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EXTENSIONS OF HIGGS BUNDLES

STEVEN B. BRADLOW AND TOMAS L. GOMEZ

ABSTRACT. We prove a Hitchin-Kobayashi correspondence for exten-
sions of Higgs bundles. The results generalize known results for exten-
sions of holomorphic bundles. Using Simpson’s methods, we construct
moduli spaces of stable objects. In an appendix we construct Bott-
Chern forms for Higgs bundles.

1. Introduction

The underlying principle at work in this paper is that, when approached
in the right way, results about holomorphic bundles can be made applicable
to Higgs bundles.

The type of results we have in mind fall under the general heading of
the Hitchin-Kobayashi Correspondence, i.e., they concern notions of stability,
construction of moduli spaces, and the relation of these to solutions of gauge
theoretic equations. Originally established for holomorphic bundles, results
of this sort have been extended to Higgs bundles and also to a host of so-
called ‘augmented holomorphic bundles’, i.e., holomorphic bundles with some
kind of prescribed additional structure (see [BDGW] for a survey). Indeed a
Higgs bundle can be treated as an augmented holomorphic bundle in which
the augmentation is the Higgs field. However this is not always the best point
of view—and is not the one we have in mind. The better approach is the one
developed by Simpson in [S1], [S2] and [S3].

In Simpson’s approach, instead of treating the Higgs structure as an aug-
mentation, it is encoded in a more fundamental way. In fact there are two
versions of this approach, one differential geometric and one algebraic. In
the first (described in Section 4), the extra structure on a Higgs bundle is
encoded as a modification of the partial differential operator which defines
the holomorphic structure on the underlying complex bundle. From the al-
gebraic point of view (cf. Section 7), locally free coherent analytic sheaves
on a variety X are replaced by sheaves of pure dimension on 7* X, and the
Higgs structure is encoded in the Op« x-module structure. Having made these
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adjustments, a proof designed for holomorphic bundles or coherent analytic
sheaves re-emerges as a proof for Higgs bundles or Higgs sheaves!

In this paper we apply these principles to extensions of holomorphic bun-
dles. A Hitchin-Kobayashi correspondence for such extensions was investi-
gated in [BGP|] and [DUW]; natural gauge-theoretic conditions for special
metrics, and a notion of stability were formulated, and the correspondence
between them established. In [DUW], GIT methods were used to construct
the moduli spaces. The main results in this paper thus show how, after the
appropriate modifications, these ideas can be carried over to Higgs bundles.
We set up and prove the Hitchin-Kobayashi correspondence for extensions of
Higgs bundles (Theorems 5.1 and 5.13), and we give (in Section 7) a GIT
construction for the associated moduli spaces.

We also use the gauge-theoretic equations to deduce Bogomolov-type in-
equalities on the Chern classes of stable Higgs extensions. Our results (in
Section 6) generalize the corresponding results described in [DUW] for exten-
sions of holomorphic bundles, with the proofs being one more illustration of
how results for holomorphic bundles can be recast as results for Higgs bundles.
Going one step further than in [DUW], we describe in detail the implications
of attaining equality in the Bogomolov inequalities.

Finally, in the Appendix, we extend to Higgs bundles the construction of
Bott-Chern forms. These forms play an important role in the proof of the
Hitchin-Kobayashi correspondence. In fact our proof uses only two special
cases and all the requisite results can be extracted from the literature. The
available treatments are however all somewhat ad hoc. We have thus under-
taken a more systematic and general discussion, but have confined it to an
Appendix. Our results show how the original constructions of Bott and Chern
for holomorphic bundles go over in their entirety to the case of Higgs bundles.
This can be viewed as yet another illustration of the main underlying principle
of this paper.
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2. The objects

Let X be a closed Kéhler manifold of dimension d and with Kéhler form
w. A Higgs sheaf (cf. [S1], [S2], [S3], [S4]) on X is a pair (£,0), where £ is
a coherent sheaf on X and © is a morphism © : &€ — € ® Q% (where Q%
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is the sheaf of holomorphic sections of the cotangent bundle 7% X') such that
OANO =0. If £ is locally free, © can be thought of as a holomorphic section
of End(€) ® Q%. A morphism of Higgs sheaves f : (£,0) — (F,¥) is a
morphism of sheaves f : £ — F such that the following diagram commutes:

£ -2 E® Q%
(2.1) ?l 7®idl
F Y Fook

Since the category of Higgs sheaves is abelian, the notion of exact sequence
makes sense.

DEFINITION 2.1. An extension of Higgs sheaves (or Higgs extension) is a
short exact sequence
(22) 0 —— (£,0) —— (£,0) —1— (£,0,) —— 0.
A morphism between extensions of Higgs sheaves is a commutative diagram

0 —— (£1,0)) —— (£,0) —— (£,05) —— 0

(2.3) lfl lf lfz

0 —— (£1,01) —— (£,0) —— (£2,09) —— 0

It follows that a morphism of Higgs extensions is an isomorphism if and
only if the three morphisms fi, f and fo are isomorphisms of Higgs bundles.

3. Stability

The notions of stability for holomorphic bundles adapt straightforwardly to
define both slope- and Gieseker stability for Higgs bundles (cf. [S1], [S2], [S3],
[S4] and [H]). In [BGP] and [DUW] these notions are defined for extensions
of holomorphic bundles (or more generally, extensions of coherent sheaves).
In this section we combine both of these to define stability for extensions of
Higgs sheaves. As usual, the definition involves a numerical criterion on all
subobjects. We must thus first define subobjects.

DEFINITION 3.1. Consider a morphism of Higgs extensions

0 —— (£1,0)) —— (£,0) —— (£,03) —— 0

(3.1) lfl lf lfz

0 —— (£1,61) —— (£,0) —1— (£2,05) —— 0
If f1, f and fo are injective, then the extension in the first row is called a
subextension of the extension in the second row. A subextension is called
proper if £ is a proper subsheaf of £.



590 STEVEN B. BRADLOW AND TOMAS L. GOMEZ

REMARK 3.2. Note that giving a proper subextension is the same thing
as giving a proper subsheaf £’ of £ that is invariant under O, in the sense that
the image of ©(&’) is in & ® Q% C £ ® Q%. Indeed, if £ is invariant under
©, it defines a Higgs subbundle (£,0’), and we can recover (£5,0%) as the
image of £ under ¢, and (£, ©}) is recovered as the kernel.

We can now define the notion of slope (or Mumford) stability.

DEFINITION 3.3 (Slope stability). Fix a < 0. Given a Higgs extension

(32) 0— (51,@1) — (5, @) — (52,@2) — O,
define its a-slope as

- rk(gg)
(3.3) pa(&) = p(€) + o K(E)

We say that a Higgs extension is a-slope stable (resp. semistable), if for all
proper subextensions, we have

(3.4) fa (&) < pa(€) (resp. <).

REMARKS 3.4.

(1) While the definition of stability seems to make sense for all real values
of a, there are both algebraic and analytic motivations for insisting that o be
negative. The algebraic explanation has its roots in the relation between the
above notion of a-stability and stability in the sense of geometric invariant
theory (GIT). As discussed in Section 7, the negativity of « is required to
guarantee the ampleness of a line bundle used in the GIT construction (cf.
the proof of Theorem 7.4). From the analytic point of view, the sign of « is
required in order to ensure the convexity of the functional defined in Definition
5.2, without which the existence and uniqueness results for solutions to the a-
Higgs-Hermitian-Einstein equations (4.21) break down. The relation between
the sign of @ and the convexity of the functional is evident in equation (5.24)
in Proposition 5.3.

(2) In addition to having zero as an upper bound, the range for « is also
bounded below. Indeed, it is an immediate consequence of the definition that
if (£,0) is a-stable then pq(£1) < pa(€), and hence o > p(&1) — p(E2). The
allowed range for the parameter « is thus

(3.5) w(é) —p(&2) <a<0.

In Section 7, where we construct moduli spaces, we will need a notion of
Gieseker (semi-)stability for Higgs extensions.

DEFINITION 3.5 (Gieseker stability). Fix o < 0. Let P(£,m) denote the
Hilbert polynomial of £ . A Higgs extension is called a-Gieseker stable (resp.
semistable) if all proper subextensions & satisfy:
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() 1a() < pal€) -
(ii) If equality holds in (i), then

P& ,m) _ P(&,m)
rk(&7) rk(€)

(iii) If equality holds in (i) and (ii), then

P(&5,m) S P(&,m)
rk(&5) rk(&z)

(3.6) for m > 0.

<

(3.7)

(resp. >) for m > 0.

As usual, we have the following implications:

a-slope stable = a-Gieseker stable

—> a-Gieseker semistable = a-slope semistable.

4. Differential geometric description and metric equations

All the essential differential geometric machinery for Higgs bundles can be
found in [S3], [S4] and [H]. We thus give only a brief summary, emphasizing
the aspects needed later in this paper. Denoting the underlying smooth bundle
of a holomorphic bundle £ by E, we can describe the holomorphic structure
on &£ by an integrable partial connection, i.e., by a C-linear map

(4.1) Op : Q°(E) — QY(E)
which satisfies the d-Leibniz formula and also the integrability condition

A Higgs bundle (£,0) can thus be specified by a triple (F,dg, ©), where
e F is a smooth complex bundle on X,
e g : Q°(E) — Q%1(E) satisfies the d-Leibniz formula and 5E2 =0,
e O QVY(End(E)) satisfies 0g(©) =0 and © A © = 0.
Instead of treating the holomorphic structure (Jz) and the Higgs field (©) as
separate, we can combine them to define the Higgs operator
(4.3) V'=0g+0:9%E) — Q"Y(E) e Q"(E).
Notice that this differs from the partial connection Jp in _that its image is
not confined to Q%!(E). However, like O, it satisfies the d-Leibniz formula
and extends in the usual way to an operator on QP (FE). Conversely, given any
C-linear map V" : Q°(E) — Q'(E) which satisfies the 0-Leibniz formula,
we can separate it into V” = 9 + ©, corresponding to the splitting Q(E)! =
QOY(E) @ QLYO(E). The integrability condition,
(4.4) (V"2 =0,
is clearly equivalent to the defining conditions of a Higgs bundle, viz.
(0g)*=0, 0g(©)=0,O0A0=0.
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We thus arrive at the following description of a Higgs bundle, formally identi-
cal to the differential geometric description of a holomorphic bundle, but with
the operator dg replaced by the operator V”.

DEFINITION 4.1 (Higgs operator description). A Higgs bundle on Xis a
pair (E, V") in which F is a smooth bundle on X and V" : Q°(E) — QY(E)
is a C-linear map which satisfies the 0-Leibniz formula and the integrability
condition (4.4).

Given a Hermitian bundle metric, H, on F, we can complete V" so as to
define a connection. To do so, we first define the adjoint 0% € Q%! (End F)
by the condition that for all sections s,t € Q°(FE)

(4.5) (©s, ) = (s,0%t) 1 -

If we fix a local frame {e;} for E, and define the Hermitian matrix
(4.6) Hji = (ei,ej)m

then ©7F; is represented by the matrix

(4.7) C—H 'O H .

More explicitly, if we write

(4.8) 0= Z[@a]ij Qwa ,

where the w, are (1,0)-forms and the matrices [©%];; are local descriptions
(with respect to the frame {e;}) of bundle endomorphisms, then

(4.9) = (04" @ Fa
where

*, 0 — WT
(4.10) [©Fi; = Hipl[eH ]quqj :

DEFINITION 4.2. Define
(4.11) w =Dy + 0%,

where D(0g, H) = O + D'y is the Chern connection compatible with 95 and
H. The Higgs Connection is then defined by

(4.12) V=V"4+Vy.
The curvature of this connection
(4.13) Fy =V?,

is called the Higgs curvature.
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REMARK 4.3. The Higgs curvature, like the curvature of any connection,
is a section of Q?(M,End E). Unlike in the case of the Chern connection,
F} does not have complex form type (1,1). The Higgs connection and its
curvature do however have the following two crucial features:

e (Ké&hler identities)

(414) i[A,V“] = (V/H)* ) Z[Aa vi‘l] = _(v”)* )
where the adjoints are taken with respect to the metric H and
(4.15) A:QPYE) — QPN (E)

is the adjoint of wedging with the K&hler form on X.
e (Bianchi identity)
(4.16) Viy(Fy)=0=V"(Fy) .
Notice that these are direct analogs of the properties enjoyed by the Chern
connection, with V” and V', playing the role here that 0 and D/, play
for the Chern connection. This formal correspondence, which leads directly

to the underlying principle mentioned in the Introduction, is summarized in

Table 1.

We now consider an extension of Higgs bundles,
0— (51,@1) — (5, @) — (527@2) — 0,

i.e., a Higgs extension as in Definition 2.1 but in which the sheaves are locally
free. If we denote the underlying smooth bundle of £ by E, then we can fix a
smooth splitting F = E1®FEs, where the summands are the underlying smooth
bundles for & and &. Thus the sub-Higgs bundle in the extension is described
by the triple (E1, 1, ©1), and the quotient Higgs bundle by (Fy, d2,02). The
Higgs extension is then specified by the triple (E,dg,0), where

e the holomorphic structure is of the form

(4.17) 0p = < 501 5’2 ) ,  a holomorphic section in Q%! (Hom(Ey, E1)) ,
e and the Higgs field is of the form

(4.18) © = ( @01 (§2 > , b a holomorphic section in Q'Y (Hom(FE,, E)) .

Here the holomorphic structure on Hom(Fs, E1) is that induced by 01 and 0s.
Alternatively, using Higgs operators to describe the Higgs bundles, we have

0— (Elvvg_/) I (Eavﬁ) — (E27V12/) — 0,

where, with respect to a smooth splitting £ = F; & FEs, the Higgs operator
on F is of the form

v (VY b+p
(4.19) \Y _< 0 v )
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Holomorphic bundle

Higgs bundle

underlying
smooth bundle

special metrics

differential
operator 0p: QUE) — QVYE) | V' Q%E) — QYE)
integrability
condition g =0 (V"2 =0
complementary
operator (Dy)* =i[A, 0g] (V)" =1i[A, V]
connection D =0g+ DYy V=V"+Vy
gauge theory
equations for iNFR = 2T iANFY = 2T

(other) Kéahler
identity

(Op)" = —ilA, D]

(V") = ~i[A, V]

Bianchi curvature
identities

9p(Fif) = Dy (Ff) =0

VI(FY) = Vi (Fy) =0

TABLE 1

Differential Geometric Dictionary, illustrating the formal similarity resulting
from using the Higgs operator V" = 0 + © to encode the Higgs structure
in a Higgs bundle
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Suppose now that we have a metric H on the middle bundle in the extension.
It then makes sense to talk of an orthogonal splitting £ = F; & E>. We can
thus define a bundle automorphism T : E — FE which, with respect to the
H-orthogonal splitting, is given by the matrix

_(wh 0
(4.20) T—< 0 _%12>.

Here n = rk(F) and n; = rk(E;). We can now formulate the following gauge
theoretic equations:

DEFINITION 4.4. Fix the real number a. We say the metric H satisfies
the a-Higgs-Hermitian-Einstein (¢HHE) condition if
2T 2T
—I1+—T,
Vv * 14
where FY is the Higgs curvature as in (4.13), A is as in (4.15), T is the bundle

automorphism defined in (4.20), V = [ % is the volume of X, and p = p(€)
is the slope of £.

(4.21) iNFy =

REMARK 4.5.

e In the case ©® = 0, when V" = 0 and thus the Higgs curvature
FY reduces to FF (the curvature of the Chern connection compat-
ible with H and dp on E), equation (4.21) becomes the deformed
Hermitian-Einstein equation defined in [BGP] on extensions of holo-
morphic bundles.

e If we set a = 0 then we recover the usual Higgs equation (defined by
Simpson and Hitchin) for a metric on the Higgs bundle (£, ©).

e Using the fact that (V”)? = 0, we can express AFy as

(4.22) AFY = A(Ff +1[0,0%),
where FJ is the curvature of the Chern connection. The a-Higgs-
Hermitian-Einstein equation can thus also be written in the form
2«

. 2w
4.23 AFP +10,0 )= =1+ =——T.

5. The Hitchin-Kobayashi correspondence

In this section we investigate the relation between the a-stability of a Higgs
extension and the existence of a metric satisfying the «HHE condition. As in
Section 4, we fix an extension of Higgs bundles

(5.1) 0 — (£1,01) — (£,0) — (£2,05) — 0.

The underlying smooth bundles are denoted, as usual, by Ey, Fs, and FE.
With Higgs operators defined as in (4.3) we can thus equivalently describe
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the extension as
(5.2) 0— (B, V]) — (BE,V") — (F2,V5) — 0.

The Hitchin-Kobayashi correspondence asserts that a-stability is equivalent
to the existence of an «HHE metric. In Section 5.1 we prove that existence of
an o HHE metric implies a-(poly)stability. The converse is proved in Section
5.2. In both cases we see the advantage of encoding the Higgs structure in
the Higgs operator; having done so, the proofs amount to little more than
using the dictionary provided in Table 1 to adapt the corresponding proofs
for extensions of holomorphic bundles (as in [BGP]).

5.1. The easy direction.

THEOREM 5.1.  Fiz oo < 0. Suppose that the Higgs extension (5.1) supports
a metric with respect to which the smooth splitting E = E1 ® E is orthogonal,
and satisfying the « HHE condition (4.21). Then either the Higgs extension is
a-stable or it splits as a direct sum of a-stable Higgs extensions, all with the
same a-slope.

Proof. Suppose that the metric H = Hy; ® Hy on E satisfies (4.21). Let
V = V" + V/; be the Higgs connection determined by H and the Higgs
operator on E, and let Fjy be its curvature (as in Definition 4.2). Let &' C £
be any Higgs subsheaf, with corresponding Higgs subextension

(5-3) 0— (&1,0)) — (£,0") — (£,05) — 0.

If £ is a saturated subsheaf then it is locally free outside of a codimension two
subset, say 3, in X. We can thus define a projection 7 : £|x_y — &’'|x_x.
Since (£/,0') is a Higgs subsheaf, we can compute the degree of £ by the
formula (cf. [S3, Lemma 3.2])

(5.4) 21 deg(&') = z/

Tr(ATFy) 7/ V"7 .
b'e b's

But by (4.21)

ZV v _ 7'1]:1 0
(5:5) oM = ( 0 nl, ) !
where
n n
(5.6) n=pta—2, T=p—a—.
n n

It follows (precisely as in Proposition 3.8 of [BGP]) that

(5.7) %/ Tr(ATEFY) = nim + nhr |
X
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where nf = rank(&]) and nb = rank(&)). Notice that the first of the relations
in (5.6) can be written as 71 = 114 (€), and that together they imply o = 71 — 2.
Combining (5.7) and (5.4) thus leads to

(A _;/ "__12

from which the conclusion follows in the usual way. O

5.2. The hard direction. We now consider the converse of Theorem 5.1.
Keeping the notation of Section 5.1, we show that if a Higgs extension (5.1) is
a-stable, then £ admits a metric with respect to which the smooth splitting
E = E, @ Es is orthogonal and which satisfies the «HHE equation (4.21), i.e.,

such that S o

—" T T

iANFy = % I+ v T.
As in [S3] and [BGP], we can separate the trace and trace-free parts of this
equation. We can always fix det(H) so that
2

v

In fact, since [©,©*] = 0 has zero trace, iA Tr(Fyy ) is the same for the Higgs
connection as it is for the (metric) Chern connection. The above equation is
thus satisfied if det(H) is the Hermitian-Einstein metric on the determinant
line bundle det(€). Henceforth, we assume that we have fixed a background
metric, K, such that iA Tr(Fk) = n2”7“ It remains therefore to prove that E
admits a metric satisfying

(5.9) iNTr(FY) =n

(5.10) iNFjr = %TQT :
where Fi; = Fyy — L Tr(FY )L is the trace-free part of Fi.

The proof follows the standard pattern for Hitchin-Kobayashi correspon-
dences. The method we use is essentially that of Simpson, with modifications
as in [BGP] to accommodate the features arising from the extension struc-
ture (i.e., the non-zero right hand side in the equation). We thus give only a
sketch of the proof, in which we fully describe all novel modifications, but do
not repeat the details that can be found in [BGP], [S3] and [Dol]. Let

(5.11) S(K)={s € Q°X,End E)|s*¥ = s, Tr(s) =0} .

Then any other metric with the same determinant as K can be described by
Ke®, with s € S(K). Fix an integer p > 2n, and define

(5.12) Meth = {H = Ke® |s € LE(S(K))} .

We now define a Donaldson functional on Met whose critical points are so-
lutions to (5.10). The original Donaldson functional was defined using Bott-

Chern forms for pairs of metrics, and had Hermitian-Einstein metrics on holo-
morphic bundles as its critical points. The generalization for metrics on Higgs
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bundles is due to Simpson, while the adaptation for extensions of holomor-
phic bundles can be found in [BGP]. Here we must combine both of these
modifications.

Given metrics H and K, we denote the functional defined by Donaldson
by Mp (K, H). Its definition in terms of Bott-Chern classes is

(5.13) MD(H,K)z/ Ry(H,K) Awi™t |
X

where Rs is the Bott-Chern form associated with the polynomial —% Tr(AB+
BA). Donaldson also gave a more explicit formula which applies for pairs
(H,K) when H = Ke® with s € S(K). Simpson’s generalization of Mp can be
obtained directly from this formula: one simply replaces the Chern connection
by the Higgs connection. We will denote Simpson’s functional by Mg(H, K).
Though it is not needed in this proof, and was not formulated in this way by
Simpson, this modification can be put in a more general framework. In the
Appendix we show how it can be seen as the result of a modification of the
Bott-Chern forms themselves. The functional used in [BGP] for metrics on
E = FE; ® E5 can be defined as
_ M/ Ri(Hy, K,) A w? ,

14 X
where H; and K7 are the induced metrics on F; and the Bott-Chern form Ry
is given by

(514) M7'177'2(H7K) :MD(HvK)

(5.15) Ri(H,K) =logdet(K 'H) = Tr(log K 'H) .

We can combine this with Simpson’s generalization if we replace Mp by Mg.
We then get the following, which is the appropriate functional for extensions
of Higgs bundles:

DEFINITION 5.2. Let

: 4 _
(5.16) MM (H, K) = Ms(H, K) — ”(Tlv 2) / Ry(Hy, K1) Aw?
X
or, setting a = 1 — 7o,
Higgs Ao d
(5.17) MY (H, K) = Ms(H.K) = = | Ri(Hi K Aot
X

If we fix one of the metrics, say K, we can define
(5.18) Mtess () = Miless(H K).
Following [BGP], we now define m? : Met — Q°(X,End E) by

2mia

%

(5.19) mo(H) = AFg +

(63

THa
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where, with respect to the H-orthogonal splitting F = E; ® FEs,
I
(5.20) Ty = < 0 _my, >

The crucial properties of M85 and m? are described in the next propo-
sition.

PROPOSITION 5.3.
(1) Given any three metrics H, K, J, we have

(5.21) Miees (1K) 4 MHiees (K g) = Miises(H )
(2) If H(t) = He'® with s € S(H), then
d . ives
(5.22) E1\451%5(15{(15)) =2i /X Tr (sm (H(t))) -
(3) Define the operator L on L5(S(H)) by
(5.23) Ls) = Sm3(H(D)]o

If s € S(H) is given by s = < Zi Su ) with respect to the H-ortho-
2

gonal splitting E = Ey & Es, and H(t) = He'*, then

. d? I
(5.24) 2i(s,L(s))g = ﬁMf‘ggh(H(t))h:o
4o
= V") |% — I 1%

(4) If s€ S(H) and K = He®, then
(5.25) Als| < 2(lmg,(H)a + [mo(K)|x)

where the norm on |s| can be with respect to either H or K.

Proof. We start by proving items (1) and (2). When « = 0, these results
follow as in §5 of [S3] and [Do2] (or, equivalently, follow from the properties of
Bott-Chern forms, as described in the Appendix). The modification required
when « < 0 is exactly the same as described in the proof of Proposition 3.11
in [BGP].

We now prove (3). The proof is formally identical to that in Proposition
3.11 in [BGP], except that we replace the result about the second variation
of Mp with the corresponding result for Mg, viz.
d2
dt?
This result can be found in [S3]. It can also be derived directly from the
properties of Bott-Chern forms, as in Proposition A.16 of the Appendix.

(5.26) Ms(H())le=o =[ V"(s) I -
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Finally, we prove (4). When « = 0, this is part (d) of Lemma 3.1 in [S3].
In general we have
2mice
Ty —Tgk) .
O ry - T

This changes the computation in Simpson’s proof by the introduction of an
extra term of the form

(5.27) me(H) —mg(K) = (mg(H) — mg(K)) +

(e

(5.28) 2”70‘ Tr(e*(Ty — Tx)) .

But Tr(e*Tpy) = Tr(e*Tk), so the extra term does not affect the result. O

COROLLARY 5.4. Suppose that a < 0 and (5.1) is an a-stable extension.
Then

(5.29) Ker(L) =0,
where L is the operator defined above on LL(S(H)).

Proof. Suppose that L(s) = 0 for some non-zero s € LY(S(H)). Then by
(5.24) we have V”(s) = 0 = u, where u € Q°(X,Hom(E», E;)) comes from
writing s = zi : , with s; € LE(S(K;)). Recall that with respect to the

2
H-orthogonal splitting £ = FE; @& Fs, the holomorphic structure and Higgs
field on E are given by (4.17) and (4.18). Thus

V" B+b

"no__ 1

(5.30) v/ = ( — >

and we can conclude that VY (s1) = V5 (s2) = 0. But V/(s;) = 0 is equivalent
to

(531) 51(31) =0 and [@1,81] =0.

The eigenspaces of s thus split the extension (5.1) into a direct sum of Higgs
extensions. Since Tr(s) = 0 there must be at least two such summands. But
this violates the stability criterion, since the a-slope inequality cannot be
satisfied by both summands. O

REMARK 5.5. This same computation shows that for any path H(t) =
He's with s € S(H), we get
— M_ 88 (H (t 0
M (H (1) > 0,

i.e., Mises is a convex functional.

(5.32)

Next, we fix a positive real number B such that || m2(K) ||¥,< B, where

(5.33) | (K |2, = / [m® (1) [2ed vol
X
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and define
(5.34) Met}(B) = {H € Met}| || m(H) [5,< B }.

LEMMA 5.6. If the extension (5.1) is a-stable, then there are no extrema
of M1liges on the boundary of this constrained space, and the minima occur at
solutions to the metric equation m%(H) = 0.

Proof. The proof is the same as in [B1, Lemma 3.4.2], in which the relation
Ker(L) = 0 is the key. O

We thus look for minima of Mgiggs(H) on Met}(B). To show that minima
do occur, we need

PROPOSITION 5.7 ([BGP, 3.14]). FEither (5.1) is not a-stable or we can
find positive constants Cy and Cy such that

(5.35) sup [s| < C1 M (Ke®) + Cy
for all Ke® € Meth(B).

REMARK 5.8. This proposition motivates what might be called the
Donaldson-Uhlenbeck-Simpson-Yau (DUSY) Alternative: either one can pro-
duce a minimizing sequence for the functional M_:#&*—and hence a solution
to the metric equation—or one can use the functional to produce a sequence
which in the limit destabilizes the extension (5.1).

Sketch of proof. The first step is to show that for metrics in the constrained
set Meth(B), the C? estimate given above is equivalent to a C! estimate of the
same type. The proof of this uses (5.25) in Proposition 5.3, but is otherwise
identical to that in [S3] or [B1]. One then supposes that no such C'' estimate
holds. It follows that one may find an unbounded sequence of constants
C; and metrics Kef € Meth(B) such that the estimate is violated. After
normalizing the s;, this produces a sequence {u;} C L% (S(K)) such that
| wi ||pr= 1. This has a weakly convergent subsequence in L?(S(K)), with
non-trivial limit denoted by u.,. One then shows that the eigenvalues of o,
are constant almost everywhere. This is done, as in [S3, §5], by making use
of an estimate of the following form:

LEMMA 5.9 ([BGP, Lemma 3.13]). Suppose that o < 0 and let H = Ke®

with s € LY(S(K)). Let s = (21 :) be the block decomposition of s with
2

respect to the K-orthogonal splitting E = E1 ® FEy . Let ¥ : R xR — R be
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the smooth function as in [B1] (or [S3]). Then

2T

%M}jiggs(H) = z/ Tr(sAFK)+/(\I/(S)V"S,V”s) ——Rl(Hl,Kl)
X x

(5.36) > / Tr(sAFr) + / (U(s)V"s,V"'s) e — 222 / Tr(sy),
X T
where the meaning of U(s) is as in [B1] or [S3].

Proof. As in [BGP], the first line follows from the computations in [S3].
The second line uses the convexity properties of the function Ry (H(t)1, K1),
and the fact that its first derivative at ¢ = 0 is given by [, Tr(s1). O

REMARK 5.10. The astute reader will notice a minor difference between
the formula (5.36) and the corresponding one given in Lemma 3.13 in [BGP].
The difference involves the placement of factors of 2; the version in the first
line of (3.3.18) in [BGP] is incorrect, but the errors do not affect any of the
results in that paper.

Following the analysis in [S3, Lemma 5.4], this leads to the following result:

ProposITION 5.11 ([BGP, 3.15]). Let F : R x R — R be any smooth
positive function which satisfies F(x,y) < 1/(x —y) whenever x > y. Then

(5.37) i/XTr(uooAFK)+/(.7—"(uoo)V"uoo7V”uoo)K

T
2
71-a/"I‘ruool )

where Uso = <u0:1 I) with respect to the K -orthogonal splitting of E.

Since Tr(us) = 0, there are at least two distinct eigenvalues. Let A\ <
A2,...,< A denote the distinct eigenvalues. Setting a; = A\;41 — A;, one can
thus define projections m; € L?(S(K)) such that

(5.38) Uoo = A D= ) agm;.

LEMMA 5.12.  The projections m; satisfy
(1) m € L3(S(K)),
(2) 7Ti2 = T,
3) 1—m)V"(m;) =0.

Proof. The case a = 0 is proved in [S3] (see Lemma 5.6 and the succeeding
remarks). The presence of the extra term depending on « in (5.37) does not
affect the method of proof. O
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Each 7; thus defines a weak Higgs subbundle in the sense of Uhlenbeck and
Yau [UY], as adapted by Simpson [S3] for Higgs bundles, and hence produces
a filtration of £ by reflexive Higgs subsheaves

(5.39) GiCcé&C---CcéE=E.
Each Higgs subsheaf £; determines a Higgs subextension
(540) 0— 51,]‘ — 5j — 52,j — 0.

Now define the numerical quantity
k1
(5~41) Q= Ak(rﬂ(g) —Tri7T1 — 7"272) - Zai(riﬂ(gi) —T1:T1 — Tz,iTz) ,

where p(&;) is the slope of £;, and r,; is the rank of &, ;. Using Lemma
5.9 and the fact that u, = A1 — Zkfl a;m;, one shows (by precisely the

K3

method in [S3]) that @ < 0. On the other hand, 71 and 72 are related by
ru(€) —rim — reme = 0, and if (5.1) is a-stable, then

(5.42) rip(E;) — 11T — o2 <0

forall i = 1,...,k — 1. Thus @ must be strictly positive if (5.1) is a-stable.
We conclude therefore that if (5.1) is a-stable then there must be constants
C and C5 such that the estimate (5.35) holds. This completes the proof of
Proposition (5.7). O

We can now prove:

THEOREM 5.13.  Fiz a < 0 and suppose that the Higgs extension (5.1) is
a-stable. Then E admits a unique metric H with respect to which the smooth
splitting E = Ey @ Es is orthogonal, with det(H) = det(K), and such that
(5.43) iNFg = oy

v

Proof. By Proposition 5.7, there is an estimate of the form in (5.35) and
hence the functional M85 is bounded below. By Lemma 5.6, a minimizing
sequence produces a solution in Met5(B) to the equation m%(H) = 0. The
smoothness and uniqueness of the solution follows in exactly the same way as
in [Dol], [S3] or [B1]. The smoothness is a result of elliptic regularity, while
the uniqueness is a consequence of the convexity properties of M1ess, O

6. Bogomolov inequality

The existence of a solution to the a-Higgs-Hermitian-Einstein equations
on an a-stable Higgs extension can be used to deduce topological constraints.
The constraints are expressed as inequalities involving the Chern classes of the
underlying bundles. As such, they are direct generalizations of the Bogomolov
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inequalities for stable holomorphic bundles. The notation in this section is as
follows:

e As in Section 5, (E, V") is a Higgs bundle which has the structure of
an extension of Higgs bundles as in (5.2), i.e., which can be written
as

0— (E17v/1/) - (Ea V”) I (E27V/2/) — 0.

e The ranks of the underlying smooth bundles F, E5 and F are denoted
by n1,n2 and n, respectively.

e The base space is the Kéhler manifold (X, w). The dimension of X is
d, and its volume is V.

e Using the Kéhler form w and the Chern classes ¢i(E), c2(FE), we
define the characteristic numbers

(6.1) OQ(E):/XCQ(E)AM*2 ,Cf(E):/ch(E)Awd*?

With this notation, we prove the following results:

THEOREM 6.1 (Bogomolov Inequality). Let (E,V") be a Higgs bundle
which has the structure of an extension of Higgs bundles as in (5.1), i.e.,
which can be written as

0— (E1,VY) — (E,V") — (E2,V3) — 0.

Suppose that (E,V'") is a-polystable as an extension of Higgs bundles, for
some o« < 0. Then

n-—1 a? rningy (d—1)!
2 205 (E) — 2(E)+ & ( ) >0.
(62) Co(B) - "3 m) + - (M) o >0
THEOREM 6.2. Let (E,V") be as in Theorem 6.1. Suppose that (E, V") is
a-polystable as an extension of Higgs bundles and that equality holds in (6.2),
i.e., its Chern classes satisfy

63 20 - " tepm 4 O () oD

Then:
(1) With respect to the splitting E = E1 & FEy we have

"o Vlll 0 . a5 51 0 . (Ch 0
(6.4) V(O vy , e, Op = 0 By and © = 0 o, )

(2) There is a metric H = Hy @ Hy on E such that for i = 1,2 we have
(6.5) Fi, =0,
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where Ff; 18 the trace-free part of the Higgs connection determined by
(0;,0;, H;) on E;, and furthermore,
Tr(Fg!)  Te(Fy?)  2miaw
ni U») o Vo d

(3) The parameter o has the value

(6.6)

(6.7) a=p— 2,
where
fX ACl (El)wd/d'

%

(6.8) i =

Conversely, if conditions (1)—(3) apply, then the Higgs extension is -
polystable and its Chern classes satisfy the equality (6.3).

REMARK 6.3. Conditions (1) and (2) in Theorem 6.2 together imply that
(E, V") splits as a direct sum of polystable Higgs bundles.

We require the following key technical result:

PROPOSITION 6.4 ([S3, §3]). If F is the curvature of the Higgs connec-
tion determined by metric H on (E,V"), then

2 d d
1 w w

v VoA d=2\y _ | pV v V2
(6.9) Tr(Fy AFY Awi™?) = ’FH - WFR)e| Gy~ FRP G
where d = dim(X). Similarly, if F+ = Fy — 2 Tr(FY)1, then

Loyl pode2 TR PPN L, Lpw?
(6.10) (FgAFgAhw ):‘FH—E(AFH)W m_mpm =

Proof. This uses the following features of Higgs connections:

(6.11) (EY)+ ((FY)HH™ =0,
(6.12) (Fy )0 = ((Fy)™). O

Proof of Theorem 6.1. If (E,V") is a-polystable, then (by Theorem 5.13)
it has a metric satisfying the «HHE equation (4.21). Taking the trace-free
part (given in (5.10)), we get

d
(0.13) IaFFIE = [ aRgP 5
. d!

472 / w?
= —— [ |oT)* ==
V2 [y | d!

472 9 M1N2
= —u« 27
14 n
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Using the Chern-Weil formulae for chs(E) and ¢ (E), plus the identity chy =

%c% — c2, wWe get

1
m XTI'(FI{I_ /\FIJ{_ /\wd_2)
1 1
(6.14) = = (Te(Fy AFY) — = Te(Fy) ATr(FY)) Awd™2
/I8 X n

/ (=2 cha(E) + ~(E)) A w2
X n

= [ o) -

A(E) Awi™?.
Equation (6.10) thus yields

n—1_, a? rningy (d—1)!
(6.15) 205(E) - “—C}(B) + < ( . ) y
d—2)! 1
= @Dy L ampa
where C3(E) and CZ(E) are as in (6.1). Theorem 6.1 follows directly from
this. 0

Proof of Theorem 6.2. Suppose that (F,V") is a-polystable as an exten-
sion of Higgs bundles, and that (6.3) holds. As in the previous proof, we
may thus assume that E supports a metric H = Hy & Hs which satisfies the
trace-free «cHHE equation (5.10). It then follows from (6.15) that the trace
free part of the curvature, i.e., Fi, satisfies

2mia | w
T-— .
vV ~d
Applying the Bianchi identity, viz. V(Fyy ) = 0, and the fact that (cf. Lemma
A1) dTe(FY) = Tr V(FY), we get

(6.17) V(T)=0.

(6.16) Fip = —

It follows from this that the subbundles corresponding to eigenvalues ng /n and
—ny /n of T both give rise to Higgs subbundles of (F,V"). Alternatively, one
can compute the covariant derivative V(T') and observe directly from (6.17)
that V” (and hence O and ©) must be as in (6.4). Either way, we have

FY' 0
1 FY = ("t
o1 = (7 )
and hence

FL 0 Tr(Fyl)  Tr(Fy?)
6.19 FE=("H A -EAN )
( ) " < 0 FIJ{}) N < ni n9 ’
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where
Tr(Fy!)

Hy Hy ny

Ila

and similarly for F; . Combining this with (6.16), we see that

(6.20) Fioooo\ _ ( T(Fy)  T(EY)  2miaw -
. 0 FI% - n2 ny V d ’
ie.,
6.21) Fp o= ™ Te(Fy)  T(Fg))  2miaw
) H, - ™ o e IE
Tr(FY? Te(FY1 .
ko= M r(Fhy) _ r(Fp') | 2miaw
" n n2 ny V d 2

Taking the trace of either of these equations yields (6.6). Contracting with
w and integrating over X then yields (6.7). Conversely, suppose that (1)—(3)
apply. Then (6.19) implies

(6.22) Fip = — T= = AFi=

and hence that the right hand side of (6.15) vanishes. Thus, with H = H1®Ho,
we see that iAFy = 2“7“1 + 27T, as required. It remains to verify (6.3). We
write, for i = 1,2,

(6.23) ca(E;) =6w+ 5,

(624) CQ(Ei) = aiw2 +b; ANw + ¢,

where §;,a; € R and 8;,b; € QD (X,R) are primitive forms, and ¢; A
w(?=2) = 0. The condition in (6.6) then becomes

(6.25) bo_B_y
ni na
Using the identities
(6.26) CQ(El ©® EQ) = co(E1) + co(E2) + 01(E1) Acr(Ea)

and

(6.27) c1(E1 ® E2) =c1(Ey) 4+ e1(Es)
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we thus compute
(n—1)
n

(628) = (2(@1 + as + (5152)

(2¢2(E) — c(E)) A w2

n—1

(61 + 02)%)w?
P28 A By "B+ ) At

= Y QaE) - M- L2(B)) A w2

i=1,2 v

_mng (ﬁ _ 5_2>2Awd_ mne (ﬁ - @>2Awd2.

n ny Uup) n ny %)

But Fﬁl = FﬁQ = 0. Thus by (6.14) applied to E; and E, we have

nifl

(6.29) 205 (E;) — C3(E;)=0.

g

Together with (6.25), equation (6.28) thus reduces to

(6.30) 202(E)—("T_1)05(E) = Mz (5—1—5—2>2/de

n ni no

-

where in the last line we have used oo = p3 — po and fX w? =Vad!. (]

REMARKS 6.5.

(1) The condition (6.16) makes sense for connections on complex bundles
over symplectic manifolds, where w is then the symplectic form. It is thus
tempting to view this as the definition a symplectic version of a stable Higgs
extension, in much the same way that flat bundles provide the real versions of a
stable Higgs bundles (under suitable restrictions on Chern classes). However,
as the above proof shows, the condition forces the Higgs extension to be a
direct sum of polystable Higgs bundles, so no new phenomena emerge. It is
also worth noting that, by (6.7), the equation Fr = —@Tu) can apply only
if a is at the extreme lower bound of its range.

(2) In the case where © = 0, or equivalently V" = d, Theorem 6.1 yields a
Bogomolov inequality for a-stable extensions. This is equivalent to Theorem
3.11 in [DUW]. Taking V" = Jg in Theorem 6.2 similarly yields a result
for extensions of bundles. It provides the necessary and sufficient conditions
under which equality can be attained in the Bogomolov inequality for an
a-stable extension. As far as we are aware, this result has not previously
appeared anywhere.
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7. Algebro-geometric description and GIT construction

We now return to the algebraic setting and consider Higgs sheaves and
extensions of Higgs sheaves as defined in Section 2. In [DUW], Daskalopoulos,
Uhlenbeck and Wentworth have constructed the moduli space of extensions of
torsion free sheaves, following ideas of Simpson. In this section we will show
how basically the same construction also gives the moduli space of extensions
of Higgs sheaves. The main modification required is to use sheaves of pure
dimension, rather than torsion free sheaves.

We will start by recalling Simpson’s identification between Higgs sheaves
on X and sheaves on the cotangent bundle T*X. Let Z be the usual pro-
jective completion of the cotangent bundle 7*X, extending the projection
m:T*X — X to a projective bundle 7 : 7 — X. Let D = Z —T*X be
the divisor at infinity. Let Ox(1) be an ample line bundle on X, and choose
b such that Oz(1) := T Ox (b) ® Oz(D) is an ample line bundle on Z. In [S2]
Simpson shows (cf. Lemma 6.8) that a Higgs sheaf (£,0) on X is the same
thing as a sheaf € on Z such that Supp(€)ND = (). In fact, & = 7. €, and the
homomorphism © (with © A © = 0) is equivalent to giving the Or«x-module
structure. This identification is also called the spectral cover construction.
Set S = Supp(€), and consider the projection g : S — X. The fiber over a
point x € X is a length n = rk(€), zero-dimensional subscheme of 77X = QL.
Hence mg : S — X is an n-to-1 cover of X. If X is a curve, then S is the
spectral curve studied in [BNR]. The reason for this name is that if we restrict
the Higgs field © to a point x € X, we obtain an endomorphism of the fiber
E, with values in Q! = C,

@z:EmHEI(XJQi,

and hence the eigenvalues of 0, give a set of n points (counted with multi-
plicity) of T;* X. This set is precisely the fiber of S over z € X.

This identification between Higgs sheaves (£,©0) on X and torsion sheaves
¢ on T X is compatible with morphisms, giving an equivalence of categories.
The sheaf £ is torsion free if and only if € is of pure dimension d = dim(X)
(i.e., if € is torsion free when restricted to its support and every irreducible
component of its support has dimension d). Since Or«x (1) = 7*Ox (b), the
Hilbert polynomials of € and £ = 7, € are related by

P(&,m) = P(E,bm) =: P(E,m),

and hence € is (semi)stable with respect to Ox (1) if and only if £ is (semi)stable
with respect to Oz(1) [S2, Cor. 6.9]. These correspondences between the Higgs
sheaf and the sheaf of pure dimension are summarized in Table 2.

Simpson then gives a method to construct the (projective) moduli space
Mpure(Z, P) of semistable (with respect to O(1)) sheaves with pure dimen-
sion on Z and with Hilbert polynomial P. Using the previous identification,
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(€,0) Higgs sheaf on X

¢ sheaf on T* X

¢ ¥ ScT*X
suppot spectral cover of X
Higgs structure (S} Op« x-module structure

sheaf type

torsion free

of pure dimension dim(X)

ample line bundle Ox(1) W*of(i)(g :Z o

Hilbert polynomial P(&,bm) P(&,m)

Gieseker stability w.r.t. Ox(1) w.r.t. Oz(1)
TABLE 2

Algebro-Geometric Dictionary, giving the correspondence between Higgs
sheaves on X and sheaves of pure dimension on T*X C Z

plus the openness of the condition that Supp(€) does not intersect D, one
is thus able to identify Muiges(X, P), the moduli space of semistable Higgs

sheaves with Hilbert polynomial P, as an open subset of Mpyre(Z, IS)
As in [DUW], instead of considering extensions, it is more convenient to
take the equivalent point of view of considering quotient pairs of Higgs sheaves.

DEFINITION 7.1.
of Higgs sheaves

A quotient pair of Higgs sheaves is a surjective morphism

(5,@) —— (-7:’\11) — 0,
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and it will be denoted by ¢ or by (£,0;F,¥). A morphism between quotient
pairs of Higgs sheaves is a commutative diagram

’

(€,0) —— (F,¥) —— 0

(7~1) fl gl

REMARK 7.2. Clearly, isomorphism classes of quotient pairs are the same
thing as isomorphism classes of extensions. Indeed, using the notation of
Section 2, we take (£1,01) = kerq, and (&;,02) = (F, V). We say that
a quotient pair is stable if the corresponding Higgs extension is stable. A
quotient pair (£, 0; F, ¥) is called torsion free if £ is a torsion free sheaf (note
that F might have torsion).

PropoSITION 7.3 (Jordan-Holder filtration). If (£,0;F,¥) is an
a-Gieseker semistable torsion free quotient pair, then there exists a filtration

(0,0) = (&,00) C (511@1) c - C (&6 = (£0)
(0,0) = (.7:0,\:[/0) C (fl,\lfl) c --- C (.ﬁ,\l’l) = (.7:,\:[’)
! ! ! !
0 0 0 0

such that €;_1 is saturated in &;, the induced quotients
q; - (gi/gifl,@» — (fi/fiflvﬁi)

are a-Gieseker stable, and

deg(&i/Ei—1) —ark(F;i/Fi1)  deg(€) — ark(F)
k(& /Ei—1) B k(&) ’
P(&/&—1,m)  P(E,m) for all m
tk(&;/&i—1) o 1k(E) ’
P(F;/Fi—1,m) _ P(F,m) for all m
rk(}—i/}-i_ﬁ I"k(f) '

Moreover, the direct sum of these quotient pairs, denoted by

I
gr(q) = @ 9
i=1

is unique up to isomorphism.

Proof. Analogous to [HL, Prop. 1.5.2] or [DUW, Prop. 2.13].

O

REMARK. Two quotient pairs ¢ and ¢’ are called S-equivalent if gr(q) =
gr(q"). If ¢ is a-Gieseker stable, then gr(q) = q.
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THEOREM 7.4. Fiz Hilbert polynomials P and P". There exists a quasi-
projective scheme Mﬁiggs(X, P, P") whose points correspond to S-equivalence
classes of quotient pairs of a-Gieseker semistable torsion free Higgs sheaves
with the given Hilbert polynomials.

Proof. The moduli space M} (X, P, P") of quotient pairs of torsion free
sheaves has been constructed in [DUW], but since the authors use Simpson’s
method, their proof works not only for torsion free sheaves, but also for quo-
tient pairs of sheaves of pure dimension. Let Mg, (7, }3, ]5”) be the moduli
space of quotient pairs € — § — 0 of sheaves on Z with € of pure dimen-
sion. Since the condition that Supp(€) does not intersect D is open, using

Simpson’s identification we finally conclude that Mg,,.(X, P, P") is an open
subset of M?,..(Z, P, P").

pure
Now we will briefly recall the construction in [DUW, Section 5], indicating
what has to be changed to consider sheaves of pure dimension. For any

coherent sheaf € on Z, its Hilbert polynomial can be written as

iggs(

md md—l

X(€(m)) = r(€) deg(Supp €) T + a(€) T+

(d—1)
where d is the dimension of the support of €. Following Simpson [S1, p. 55],
we call r(€) the rank of €, and a(€) the degree of & with respect to Oz(1).

Using these new definitions for rank and degree, the GIT construction in
[DUW] goes through for quotient pairs of pure dimension. First one proves
that the set of semistable quotient pairs (with fixed Hilbert polynomials P
and P" ) is bounded, and then that there is an integer Ky such that if k > K,
for all semistable quotient pairs ¢ : € — § (with & of pure dimension), (k)
is generated by global sections and h%(€(k)) = x(€(k)) =: N.

Let V = C¥ be a fixed vector space of dimension N. Consider pairs
(q,¢), where ¢ is a semistable quotient pair and ¢ : V. — HY(&(k)) is an
isomorphism. A pair (g, ¢) is the same thing as a commutative diagram

VR0, 2 &k) —— 0

(7.2) Ve0; —2— §k) —— 0
0

such that ¢; induces an isomorphism V = HY(€(k)). Hence for each pair
(¢, ) we get a point (g1, ¢2) in

(7.3) Quot(V @ Oz, P,) x Quot(V @ Oy, P!),
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where Quot(V @0y, P,,) (resp. Quot(V @Oy, P)) is Grothendieck’s quotient
scheme, parameterizing quotients of V®O, with Hilbert polynomials ﬁm (i) =
P(m + i) (resp. P/ (i) = P"(m+i)).

Let @k be the closed subset of (3), where kerq; C kergs (i.e., g2 factors
through ¢1), let Qr C @k be the subscheme where & is of pure dimension,
and let Q; C @k be its closure. The projective scheme @, parameterizes
commutative diagrams like (7.2). Now we have to get rid of the choice of
isomorphism ¢. The group SL(V) acts on (7.3) and hence on @, (since this is
invariant). From the point of view of pairs (g, ¢), this action corresponds to
(q,¢) — (g,g0¢) for g € SL(V), so to get rid of the choice of the isomorphism
¢ we only need to take the quotient by SL(V). Note that it is enough to use
SL(V), and we do not need to use GL(V), because scalar multiplication acts
trivially on (7.3). This is done by taking the GIT quotient of @, by SL(V),
but to do this, first we have to linearize the action of SL(V) on an ample
line bundle on Q. Following Grothendieck, by tensoring with Oz(j) for high
enough j, and taking sections, we embed (7.3) (and hence @,,) into a product
of Grassmanians

Cr(V @ W, P(k+ j)) x Gr(V @ W, P"(k + §)),
where W = H%(Oz(j)). Using Pliicker coordinates we get an embedding in

(7.4) fuw(AﬁHmV®Wwyw%Aﬁ%HMV®WV)

The natural action of SL(V) on (7.4) has a natural linearization on Op(r, s)
for any r and s, and by restriction we obtain a linearization on the line bundle
Op(r,s)lg, on Q-

We choose 7 and s depending on « as in [DUW, p. 511]. Namely, consider
the set of a-semistable quotient pairs ¢ : € — F. Then consider the set
of subobjects ¢’ : € — F with po (&) = ua(€), where pq(€) = (a(€) +
aa(F))/r(€). We may assume that ¢ is saturated in €. The set of such ¢
is bounded, and the set of polynomials of such € is finite. Let C be the
maximum of the absolute value of the coefficients of k"~2/(n — 2)! in the
polynomials P(&' k)/r(&) — P(€,k)/r(€) as ¢ varies over this set. Then
choose M large enough so that

r(§)  a(€)y (—a)  deg(Supp &)

M — _ _

( Y ©) rwﬂm®2 d

Finally choose r and s to be positive integers such that
r _ kdeg(Supp €) + Md

s —ad

(d—1)C>1.

Note that r and s have to be positive, so that Op(r,s) is ample, and this
forces a < 0.
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Next one proves that GIT-semistable (resp. stable) points on @, corre-
spond to a-Gieseker semistable (resp. stable) quotient pairs, and then the
moduli space is obtained as the GIT quotient

M. (Z,P,P")=Q,/ SL(V).

pure

Finally one checks that points of Mg,,.(Z, P,P" ) correspond to S-equivalence
classes. g

Appendix: Bott-Chern forms for Higgs bundles

A.1. Introduction. In this Appendix we adapt the computations of Bott
and Chern (in their paper [BC]) to construct Bott-Chern forms for Higgs
Bundles. We recall the notation of Section 4:

e £ — X is arank n holomorphic bundle with underlying smooth com-
plex bundle E and holomorphic structure determined by an integrable
partial connection 0g (as in 4.1),

e A Higgs field on E is denoted by ©. V" = 0p + O is the Higgs
operator. As in Definition 4.1, a Higgs bundle on X is a pair (E, V")
in which (V")? =0,

DEFINITION A.1. Let ¢ be any symmetric GL(n, C)-invariant, k-linear
function on Mat,,, the space of n x n matrices. We extend ¢ to a k-linear map
on Mat,,-valued forms as follows: if a; ® a; € Mat,, @i (X)), then

(Al) (b(al ®a1,...,ak®ak)zé(al,...,an)al/\---/\ak.

Each GL(n, C)-invariant polynomial ¢ defines a characteristic class for E.
This class, denoted by [¢] € H?*(X,C), can be represented by the closed
2k-form

(A2) (&) otr = (1) ot Fo.....Fo).

where D is any GL(n,C) connection on E, and Fp is the GL(n, C)-valued
2-form which represents the curvature of D with respect to a local frame.
Suppose now that F is the underlying smooth bundle of a holomorphic bundle
£ = (E,0g). Then any Hermitian bundle metric, say H, determines a unique
Chern connection. Denoting the curvature of this connection by F g , we thus
get a representative 2k-form

N o\ K
i i
A. — H)=|— Fp
(4.3 (55) o= (5 ) ot
corresponding to each metric. If K is any other metric, then ¢(K) and ¢(H)
must differ by a closed form since they represent the same class in cohomology.

The Bott-Chern forms give a more refined measure of this difference between
¢(K) and ¢(H), for any pair of metrics.
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The essential ingredient in this construction is the Chern connection, which
uses the defining structure of the holomorphic bundle (i.e., the operator 5;3)
to associate a unique connection to each metric on € = (FE,dg). Suppose now
that we add a Higgs field © to € and, as outlined in Section 4, replace 0 by the
Higgs operator V' = 0 +©. Each metric then produces a unique connection
determined by the defining data of the Higgs bundle, i.e., determined by
V" (or, equivalently, by O and ©). Given a GL(n, C)-invariant polynomial
we can use these Higgs connections to associate to each metric, H, a Higgs
representative for the corresponding characteristic class:

DEFINITION A.2. Let H be a Hermitian metric on the Higgs bundle
(E,V"). Let Vg be the corresponding Higgs connection, and let Fy be
the curvature of this connection. Let ¢ be any GL(n, C)-invariant, k-linear,
symmetric function on M,,. We define

(A4) ¢H1ggs(H):¢(ngFI¥>7F1¥)

The Higgs-Bott-Chern forms measure the difference between the closed
forms @miges(H) and @miges(K), for any two metrics H and K. Our main
result is as follows:

THEOREM A.3. Corresponding to each GL(n, C)-invariant, k-linear func-
tion ¢ there is a function of pairs of metrics, Ruiges(H, K), such that:

(1) Ruiggs(H, K) takes its values in Q**~2(X,C).

(ii) Ruiges(H, K) is well defined modulo Im 0 +1Im 0, where Im & and Im 0
denote the images 9(Q**~3(X, C)) and 9(Q**~3(X, C)), respectively,
in Q*-2(X,C).

(iii) We have

(A.5) Piiggs(H) — PHiges(K) = 100 Ryiges(H, K) .

The forms Rpiges(H, K) are the analogs for Higgs bundles of the Bott-
Chern forms associated to pairs of metrics on a holomorphic bundle. We
will thus refer to these as Higgs Bott-Chern forms. Notice that unlike on
holomorphic bundles, for which the Bott-Chern forms take their values in
QPP)(X,C), the Higgs Bott-Chern forms need not have holomorphic type
(p,p). This difference does not play any role in the proof of Theorem A.3.
Indeed, the main ingredients in the proof are formally identical to those of
Proposition 3.15 in [BC], the difference being that in place of the Chern
connections used in [BC], here we use Higgs connections.

A.2. Definition of Ryiges(H, K). Fix ¢, a symmetric GL(n, C)-invariant
k-linear function on Mat,, as in Definition A.1.

Notice that though ¢ is symmetric, its extension to Mat,,-valued forms on
X is not in general symmetric because of the skew-symmetry of the wedge
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product on forms. The symmetry will, however, be preserved if at most one
of the forms has odd degree. Since we will need them later, we record the
following basic properties:

LEMMA A4. Let ¢ be any GL(n, C)-invariant, k-linear function on Mat,,.
For any matriz-valued forms A; = a; ® a; € Mat,, @W1(X) (i=1,...,k),

(A6)  dp(Ar,..., Ap) =D (~1)P T Piig(Ay, L d(Ay), ..., Ay
J
If B=b® 3 € Mat,, Q1(X), then
(A.7) D (=1)prettreg (AL [Af Bl Ar) =0,
J

where [A;, B] = [a;, bla; A S.

Given two metrics H and K we can pick a 1-parameter family of metrics,
H(t), such that H(0) = H and H(1) = K, and so that it corresponds to a

smooth path from H to K in the space of metrics. We can compute derivatives
with respect to the parameter ¢ and thus define L; by

d
(A.8) (Len, V) E@) = E(%V)H(t)
for any smooth sections n,v € Q°(E).

LEMMA A5 ([BC]). Defined as above, L is a bundle endomorphism, i.e.,
a global section in Q°(End E). If [H] denotes the matriz representing H with
respect to the local frame {e;}, then the matriz representing L; is given by
(A.9) (L] = [H® T H®)]
where [H(t)] = L[H(t)].

Henceforth, where no confusion can arise, we drop the square braces and

denote the matrix representing H by H, etc. Corresponding to the path of
metrics H(t) we get (cf. Definition 4.2) a family

and thus a family of Higgs connections given by
(A.11) Ve=V"+V,.

Viewing the space of connections as an affine space, and identifying the tan-
gent space at V; with Q'(X,End E), we can compute the derivative with
respect to t. This yields an element V; € Q!(X,End E).

LEMMA A6 ([BC]). We have

d .
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where
(A13) Vg(Lt) = V; o Lt - Lt o V; 5

e., where Vi(Lt) is the contribution to the covariant derivative V(L) re-
sulting from the decomposition of Vi as V" + V.

We denote by F; the curvature of the Higgs connection determined by H (¢),
and define

k
(A.14) Dltiges (Fr Lt) Z¢ Fy...,Fy, L, Fy ... F) .
Jj=1

‘We compute

8¢H1ggs FtaLt ZZ¢ Ftv- ~8Ft7"'aFt7LtaFt"'aFt)

j=11i<gj

k
+> ¢(F,,....F,, 0L, F, ..., F)

k
> > ¢(F,...,F;, Ly, Fy...,0F,,... . F,) .

j=1i>j
But by the Bianchi identities for Higgs connections,
(A15) V;(Ft) :OzaFt‘i’[Ft,At]‘i’[Ft,@t} 5

where 0+ A; is the (1, 0) part of the Chern connection corresponding to H (¢).
Together with the invariance of ¢ (cf. equations (A.7) and (A.12)), this leads
to the expression

k
8¢i~liggs(FtaLt) = Z¢(Ftv"'7Ft78Lt7[LtﬂAt]7[Lta®t]aFt7"'7Ft)

(A.16) = qu Fy ... F, V(L) Fy, ..., Fy)

= QSHiggs (Ftv vt) .

But (cf. Proposition 2.18 in [BC], or any standard discussion of the Chern-
Weil homomorphism) fol Dltigas (It V,)dt is precisely the transgression term

relating @miges(H) and @miges(K), i.e.,

1
(A17) ¢Higgs<K>—¢Higgs<H>:d( / ¢higgs<m’t>dt) |
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It thus follows from (A.16) that

1

(A.18) PHiges (K) — Origgs(H) = 00 (/ ¢/Higgs(Ft7Lt)dt) :
0

We make therefore the following definition.

DEFINITION A.7. Given metrics H and K, and given a path H(t) from H
to K, set

1
(A].g) RHiggs(H7 K) = _ZA ¢IHiggs(Ft7 Lt)dt .

REMARK A.8. In particular, (A.18) implies that 90 Rpiges(H, K) is inde-
pendent of the path H; joining H and K.

A.3. Independence of the path H(t). To prove that Ryiges(H, K) is
well defined, i.e., is independent of the choice of path H(t), we reformulate
the definition in terms of a 1-form on Met(FE), the space of Hermitian metrics
on E, and appeal to Stokes’ Theorem. Recall (cf. [Ko]) that Met(E) is a
convex domain in an infinite dimensional vector space, and that the tangent
space at any point H € Met(F) can be identified with hermitian sections of
End(E), ie.,

(A.20) Ty Met(E) = Hermy (E) = {u € Q(End E) | u** =u } .
DEFINITION A.9. Let Uy be a tangent vector in Ty Met(E), and let H(?)

be a path in Met(E) with H(0) = H and H(0) = Uy. Define

(A.21) 0r(Unt) = aiges (F > Lo)

where, as before, L, = H(t) ' H(t).

Given a curve v = H(t) which joins H and K in Met(E), our definition of
Riges(H, K) thus becomes

(A.22) Ritiges (H, K) = —i / 0.

¥
Expressed in this way, it becomes apparent that we can show the indepen-
dence of the path v by computing df and applying Stokes’ Theorem. Suppose
therefore that Up, Vi are vectors in Ty Met(H). Let h(s,t) be a smooth map
from a neighborhood of the origin in R? to Met(FE), such that

0 0
(A.23) h(0,0) = H, h. (&) =Un(s,ty » I <§> = Vh(s,t) »
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where Uy, and Vj (s 1) are vector fields which extend Uy and Vg, respec-
tively. Then

(A.24) g (U, V) = h*(df) (%, %)

D) )
= Upg0g(Vy)) = Vu(0u(Uy)).

LEMMA A.10. Under the identification of tangent spaces of Met(E) with
hermitian sections of End(E), as in (A.20) we get

0 9%h
A2 —(h~ (s, t =— H™!
( 5) 88( (87 )Vh(s,t)) st UHVH + 050t s:t:O’
0 _
(A.26) %Fh(s,t) =V ;z(s,t)(h‘ l(svt)Uh(s,t))'

Using (A.21), (A.25) and (A.26) we thus get from (A.24) that
(A27) dOp(U,V) = ¢ ([H 'Vy, H 'Uyl, Fy,...,FY)

k
=Y 6 (H 'Un,Fy,....Fy . N"Vy(H "Vu),Fy,...,Fy)
j=2
k
+Y 6 (H 'V, Fy,...,Fy,V'Viy(H '\ Un), Fy,... ., Fy) .
j=2

To simplify the notation, we set v = H~'Upg and v = H~'Vy. The first term
in (A.27) is then

(A.28)
k
¢ ([v,ul, Fy,... . Fy) ==Y ¢ (v,Fy,....Fy,[Fy,ul, Fy,...,Fy)
j=2
k
==> ¢ (v, Fy,....Fy,V'Vi(u), Fy,...,Fy)
j=2
k
=Y (v, Fy,... . Fy VgV (u),Fy,... . FY) .
j=2

Here the first equality follows by (A.7) and the second equality follows from
the fact that

[Fi ] = F (u) = V'V (w) + Vi V" (u) |
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where the F in the expression F}y (u) refers to the curvature of the induced
connection on End E. Hence (A.27) becomes

k
(A29) A0y (U V) == ¢ (uwFy,....Fy,V'Vi),Fy,....,Fy)
j=2

k
=Y 6, Fy,... . Fy, VgV (u),Fy,...,Fy).

=2

LEMMA A.11. For any connection D on E, any (symmelric), invariant
k-linear function ¢, and any collection A; € QP (End(E)) (i =1,...,k), we
have

(A30)  do(Ay,...,Ap) =) (=P TPitg(Ay,. . DA;,... Ay) .
J

Proof. We fix a local frame for E and write D = d + A, where A is the
connection 1-form. Thus DA; = dA; + (—1)Pi[A;, A]. Using both parts of
Lemma A.4 we get

dp(Ay, ..., Ag) = D (1) HPIIG(Ay, L dAy, L Ay)
J
(A.31) = (1) TIPiig(Ay, L DA, Ay)
J
= (PRt g (A LA AL Ay)

J
=3 (1) FAPiig(Ay, L DA, Ay). O
J

COROLLARY A.12. IfV" = 0g + © is the Higgs operator, then
(A32)  0p(Ar,..., Ap) =D (~1) T ¥Piig(Ay,. . VA, Ay)
J
and if V'y = Dy + ©%;, then
(A33)  0p(Ar,... . Ap) =D (—1) T Piig(Ay, . Vi Ay, Ay

J

Proof. If we apply Lemma A.11 to the Chern connection dp + D’;, and
decompose both side of (A.30) according to holomorphic type, we get

(A34)  OP(Ar,..., Ap) =Y ()T Piig(Ay, L OpA;,. .., Ay),
J

(A35)  O(Ar,..., Ax) =D (=T FPimig(Ay,... Dy Aj,..., Ag).

J
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But V"A; = 0gAj + (—=1)Pi[A;,0]. Equation (A.34) thus yields
(A36)  O(Ay,..., A) =D (1) FPirg(Ay,.. VA, Ar)
J
= (=PIt Ay A, O], Ay
J
The last summation in (A.36) vanishes by (A.7) in Lemma A.4, i.e., by the

invariance of ¢. Equation (A.33) follows similarly from (A.35), using the
invariance of ¢ and VizA; = Dy A; + (—1)Pi[A;, OF]. O

Using (A.32) and (A.33) of Corollary A.12, the Bianchi identities (4.16),
and Lemma A.4, the terms on the right hand side of (A.29) thus become

k
(A37) D é(u,Fy,...,Fy,V'Vy(v),Fy,...,FY)

j=2
k
== o(V'(u),Fy,....Fy, Vi), Fy,...,Fy) — 0a(u,v)
j=2
and
k
(A38) > (v, Fy,....Fy, ViV (u),Fy,...,Fy)
Jj=2

k
== (V). Fy,....Fy,V"(u),Fy,....,Fy) = 0(u,v) .
j=2

The forms « and § are forms on X, given by

(A.39) —a(u,v) = p(u, Fpy oo, Fry Vi (), Fy oo, )
and
(A.40) —B(u,v) = p(v, Fry oo, Fy N (0), Fy ..., FY) .

Furthermore, since V’;(v) and V”(u) are 1-forms and Fpy is a 2-form, it
follows by the invariance of ¢ (cf. the remark after Definition A.1) that

(A.41) o(Viy),Fy,....Fy,V"(u),Fy,...,Fy)

+ (V' (), Fy,....Fy, Vi), Fy,...,Fy)=0.
Equation (A.29) thus reduces to
(A.42) dOg (U, V) = 0a(u,v) + 0B (u,v) .

LEMMA A.13. The expression da(u,v) + 0B(u,v) defines a 2-form on
Met(E) with values in Tm 9 + Im



622 STEVEN B. BRADLOW AND TOMAS L. GOMEZ

Proof. Applying (A.33) in Corollary A.12 to ¢(u,Fy,...,Fy,v, Fy,

<, FY) gives
(A.43) d(u, Fry oo By Vg (v), By . FY)
= —o(Viy),Fy,....,Fy,v,Fy,...,FY)
+6¢(U’Fg7"'7FI¥7/U7FI¥?"'7FHV) b
and hence
(A44) ga(u’v) :ggb(v/l‘l(u)?Fg?")Fg?/U?FE?'7FI¥)

+00¢(u, Fy,....Fy,v,Fy,....Fy).
Similarly, applying (A.32) to ¢(v, Fyy,..., Fy, u, Fy, ..., Fy) gives
(A.45) OB(u,v) = (V" (), Fy ..., Fry u, Fyy ..., FpY)

+00¢(v, Fy .., Fyu, Fy oo Fy) .

Notice that in each occurrence of ¢ in (A.44) and (A.45) the arguments include
at most one form of odd degree. By the remark after Definition A.1 the
expressions are thus symmetric functions of their arguments. Recall also that
00 + 00 = 0. Combining (A.44) and (A.45) thus yields

(A46)  da(u,v) +0B(u,v) = 8p(v,, Fyy, ..., Fy, Vi (w), Fyy ..., Fy)
+0¢(u, Fyy, ..., F,V" (), Fy,..., Fy)
= —(0a(v,u) + dB(v,u)) . O

We can now prove:

PROPOSITION A.14. Up to terms in Imd + Im 0, Ruiges(H, K) is inde-
pendent of the path H(t) used to compute it in Definition A.19. Thus the
map

(A.47) H+— RHiggs (H7 K)

gives a well defined map from Met(E) (the space of metrics) to the space
OF(X,C)/Imd + Im 4.

Proof. Let 71, 72 be any two paths from H to K in Met. Then v, — ¥
bounds a disk, say I', and Stokes’ Theorem implies

(A.48) /10—/29:/Fd9:/r(8a+86). O

The rest of Theorem A.3 now follows from the definition of Rpiggs.
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REMARK A.15. It follows from the definition of Ruiges that if H(t) is a
smooth 1-parameter family of metrics, then

d )
(A.49) %RHiggs(H(t), K) = —iko¢(Ly, Fy, ..., Fy)

where L; is as in (A.8) and F; is the curvature of the Higgs connection corre-
sponding to H(t).

A.4. Two special cases.

Case 1. If k=1 and ¢(A) = Tr(A), then

(A.50) ¢ (Fy, Le) = &(Le) = Te(H () H () ') -
Thus, denoting the corresponding function Ryiggs by R%{l)ggs’ we get

(A.51) R

Higgs

(H,K) = —i/o Te(H(t)H(t)"Y)dt .

Notice that this is the same as the corresponding Bott-Chern form defined on
a holomorphic bundle. In both cases (i.e., with or without the extra Higgs
bundle structure) we get

(A.52) RY)

Higgs

(H,K) = —ilnHK "
which is manifestly independent of the path from H to K.

Case 2. If k =2 and ¢(Aq, A3) = —=2 Tr(A1A2 + Az Ay), then
(A.53) ¢'(Fy, Lt) = ¢(Fy, Ly) = — Tr(FiLy)

1
R (HK) =i / Te(F,Ly)dt .
0
The functional defined by Simpson in [S3] is

2 _
(A.54) Ms(H,K) = /X R (H K) Awd™L

This is the Higgs analog of the function defined by Donaldson in [Dol], which
is given by the same formula, but with the Bott-Chern form R (H, K) in
place of the Higgs Bott-Chern form Rnggq(H, K).

PROPOSITION A.16. Take H(t) = Ke's, with s = s*X. Then
(A.55) d—MS(H /qs F, s) L—9; / Tr(Fys) A w1,
b's

(A.56) %Ms(H(t%K)It:o — |V (s)%.
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Proof. The formulae for %Ms follow directly from (A.49). Using this re-
sult, plus the fact that (cf. (A.26)) dF;/dt = V"V,(s), we get

(A.57)

2

EMS(H(t), K)|i—o = 22'/X Tr(V' Vi (s)s) Aw?™?

= —2i/ Te(V"(s) A Vi () Awd™!

X
2/ V" (5)]% Awdt .
X

The second equality follows by (A.37). The third follows by Lemma 3.1(b) in

[3].
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