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SPECTRAL PROPERTIES OF PARABOLIC LAYER
POTENTIALS AND TRANSMISSION BOUNDARY

PROBLEMS IN NONSMOOTH DOMAINS

STEVE HOFMANN, JOHN LEWIS, AND MARIUS MITREA

Abstract. We study the invertibility of λI +K in Lp(∂Ω×R), for p

near 2 and λ ∈ R, |λ| ≥ 1/2, where K is the caloric double layer poten-
tial operator and Ω is a Lipschitz domain. Applications to transmission

boundary value problems are also presented.

1. Introduction

Recall the usual Gaussian in Rn ×R,

(1.1) Γ(x, t) := (4πt)−n/2 exp
(
−|x|2/4t

)
if t > 0, and zero otherwise.

Fix now a domain Ω ⊂ Rn with outward unit normal ν, and denote by dσ
the surface measure on ∂Ω. The classical caloric double layer potentials on
the boundary of the cylinder Ω×R are then given by (cf. [9])

K ′f(x, t) := lim
ε→0+

∫ t−ε

−∞

∫
∂Ω

∂

∂νx
Γ(x− y, t− s)f(y, s) dσyds, x ∈ ∂Ω, t ∈ R,

(1.2)

Kf(x, t) := lim
ε→0+

∫ t−ε

−∞

∫
∂Ω

∂

∂νy
Γ(x− y, t− s)f(y, s) dσyds, x ∈ ∂Ω, t ∈ R.

(1.3)

It is well-known that when Ω is a (bounded) smooth domain and T > 0
is finite then, much as in the elliptic case, the operator K ′ is compact on
Lp(∂Ω× (0, T )), for 1 < p <∞ (alternatively, its norm is small with T ), and
all its eigenvalues lie in the interval (− 1

2 ,
1
2 ). On the other hand, the nature of

the operator in question changes fundamentally when ∂Ω is allowed to contain
irregularities; in particular, the aforementioned compactness property is lost
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(although the mere boundedness of K ′ in the case of Lipschitz boundaries—
going back to the results in [1], [7]—is preserved). Thus, in the light of the
above discussion about the location of the point spectrum of the operatorK ′, a
natural question—posed to us by Luis Escauriaza—is whether the intersection
of the entire spectrum of K ′ with the real axis (in the complex plane) remains
a subset of the interval (− 1

2 ,
1
2 ) in the case when Ω is only Lipschitz smooth.

In this note, we address this issue and prove the following result.

Theorem 1.1. Let Ω be the domain above the graph of a Lipschitz function
ϕ : Rn−1 → R. Then there exist ε > 0 and κ > 0, both depending only on n
and ‖∇ϕ‖L∞(Rn−1), with the following significance. For any 2−ε < p < 2+ε
and any λ ∈ R, |λ| ≥ 1/2, the operator

(1.4) λI +K ′ : Lp(∂Ω×R) −→ Lp(∂Ω×R)

is invertible and the norm estimate

(1.5) ‖(λI +K ′)−1‖L(Lp(∂Ω×R)) ≤ κ
holds.

Analogous results hold in the case of the operator (1.3). To state them,
recall that, for 1 < p < ∞, the parabolic Sobolev space Lp1,1/2(∂Ω × R)

is the collection of all functions f such that |∇tanf | and |D1/2
t f | belong to

Lp(∂Ω ×R). Here ∇tan denotes the tangential gradient on ∂Ω, and D
1/2
t is

the fractional derivative operator of order 1/2 in time.

Corollary 1.2. With the notations and assumptions in Theorem 1.1,
the operators

λI +K : Lp(∂Ω×R) −→ Lp(∂Ω×R),(1.6)

λI +K : Lp1,1/2(∂Ω×R) −→ Lp1,1/2(∂Ω×R)(1.7)

are invertible for each λ ∈ R with |λ| ≥ 1/2, and p ∈ (2 − ε, 2 + ε). In
particular, if Ω is convex, then the spectral radii of the operator K on the
above spaces are < 1/2.

Results similar in spirit have been proved in the case of harmonic layer
potentials in [5], [8]. The main idea there is to reconsider the Rellich identities
associated with the Laplacian, originally used to prove the invertibility of
operators like ± 1

2I+K (cf. [24]), and carefully monitor the effect of replacing
± 1

2 by a more general parameter λ ∈ R. While, in principle, this seems flexible
enough a program to be worth pursuing in the case of the heat operator,
the algebra associated with the problem at hand is different. In particular,
there are several genuinely new terms in the parabolic case (cf. the discussion
following (2.14)), and our main contribution is to indicate how these can be
handled.
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One significant application of Theorem 1.1 has to do with parabolic trans-
mission boundary problems, i.e., when one is interested in finding two func-
tions u± ∈ C∞(Ω± ×R) such that

(1.8) (TBV P )



(∂t −∆)u± = 0 in Ω± ×R,

(∇u±)∗, (D1/2
t u±)∗ ∈ Lp(∂Ω×R),

(u+)
∣∣
∂Ω×R

−(u−)
∣∣
∂Ω×R

= F ∈ Lp1,1/2(∂Ω×R),

(Dνu+)
∣∣
∂Ω×R

−µ(Dνu−)
∣∣
∂Ω×R

= G ∈ Lp(∂Ω×R).

Hereafter, ∆ is the usual Laplace operator in Rn, and we set Ω+ := Ω and
Ω− := Rn \ Ω̄. Also, µ ∈ R, µ > 0, µ 6= 1, is the transmission parameter and
(·)∗ stands for the (parabolic) nontangential maximal function; more precise
definitions are given in the body of the paper.

For related problems see [10] and the references therein (such as [4] which
also contains an overview). A classical treaty on the heat equation, including
transmission problems, is the monograph [17]. Other types of transmission
boundary problems for parabolic PDE’s on cylinders with Lipschitz interfaces
have been considered in [6]. Here we prove the following theorem.

Theorem 1.3. With the notations and assumptions in Theorem 1.1, the
transmission boundary problem (1.8) has a unique solution whenever 2− ε <
p < 2 + ε. Furthermore, the estimate

‖(∇u±)∗‖Lp(∂Ω×R) + ‖(D1/2
t u±)∗‖Lp(∂Ω×R)(1.9)

≤ C
(
‖∇tanF‖Lp(∂Ω×R) + ‖D1/2

t F‖Lp(∂Ω×R) + ‖G‖Lp(∂Ω×R)

)
holds for some finite constant C, depending only on n, µ and ‖∇ϕ‖L∞(Rn−1).

The proofs of the results stated here are collected in Section 2. All the above
results remain true in the case when Ω×R is replaced by Ω× (0, T ), with Ω
a bounded Lipschitz domain (i.e., a bounded domain whose boundary can be
described locally by means of graphs of Lipschitz functions), and T > 0. See
Section 3 for precise statements and proofs. Finally, in Section 4, we describe
an adaptation of our results to the class of time-varying domains (in the sense
of [18], [11]). Our approach from the cylindrical case continues to work, with
the major difference that new error terms appear in this setting. Ultimately,
they can be handled by invoking estimates originally proved in [12].

In closing, let us remark that starting with the (end-point) results con-
tained in Corollary 1.2 and relying on real and complex and interpolation
methods, one can produce further invertibility results for the operator λI+K
in parabolic Sobolev-Besov spaces with fractional smoothness exponents. A
thorough treatment of the classical caloric layer potential operators in this
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latter context can be found in [13]. Also, our methods seem flexible enough
to be applied to certain types of parabolic systems (cf. [22], [20]).

2. The proofs of the main results

Proof of Theorem 1.1. To set the stage, we make several preliminary ob-
servations which will eventually allow us to reduce the proof of Theorem 1.1
to handling a technically simpler case. To begin, it suffices to show that there
exists ε > 0 so that for any 2− ε < p < 2 + ε the estimate

(2.1) ‖f‖Lp(∂Ω×R) ≤ C‖(λI +K ′)f‖Lp(∂Ω×R), ∀ f ∈ Lp(∂Ω×R),

holds uniformly in λ ∈ R, |λ| ≥ 1
2 . Indeed, this implies that each λI + K ′

is injective with closed range, on Lp(∂Ω × R). Consequently, λ 7→ λI + K ′

is a continuous family of semi-Fredholm operators. Due to the homotopic
invariance of the index and since, obviously, λI +K ′ is invertible when |λ| is
large, it follows that the index of each λI + K ′ is zero. Since all operators
in question are one-to-one (as seen from (2.1)), we may finally conclude that
λI + K ′ is an isomorphism of Lp(∂Ω × R) for each λ real with |λ| ≥ 1

2 .
(An alternative argument is as follows: If λI + K ′ failed to be invertible for
λ ∈ (−∞, 1

2 ) or λ ∈ ( 1
2 ,+∞), then one of these intervals would intersect

∂σ(K ′;Lp(∂Ω×R)), which is a subset of the approximate spectrum of K ′—
i.e., the collection of all complex z’s such that zI −K ′ is not an isomorphism
onto its range. This scenario, in turn, is excluded by (2.1).)

Our next step in our series of reductions is to observe that, from the general
perturbation theory in [14], it suffices to treat the case p = 2 only. In this con-
text, the situation when λ = ± 1

2 is known—cf. [2]; thus, we shall henceforth
assume that |λ| > 1

2 . In fact, since K ′ associated with Ω is the opposite of K ′

associated with the complementary domain, Rn \ Ω̄, we may further reduce
matters to the case when λ > 1

2 (the non-trivial case being when λ lies in a
compact subinterval of ( 1

2 ,∞); cf. the comments at the end of the proof). In
summary, it suffices to prove (2.1) when p = 2 and λ > 1

2 .
Denote by 〈·, ·〉 the usual inner product of vectors in Rn, set eo := (1, 0, ..., 0)

∈ Rn and, for arbitrary x ∈ Rn, define xo := 〈x, eo〉. In particular, a simple
calculation reveals that

(2.2) νo = 〈ν, eo〉 ≤ κ < 0

for some κ depending only on n and ‖∇ϕ‖L∞(Rn−1). Finally, set Dv := 〈v,∇〉,
i.e., the directional derivative operator in the direction of the vector v ∈ Rn.

Fix now a caloric function (i.e., a null-solution of the heat operator) u in
(Rn×R) \ (∂Ω×R) which decays at infinity and which has a reasonable be-
havior near the boundary (so that all subsequent integration by parts formulas
are justified). A classical identity, originally due to Rellich (and rediscovered



SPECTRAL PROPERTIES OF PARABOLIC LAYER POTENTIALS 1349

several times since—cf. [21], [16], and the references therein) reads

(2.3) −∆uDeou = div
(

1
2eo|∇u|

2 −∇uDeou
)
.

Recall that ν stands for the outward unit normal to Ω. Next, set ∇tanu :=
∇u− (Dνu)ν for the tangential gradient on ∂Ω so that

(2.4) |∇u|2 = |Dνu|2 + |∇tanu|2 and Deou = νoDνu+ (∇tanu)o.

On account of (2.3)–(2.4) and the fact that ∆u = ∂tu, the Divergence Theorem
eventually gives

− 1
2

∫
∂Ω

νo|Dνu|2 dσ + 1
2

∫
∂Ω

νo|∇tanu|2 dσ(2.5)

=
∫
∂Ω

(∇tanu)oDνu dσ −
∫ ∫

Ω

(∂tu)(Deou) dx.

Hence, after integrating in the time variable, this equality becomes

− 1
2

∫
R

∫
∂Ω

νo|Dνu|2 dσdt+ 1
2

∫
R

∫
∂Ω

νo|∇tanu|2 dσdt(2.6)

=
∫

R

∫
∂Ω

(∇tanu)oDνu dσdt−
∫

R

∫ ∫
Ω

(∂tu)(Deou) dxdt.

Going further, recall the caloric single layer potential operator

(2.7) Sf(x, t) :=
∫ t

−∞

∫
∂Ω

Γ(x− y, t− s)f(y, s) dσyds, x /∈ ∂Ω, t ∈ R,

and specialize (2.6) to the case when u := Sf , for some arbitrary f ∈
C∞comp(∂Ω × R). (This is just for technical convenience, to ensure the va-
lidity of the various formal manipulations we shall make, such as integrations
by parts; that we can eventually return to L2(∂Ω ×R) is guaranteed by the
boundedness of the operators we are dealing with.)

The arguments in [5] for the Laplacian make essential use of duality, an
ingredient which is desirable to avoid in the case of the non-selfadjoint heat
operator considered here. Instead, we rely on the good algebraic interactions
between the versions of (2.6) written for Ω as well as for its complement.

More specifically, let us denote by I+ and I− the identity (2.6) written for
Ω+ and Ω−, respectively, and fix λ ∈ R, λ > 1

2 . The next step is to create
a new identity, I, formally defined as I := (λ − 1

2 )I+ + (λ + 1
2 )I−. In other

words, we multiply both sides of (2.6) by λ − 1
2 , then multiply both sides of

the version of (2.6), written for Ω− in place of Ω, by λ + 1
2 and, finally, add

the resulting identities, side by side.
Turning to the actual details, it is helpful to remember in this process that

the outward unit normal to Ω− is −ν, and that

(2.8) (Dνu)
∣∣∣
∂Ω±×R

= (∓ 1
2I +K ′)f, (∇tanu)

∣∣∣
∂Ω+×R

= (∇tanu)
∣∣∣
∂Ω−×R

.
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Recall next that the (parabolic) nontangential maximal function (·)∗ is defined
for u : Ω± ×R→ R by

(2.9) u∗(x, t) := sup {|u(y, t)|; |x− y| ≤ 2 dist (x, ∂Ω)}, x ∈ ∂Ω, t ∈ R.

It is convenient to keep in mind that, as is well known,

(2.10) ‖(∇u)∗‖L2(∂Ω×R) ≤ C‖f‖L2(∂Ω×R).

At this stage, the left side of I reads

− (λ− 1
2 ) 1

2

∫
R

∫
∂Ω

|(− 1
2I +K ′)f |2νo dσdt(2.11)

+ (λ+ 1
2 ) 1

2

∫
R

∫
∂Ω

|( 1
2I +K ′)f |2νo dσdt

− 1
2

∫
R

∫
∂Ω

|∇tanu|2νo dσdt.

Call a term good if it is O
(
‖f‖L2(∂Ω×R)‖(λI +K ′)f‖L2(∂Ω×R)

)
; in particular,

by the results in [1], [7], any term which is O
(
‖(λI+K ′)f‖2L2(∂Ω×R)

)
is good.

Now, decomposing (∓ 1
2I +K ′)f = (∓ 1

2 −λ)f + (λI +K ′)f in the first two
integrands in (2.11) we may conclude, after some algebra, that

left side of I = −(λ2 − 1
4 ) 1

2

∫
R

∫
∂Ω

|f |2νo dσdt(2.12)

− 1
2

∫
R

∫
∂Ω

|∇tanu|2νo dσdt+ good terms.

In fact, the same strategy yields

right side of I = −(λ− 1
2 )
∫

R

∫ ∫
Ω+

(∂tu)(Deou) dxdt(2.13)

− (λ+ 1
2 )
∫

R

∫ ∫
Ω−

(∂tu)(Deou) dxdt+ good terms,

so that, all in all, I reads

1
2 (λ2 − 1

4 )
∫

R

∫
∂Ω

|f |2(−νo) dσdt+ 1
2

∫
R

∫
∂Ω

|∇tanu|2(−νo) dσdt(2.14)

= −(λ− 1
2 )
∫

R

∫ ∫
Ω+

(∂tu)(Deou) dxdt

− (λ+ 1
2 )
∫

R

∫ ∫
Ω−

(∂tu)(Deou) dxdt+ good terms.

A word of explanation with regard to the last two solid integrals above—
which do not appear in the elliptic case—is in order here. An attempt to
handle them based purely on size estimates of square-function type (note that,
informally speaking, (∂tu)(Deou) is the equivalent of 3/2 spatial derivatives
on each u), runs into the problem that each is O(‖f‖2L2(∂Ω×R)), which, of



SPECTRAL PROPERTIES OF PARABOLIC LAYER POTENTIALS 1351

course, does not suit our purposes. In fact, when taken separately, none
of the two integrals in question is a ‘good’ term. Instead, our strategy is
to show that, when simultaneously considered, and after further algebraic
manipulations which allow certain suitable cancellations to occur, the first
two solid integrals in the right hand side of (2.14) eventually amount to a
combination of ‘good terms.’ Thus, the key element in our analysis is the
algebraic interplay between the two versions of the identity (2.6) written for
Ω+ and Ω−, respectively. This is achieved by integrating by parts, as dictated
by the homogeneity of the various terms considered. In particular, as far as
the time variable is concerned, we shall need to factor out ∂t into a product
of fractional derivatives.

To this end, for 0 < α < 1 introduce Dα
t , the fractional derivative operator

of order α in the time variable as the Fourier multiplier operator corresponding
to the symbol |τ |α. Thus, among other things,

(2.15) Dα
t is symmetric, and ∂t = −HDα

t D
1−α
t for any 0 < α < 1,

where H stands for the usual Hilbert transform on R (cf. [23]). As is well-
known,

(D1/2
t u)

∣∣∣
∂Ω+×R

= (D1/2
t u)

∣∣∣
∂Ω−×R

and

‖(D1/2
t u)∗‖L2(∂Ω×R) ≤ C‖f‖L2(∂Ω×R).

(2.16)

For further use, we also note here the following form of Green’s first identity,

±
∫

R

∫
∂Ω±

v (Dνw) dσdt =
∫

R

∫ ∫
Ω±

〈∇v,∇w〉 dxdt(2.17)

+
∫

R

∫ ∫
Ω±

v (∂tw) dxdt,

valid for any two C2 functions v, w in Ω± × R, which are well-behaved at
infinity and near the boundary, and such that w is caloric. We write

−
∫

R

∫ ∫
Ω±

(∂tu)(Deou) dxdt(2.18)

= −
∫

R

∫ ∫
Ω±

(HD3/4
t u)(D1/4

t Deou) dxdt

≤ 1
2

∫
R

∫ ∫
Ω±

|HD3/4
t u|2 dxdt

+ 1
2

∫
R

∫ ∫
Ω±

|D1/4
t Deou|2 dxdt

=: A± +B±.
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Now, the identity (2.17) with v := HD
1/2
t u, w := u, gives

2A± =
∫

R

∫ ∫
Ω±

|HD3/4
t u|2 dxdt =

∫
R

∫ ∫
Ω±

(HD1/2
t u)∂tu dxdt(2.19)

= ±
∫

R

∫
∂Ω±

(HD1/2
t u)(Dνu) dσdt

−
∫

R

∫ ∫
Ω±

〈∇(HD1/2
t u),∇u〉 dxdt

= ±
∫

R

∫
∂Ω±

(HD1/2
t u)(Dνu) dσdt.

In the last equality above we have used∫
R

∫ ∫
Ω±

〈∇(HD1/2
t u),∇u〉 dxdt(2.20)

=
∫

R

∫ ∫
Ω±

〈H(∇D1/4
t u),∇D1/4

t u〉 dxdt = 0,

by the antisymmetry of the Hilbert transform. If we now invoke the absence
of a jump for HD1/2

t u across ∂Ω×R, i.e.,

(2.21) (HD1/2
t u)

∣∣∣
∂Ω+×R

= (HD1/2
t u)

∣∣∣
∂Ω−×R

,

in concert with the identity

(2.22) (λ− 1
2 )(− 1

2I +K ′)f − (λ+ 1
2 )( 1

2I +K ′)f = −(λI +K ′)f,

we may eventually write

(λ− 1
2 )A+ + (λ+ 1

2 )A− = O
(
‖f‖L2(∂Ω×R)‖(λI +K ′)f‖L2(∂Ω×R)

)
(2.23)

= good term.

On the other hand, the identity (2.17) written for v := w = D
1/4
t u allows

us to estimate∫
R

∫ ∫
Ω±

|D1/4
t Deou|2 dxdt ≤

∫
R

∫ ∫
Ω±

|D1/4
t ∇u|2 dxdt(2.24)

=
∫

R

∫ ∫
Ω±

〈∇D1/4
t u,∇D1/4

t u〉 dxdt

= ±
∫

R

∫
∂Ω±

(D1/2
t u)(Dνu) dσdt

−
∫

R

∫ ∫
Ω±

(D1/4
t u)∂t(D

1/4
t u) dxdt

= ±
∫

R

∫
∂Ω±

(D1/2
t u)(Dνu) dσdt,
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where the last step utilizes the antisymmetry of ∂t. Thus, relying on (2.8),
(2.16) much as before, we get

(λ− 1
2 )B+ + (λ+ 1

2 )B− = O
(
‖f‖L2(∂Ω×R)‖(λI +K ′)f‖L2(∂Ω×R)

)
(2.25)

= good term.

All in all, from (2.25), (2.23), (2.18), (2.14) and (2.2), we arrive at the con-
clusion that for each λ > 1

2 there exists a finite constant Cλ = C(∂Ω, n, λ) > 0
so that

(2.26) ‖f‖2L2(∂Ω×R) ≤ Cλ‖f‖L2(∂Ω×R) · ‖(λI +K ′)f‖L2(∂Ω×R).

In fact, we claim that matters can be arranged so that the map ( 1
2 ,∞) 3

λ 7→ Cλ ∈ (0,∞) is bounded. An inspection of our proof shows that Cλ ≤
C(∂Ω)(λ2− 1

4 )−1, which serves our purpose only as long as λ stays away from
1
2 . (The special role of λ = 1

2 is highlighted by the first identity in (2.8).)
Nonetheless, the estimate (2.1) with λ = 1

2 has been established in [2]. This,
in turn, remains true for λ near 1

2 as an elementary perturbation argument
shows.

At this point, (2.1) is justified and, hence, the proof of Theorem 1.1 is
finished. �

Proof of Corollary 1.2. If Rf(x, t) := f(x,−t) is the reflection in time, it
is clear that

(2.27) K = R (K ′)tR,

where the superscript ‘t’ indicates transposition. It follows that λI + K =
R (λI + K ′)tR which, together with Theorem 1.1 and duality, takes care of
the claim about the operator (1.6).

Next, recall that if

(2.28) Df(x, t) :=
∫ t

−∞

∫
∂Ω

∂

∂νy
Γ(x−y, t−s)f(y, s) dσyds, x /∈ ∂Ω, t ∈ R,

stands for the caloric double layer potential, then Df |∂Ω×R = ( 1
2I +K)f and

(2.29) u = D(u|∂Ω×R)− S(Dνu)

for any (reasonably well-behaved) caloric function u in Ω×R. In particular,
substituting u := Sf , with f ∈ Lp(∂Ω × R), in (2.29) yields—after some
algebra,

(2.30) KS = SK ′,

where Sf := Sf |∂Ω×R stands for the boundary trace of the caloric single layer
potential. Thus, S intertwines λI +K and λI +K ′, so that the desired claim



1354 STEVE HOFMANN, JOHN LEWIS, AND MARIUS MITREA

(about the operator (1.7)) follows from Theorem 1.1, if we recall from [2], [3],
that

(2.31) S : Lp(∂Ω×R) −→ Lp1,1/2(∂Ω×R)

is an isomorphism for p near 2. �

Proof of Theorem 1.3. Let us recall from [2], [3] that for each p near 2,

(2.32) (∂t −∆)U = 0 in Ω×R and (∇U)∗, (D1/2
t U)∗ ∈ Lp(∂Ω×R)

if and only if U = Sf in Ω×R for some f ∈ Lp(∂Ω×R).

Given that

(2.33) (DνSf)|∂Ω±×R =
(
∓ 1

2I +K ′
)
f and Sf |∂Ω±×R = Sf,

the transmission boundary problem (1.8) becomes equivalent to finding two
(unique) functions f, g ∈ Lp(∂Ω×R) so that

(2.34)

{
Sf − Sg = F,(
− 1

2I +K ′
)
f − µ

(
1
2I +K ′

)
g = G.

The first line in (2.34) entails g = f−S−1F . In turn, when further substituted
in the second line in (2.34) this leads to an equation of the form

(2.35)
(
λI +K ′

)
f = G̃,

where

(2.36) λ :=
1
2
·µ+ 1
µ− 1

and G̃ :=
1

1− µ

[
G−µ( 1

2I+K ′)S−1F
]
∈ Lp(∂Ω×R).

Note that λ ∈ R satisfies |λ| > 1
2 , so Theorem 1.1 applies and allows us to

write the (unique) solution of (2.34) in the form

(2.37) f =
(
λI +K ′

)−1

G̃, g =
(
λI +K ′

)−1

G̃− S−1F.

From these and the properties of the layer potentials involved (cf. (2.10,
(2.16)), the estimate (1.9) follows. �

In closing, we would like to point out that—as an inspection of the above
proof reveals—the well-posedness of the problem (1.8) for all values of the
transmission parameter µ (i.e., µ > 0, µ 6= 1) is in fact equivalent to the
validity of Theorem 1.1 (assuming that p is near 2).
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3. The adaptation to finite cylinders

For Ω a bounded Lipschitz domain in Rn and T > 0 a fixed, finite num-
ber, introduce the space Lp1,1/2(∂Ω × (0, T )) as the collection of restrictions
F |∂Ω×(0,T ) of functions F ∈ Lp1,1/2(∂Ω × R) with the extra property that
F ≡ 0 for t < 0. Next, consider the initial transmission boundary value
problem

(3.1)



(∂t −∆)u± = 0 in Ω± × (0, T ),

(∇u±)∗, (D1/2
t u±)∗ ∈ Lp(∂Ω× (0, T )),

u±(·, 0) ≡ 0 in Ω±,

(u+)
∣∣
∂Ω×(0,T )

−(u−)
∣∣
∂Ω×(0,T )

= F ∈ Lp1,1/2(∂Ω× (0, T )),

(Dνu+)
∣∣
∂Ω×(0,T )

−µ(Dνu−)
∣∣
∂Ω×(0,T )

= G ∈ Lp(∂Ω× (0, T )).

Here, once again, the transmission parameter µ ∈ R is assumed to satisfy
µ > 0, µ 6= 1.

Much as in the case of infinite cylinders, the well-posedness of the above
transmission problem (at least for 1 < p ≤ 2) for all µ’s is equivalent to the
invertibility of λI +K ′ on Lp(∂Ω× (0, T )) for all λ ∈ R, |λ| > 1

2 .

Theorem 3.1. For any bounded Lipschitz domain Ω there exists ε =
ε(∂Ω) > 0 so that for any 2 − ε < p < 2 + ε the problem (3.1) has a unique
solution.

Proof. Once again, it suffices to treat the case p = 2; the extension to
p ∈ (2−ε, 2+ε) for some small ε > 0 follows from the general stability results
alluded to before. For the time being, let us continue to assume—as we have
done in the preceding sections—that Ω is the unbounded domain above the
graph of a Lipschitz function ϕ : Rn−1 → R. Our goal is to prove a version
of our previous results in which Ω×R is replaced by Ω× (0, T ).

The key idea is to show that, besides being well posed, the transmission
boundary problem (1.8) with p = 2 has the property that

(3.2) F ≡ 0 for t < 0 and G ≡ 0 for t < 0 =⇒ u± ≡ 0 for t < 0.

With this goal in mind, Green’s formula (cf. (2.17)) plus the fact that u±
are caloric in Ω± ×R gives∫ 0

−∞

∫ ∫
Ω±

|∇u±|2 dxdt(3.3)

= −
∫ ∫

Ω±

|u±(x, 0)|2 dx±
∫ 0

−∞

∫
∂Ω

(Dνu±)u± dσdt.
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The assumption that F ≡ 0 and G ≡ 0 for t < 0 together with the transmis-
sion boundary conditions in (1.8) ensure that the boundary terms in (3.3) (in
the two versions, corresponding to the choices ±) are multiples of each other,
by a factor of µ. Thus, combining the identities (3.3) in such a way that these
boundary integrals cancel leads to the conclusion that∫ 0

−∞

∫ ∫
Ω+

|∇u+|2 dxdt+
∫ ∫

Ω+

|u+(x, 0)|2 dx(3.4)

+ µ

∫ 0

−∞

∫ ∫
Ω−

|∇u−|2 dxdt+ µ

∫ ∫
Ω−

|u−(x, 0)|2 dx = 0.

This clearly forces u± ≡ 0 for t < 0 as desired.
Going further, (3.2) and the connection between the transmission boundary

problems we are considering, on the one hand, and the classical caloric layer
potential operators, on the other hand (cf. the remark made at the end of
Section 2), allow us to conclude that

(3.5) λI +K ′ : L2(∂Ω× (0, T )) −→ L2(∂Ω× (0, T ))

is invertible for each λ real with |λ| > 1
2 .

The version of this result corresponding to the case when Ω is a bounded
Lipschitz domain can then be proved by semi-standard arguments. More
specifically, the property of the singular integral operators (we are dealing
with) of being bounded from below, modulo compact operators, on cylinders
of finite height can be localized, and we may write

(3.6) ‖f‖L2(∂Ω×(0,T )) ≤ C‖(λI +K ′)f‖L2(∂Ω×(0,T )) + ‖Comp f‖,

whenever λ ∈ R, |λ| > 1
2 . Here, Ω is an arbitrary, bounded Lipschitz domain,

and Comp denotes generic compact operators on L2(∂Ω × (0, T )). For more
details in similar circumstances see §10 in [19].

In particular, for each bounded Lipschitz domain Ω, the operator λI+K ′ is
Fredholm with index zero on L2(∂Ω×(0, T )), provided λ ∈ R satisfies |λ| > 1

2 .
Finally, the fact that K ′ does not have any real eigenvalues outside the interval
[− 1

2 ,
1
2 ] can be proved by adapting a classical argument of Kellogg (cf. [15]),

as in [5]; we omit the details. Instead, we remark that, for this segment of the
proof, one can alternatively proceed as follows.

The idea is that the residual terms in (3.6) are ≤ CT ‖f‖Lp(∂Ω×(0,T )), where
the intervening constant satisfies CT → 0 as T → 0+. In particular, these
residual terms can be hidden in the left side for T small, yielding a genuine
bound from below for the operator λI +K ′. As before, this implies that the
operator in question is invertible. Finally, the smallness assumption on T can
be lifted by means of a well-known bootstrap argument (as in [7]).

At this stage, we may therefore conclude that λI + K ′ is an invertible
operator on the space L2(∂Ω × (0, T )) for each λ real with |λ| ≥ 1

2 . With
this in hand, the well-posedness of the initial transmission boundary problem
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(3.1), for an arbitrary bounded Lipschitz domain Ω, can be handled much as
we have done for Theorem 1.3. �

It is worth singling out a useful consequence of the above proof (cf. also
the remark at the end of Section 2).

Corollary 3.2. Let Ω be a bounded Lipschitz domain in Rn, and fix
T > 0. Then there exists ε = ε(∂Ω) > 0 so that for any 2− ε < p < 2 + ε the
operators

λI +K : Lp(∂Ω× (0, T )) −→ Lp(∂Ω× (0, T )),(3.7)

λI +K : Lp1,1/2(∂Ω× (0, T )) −→ Lp1,1/2(∂Ω× (0, T ))(3.8)

are invertible whenever λ ∈ R satisfies |λ| ≥ 1
2 .

4. The case of time-varying domains

In this section we shall study the problem (1.8) in the setting of time-
varying domains, considered in [18], [11], [12]; consequently, we shall follow
the notation introduced and employed there, with only minor variations. More
specifically, for n ≥ 2 let

(4.1) Ω :=
{

(x0, x, t) ∈ R×Rn−1 ×R; x0 > A(x, t)
}
,

where, among other things, the function A : Rn−1 ×R→ R satisfies

(4.2) |A(x, t)−A(y, t)| ≤ β|x− y|, x, y ∈ Rn−1, t ∈ R,

i.e., is Lipschitz in the space variable, uniformly in time. In addition, we shall
impose on A a half-order smoothness condition in the time variable to the
effect that DnA (cf. (4.4) below) belongs to the parabolic version of BMO in
Rn−1 ×R.

In order to make this latter condition a little more transparent, we need
more notation. Recall that if the parabolic norm ‖(x, t)‖ is defined as the
unique positive solution τ of the equation

(4.3)
n−1∑
j=1

x2
j

τ2
+
t2

τ4
= 1,

then

(4.4) DnA(x, t) :=
( τ

‖(ξ, τ)‖
Â(ξ, τ)

)∨
(x, t),

where ∧, ∨ denote the Fourier transform and its inverse, respectively, and
where ξ, τ denote, respectively, the space and time variables on the Fourier
transform side.
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Going further, recall that BMOpar(Rn−1 × R), the parabolic BMO in
Rn−1×R, is the space of all locally integrable functions f , modulo constants,
with the property that

(4.5) ‖f‖BMOpar(Rn−1×R) := sup
B

inf
m∈R

1
|B|

∫
B

|f(z)−m| dz < +∞,

where the supremum is taken over all parabolic balls in Rn−1 ×R, i.e., sets
of the form B = Br(zo) = {z ∈ Rn−1 ×R; ‖z − zo‖ < r}.

In this context, it is customary to let dσt(x)dt play the role of the surface
measure on ∂Ω. Here, for each t ∈ R, dσt is the actual surface measure on
the cross-section

(4.6) Ωt :=
{

(x0, x, t) ∈ R×Rn−1 × {t}; x0 > A(x, t)
}
.

Later on, we shall also need νt, the outer unit normal to ∂Ωt, when the latter
is regarded as a subset of R×Rn−1.

With the above convention in mind (regarding the surface measure), we
can define Lp(∂Ω) in a natural fashion. Alternatively, one can define this
space via pull-back to the Euclidean setting. For example, parabolic Sobolev
spaces can be introduced as follows. If 1 < p < ∞, and π : ∂Ω → Rn is
the projection π(A(x, t), x, t) := (x, t), then f ∈ Lp1,1/2(∂Ω) if and only if
f ◦ π−1 ∈ Lp1,1/2(Rn−1 ×R), with equivalence of norms.

Next, we discuss the nontangential maximal operator in the current set-
ting. Given α > 0 and (P, t) = (p0, p, t) ∈ ∂Ω, consider the (nontangential)
parabolic cone

(4.7) γ(P, t) :=
{

(q0, q, s) ∈ Ω; ‖(p− q, t− s)‖ < α|q0 −A(p, t)|
}
.

For an arbitrary h : Ω→ R we then introduce

(4.8) h∗(P, t) := sup
{
|h(Q, s)|; (Q, s) ∈ γ(P, t)

}
.

Similar considerations apply for functions defined in Ω− := (R×Rn−1×R)\
Ω̄+, where we set Ω+ := Ω. The nontangential trace on the boundary is then
defined by insisting that the boundary point is approached from within the
nontangential approach region (4.7).

Finally, there remains to define D
1/2
t u, the 1/2 order time derivative of

a function u in the non-cylindrical case considered here. This will be done
“tangentially”, after an appropriate pull-back. Somewhat more specifically,
let ρ denote the Dahlberg-Kenig-Stein mapping of the half-space Rn+1

+ =
{(λ, x, t); λ > 0, (x, t) ∈ Rn−1 × R} onto Ω. In particular, ρ preserves the
time component; see §2 of [12] for a detailed exposition. If we now identify
Rn+1

+ with Ω under this mapping then we can define D1/2
t u as the half order

time-derivative of u ◦ ρ.
We are now ready to state our first result in this section.
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Theorem 4.1. For each β > 0 finite, there exits a (typically small) βo > 0
and ε > 0 with the following significance. Assume that Ω is as in (4.1) for a
function A(x, t) satisfying

(4.9) ‖∇xA‖L∞(Rn−1×R) ≤ β, ‖DnA‖BMOpar(Rn−1×R) ≤ βo,
and, for 1 < p <∞, µ ∈ R, µ > 0, µ 6= 1, consider the transmission boundary
value problem

(4.10)


(∂t −∆)u± = 0 in Ω±,
(∇x0,xu±)∗, (D1/2

t u±)∗ ∈ Lp(∂Ω),
(u+)

∣∣
∂Ω
−(u−)

∣∣
∂Ω

= F a.e. on ∂Ω,
(Dνtu+)

∣∣
∂Ωt
−µ(Dνtu−)

∣∣
∂Ωt

= G a.e. on ∂Ωt, for each t ∈ R.

Then, for each 2− ε < p < 2 + ε and each pair of functions F ∈ Lp1,1/2(∂Ω),
G ∈ Lp(∂Ω), the problem (4.10) has a unique solution.

Proof. We follow the same strategy as before, and work with layer poten-
tials. The case of the single layer has already been handled in [11], so it
remains for us to establish the analogue of (2.1) in this setting. Recall that

(4.11) K ′f(P, t) := lim
ε→0+

t−ε∫
−∞

∫
∂Ωt

∂

∂νt(Q)
Γ(P −Q, t− s)f(Q, s) dσt(Q)ds,

P ∈ ∂Ωt, t ∈ R.

The general idea is to repeat the same steps as in the proof for the cylin-
drical case. Integrations by parts in the space variables create no additional
problems since they are performed in the cross-section Ωt while keeping t
fixed. The main difference is the failure of the identity

∫
R

∫
Ωt

(Dα
t u)v dσtdt =∫

R

∫
Ωt
u(Dα

t v) dσtdt, due to the dependence of the cross-section Ωt on t. In
this context, the above formula holds only modulo error terms. Now, the
crucial observation—itself a consequence of the estimates in [12]—is that a
generic error term can be bounded by η(βo)‖f‖2L2(∂Ω), where η(βo) → 0 as
βo → 0. Consequently, η(βo)‖f‖L2(∂Ω) can be absorbed in the left hand side
of (2.1) and, hence, has no significant overall effect, as far as our main goal
is concerned. We remark that the uniformity of our estimates with respect to
the parameter λ ultimately allows us to take βo independent of λ, which is an
essential point in our analysis.

Let us illustrate this general scheme by considering one paradigmatic ex-
ample, i.e., the integration by parts formula (2.20). In the time-varying case,
an error term appears which we claim is small with βo. Indeed, this error is
precisely the term III in (5.9) of [12]. As proved on pp. 388–392 of [12], this
obeys |III| ≤ Cβo‖f‖2L2 , where Cβo can be chosen small with βo. �

Implicit in the above proof is the following corollary.
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Corollary 4.2. Assume that Ω is as in (4.1) for a function A(x, t) sat-
isfying (4.9), where β > 0 is finite and βo > 0 is sufficiently small (relative
to β). With K ′ as in (4.11) consider the operator

(4.12) λI +K ′ : Lp(∂Ω) −→ Lp(∂Ω).

Then there exists ε > 0 so that (4.12) is invertible whenever 2− ε < p < 2 + ε
and λ ∈ R satisfies |λ| ≥ 1

2 .
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