corollary 4. Let α < 0, and let Ω1, Ω2 be convex domains in Rn,
n ≥ 2, if there exists a ball B such that Ω1 ⊂ B ⊂ Ω2, then λΩ1

1 (α) ≤ λΩ2
1 (α).
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