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ON THE DEGREE OF A LINEAR FORM IN CONJUGATES
OF AN ALGEBRAIC NUMBER

ARTURAS DUBICKAS

Abstract. We investigate the connection between the degree of an
algebraic number over a field of characteristic zero and the degree of

a linear form in its conjugates. Special attention is given to the case
of linear forms in two distinct conjugates. In the process, we show
that certain relations with dominant term are impossible, generalizing
a result obtained by Smyth for the field of rational numbers. We also
prove analogous multiplicative results. As an application, we describe

algebraic numbers of prime degree which can be expressed as sums of
two distinct conjugates of an algebraic number of the same degree.

1. Introduction

Unless stated otherwise, K denotes an arbitrary field of characteristic 0 and
U(K) its multiplicative group of roots of unity. Assume that α is an algebraic
number of degree d over the field K with conjugates α1 = α, α2, . . . , αd, and
let G = G(α) be the Galois group of K(α1, . . . , αd)/K.

The aim of this paper is to investigate which degrees over K the linear
form k1α1 + · · · + kdαd can take, under some restrictions on the coefficients
k1, . . . , kd ∈ K, and especially on d. We also consider multiplicative forms
αq11 . . . αqdd , where q1, . . . , qd ∈ Z.

Throughout this paper, Z and Q denote, respectively, the ring of integers
and the field of rational numbers. We use the same notation Q to denote the
subfield of K which is isomorphic to the field of rational numbers.

Note that the problem of representing zero or, equivalently (see the Remark
in [8] or Section 4 below), an element of K, by the linear form k1α1+· · ·+kdαd
is, in fact, a question of the above type for degree 1. In order to avoid
confusion (in Theorem 1, for instance), zero is also assumed to be of degree
1 over K. Earlier, Kurbatov [13] (see also his earlier papers [11] and [12]),
Smyth [16], Girstmair [7][8], Drmota and Skalba [3][4] (see also their paper
with Baron [1]), and Dixon [2] investigated various aspects of this problem,
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and also the question whether 1 can be represented by the corresponding
multiplicative form αq11 . . . αqdd . The author and Smyth [6] gave necessary and
sufficient conditions on a number to be expressible as α−α′ (or as α/α′) with
conjugate algebraic numbers α and α′.

This paper is organized as follows. In Section 2 we state our results for
additive forms. Their multiplicative analogues are stated in Section 3. In
Section 4 we prove Theorems 4 and 4′. The remaining proofs are given in
Section 5. In the final section we show that every algebraic number whose
degree over K is not a power of 2 can be expressed as the sum of two distinct
algebraic numbers conjugate over K. For the case K = Q we investigate how
small the degree of α can be if the sum of its two distinct conjugates is of
some fixed prime degree over Q.

2. Additive forms

Apparently, Kurbatov [13] was the first author to show that for certain
fields K, including K = Q, the equation k1α1 + · · ·+ kdαd = 0 with d prime
can only hold if k1 = · · · = kd. This result was also obtained as a corollary in
[3], [7], [8] and [10], and it is contained in the following theorem which shows
that the degree of a linear form is divisible by d unless all d of its coefficients
are equal. Recall that throughout K is a field of characteristic 0, and all
elements of K are of degree 1 over K.

Theorem 1. Let α be an algebraic number of prime degree d over K. If
the polynomial xd−1 + · · ·+x+1 is irreducible over K, then for k1, . . . , kd ∈ K
not all equal the degree of the linear form k1α1 + · · ·+kdαd over K is divisible
by d.

Clearly, for d = 2 the polynomial x + 1 is irreducible over every field K,
and for d = 3 the polynomial x2 + x + 1 is irreducible over K if x2 + 3 is
irreducible. Note that if d is composite, say d = s` with integers s, ` > 1,
then, defining α as a root of an irreducible polynomial of `th degree at xs, we
have the nontrivial relation α1 + · · ·+αs = 0. Our next theorem describes the
situation when the degree of a linear form in two distinct conjugates is small.

Theorem 2. Suppose that α is an algebraic number of degree d over K.
Let D be the degree of α + kα′ over K, where α 6= α′ are conjugate over K
and k ∈ K. If D! < d, then k ∈ U(K).

Note that the inequality D! < d cannot be weakened. Indeed, let β be of
degree D over K with the Galois group of K(β1, . . . , βD)/K the full symmetric
group on D symbols SD, where β1, . . . , βD is the full set of conjugates of
β = β1 over K. Setting

α = β1 +mβ2 + · · ·+mD−2βD−1 +mD−1βD,
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where m > 1 is a positive integer, we see that α + kσ(α) = (1 − mD)β
is of degree D over K with k = −m /∈ U(K), where σ is the D−cycle
(β1, β2, . . . , βD) → (β2, β3, . . . , β1). If, in addition, m is such that none of
the D!(D!− 1) nonzero polynomials

(βτ(D) − βτ ′(D))zD−1 + · · ·+ (βτ(2) − βτ ′(2))z + (βτ(1) − βτ ′(1))

vanishes at m, where τ 6= τ ′ both are in SD, then α 6= σ(α) and α is of degree
d = D! over K.

Let α 6= α′ be conjugate over K. If α+ lα′ = l′, where l, l′ ∈ Q ⊂ K, then,
by Theorem 2, l ∈ U(K)∩Q ⊂ {1,−1}. The case l = −1, i.e., α−α′ = l′ 6= 0
is impossible (see [6]). It follows that l = 1, in which case the degree of α
over K must be even. (A simple proof of this last statement will be given in
Section 5.)

Corollary 1. Let α and α′ be distinct algebraic numbers conjugate over
K. If α, α′ and 1 are linearly dependent over Q, then α + α′ ∈ Q, and the
degree of α over K is even.

Let (a, b) denote the greatest common divisor of two integers a and b. The
next result gives a useful lower bound for the degree of the sum, the product,
the difference, and the quotient of two algebraic numbers. (The definition of
a torsion–free algebraic number over K will be given in the next section.)

Proposition 1. Assume that the sum of three algebraic numbers of degree
d1, d2, and d3 over K is equal to 0 (or that the numbers are torsion–free over
K and their product is equal to 1). Then either at most one number in the
set {(d1, d2), (d1, d3), (d2, d3)} is equal to 1, or at least one number in the set
{d1, d2, d3} is equal to 1, and the other two are equal.

On applying the proposition to α+ kα′, where k ∈ K is nonzero and α, α′

are conjugate over K (so that d1 = d2 = d), we easily get the following. If
the degree of α + kα′ over K, say D = d3, is prime, then we have the first
possibility, so D divides d. Also, if D is a (positive integer) power of 2, then d
is even. In the case k = 1 the last statement can be strengthened as follows.

Theorem 3. If the degree of α+ α′ over K, where α 6= α′ are conjugate
over K, is a power of 2, then the degree of α over K is divisible by 4.

Let α1, . . . , αn, where n 6 d, be some distinct conjugates of α over K. For
the proof of Theorem 3 we shall need the following result which shows that
a linear relation with dominant term is impossible. This result generalizes
Lemma 1(a) of Smyth’s paper [15] and Corollary 2 in his paper [16], which
give partial results for the case K = Q. Since in our context K is an arbitrary
field of characteristic 0, the argument of [15], which is based on mapping α1 to
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the conjugate of largest modulus, can no longer be used. The main difficulty
in our proof is to find an alternative to this argument.

Theorem 4. Suppose that α1, α2, . . . , αn, where n > 3, are distinct alge-
braic numbers conjugate over K. If q1, q2, . . . , qn ∈ Q are nonzero numbers
such that |q1| > |q2|+ · · ·+ |qn|, then

q1α1 + q2α2 + · · ·+ qnαn /∈ K.

Remark. As we shall see in the proof, Theorem 4 holds under weaker
assumptions, namely with Q replaced by any subfield R of real numbers such
that K contains a subfield isomorphic to R.

How far can Theorem 4 be generalized? Assume that K is a subfield of the
field of complex numbers. With this additional condition on K it is clear that

k1α1 + k2α2 + · · ·+ knαn /∈ K
for all k1, . . . , kn ∈ K such that |k1| > |k2| + · · · + |kn|. (As in the proof
of Theorem 4, it is sufficient to show that k1α1 + · · · + knαn 6= 0, which
follows by mapping α1 to the conjugate with the largest absolute value.) If
|k1| = |k2|+ · · ·+ |kn|, this is in general false, but it is true for real k1, . . . , kn
(see the above remark).

Corollary 2. Given a subfield of the complex numbers K, suppose that
α1, . . . , αn, where n > 3, are distinct algebraic numbers conjugate over K. If
k1, k2, . . . , kn ∈ K are nonzero real numbers such that |k1| > |k2|+ · · ·+ |kn|,
then

k1α1 + k2α2 + · · ·+ knαn /∈ K.

We cannot omit the condition that k1, . . . , kn are real, as the following
example shows. Take K = Q(

√
−3), and let α1, α2, α3 be 21/3, 21/3ε, 21/3ε2,

respectively, where 21/3 is real and ε is a complex number satisfying ε3 = 1.
Set k1 = 2, k2 = −ε2, k3 = −ε. Then

k1α1 + k2α2 + k3α3 = 21/3(2− ε3 − ε3) = 0.

This example also shows that Corollary 1 is false if Q is replaced by Q(
√
−3),

because α2 − εα1 = 0, whereas α is of odd degree 3 over K if, say, K itself is
Q(
√
−3).

3. Multiplicative forms in torsion–free algebraic numbers

In order to avoid the situation when some powers of two distinct conjugates
of α are equal we need an additional condition on α. In [8], where the problem
of linear relations in conjugates was reformulated in terms of pairs of groups,
a similar problem was to avoid torsion elements. We say, for brevity, that an
algebraic number α over K is torsion–free if none of the ratios αi/αj with
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1 6 i 6= j 6 d is a root of unity. We have the following multiplicative
analogues of the above statements for torsion–free algebraic numbers.

Theorem 1′. Let α be a torsion–free algebraic number of prime degree d
over K. Then for q1, . . . , qd ∈ Z not all equal the degree of αq11 . . . αqdd over K
is divisible by d.

Theorem 2′. Suppose that α is a torsion–free algebraic number of degree
d over K. Let D be the degree of αrα′q over K, where α 6= α′ are conjugate
over K and r, q ∈ Z. If D! < d, then r = ±q.

Corollary 1′. Let α and α′ be distinct torsion–free algebraic numbers
conjugate over K. If αrα′q ∈ Q with nonzero r, q ∈ Z, then (αα′)r ∈ Q, and
the degree of α over K is even.

Theorem 3′. If the degree of αα′ over K, where α is torsion–free and
α 6= α′ are conjugate over K, is a power of 2, then the degree of α over K is
divisible by 4.

For the proof of Theorem 3′ we shall need the following generalization of
Lemma 1(b) in [15] and Corollary 2 in [16]. (In the proof of Theorem 4′ we
use Theorem 2′.)

Theorem 4′. Let α1, α2, . . . , αn, where n > 3, be distinct torsion–free
algebraic numbers conjugate over K. If q1, q2, . . . , qn ∈ Z are all nonzero and
|q1| > |q2|+ · · ·+ |qn|, then

αq11 α
q2
2 . . . αqnn /∈ K.

Without any condition on α none of the above theorems remains true since
examples in which α is a root of unity can be easily constructed. For instance,
α = β1β

m
2 . . . βm

D−1

D with ασ(α)−m = β1−mD is an example showing that the
inequality D! < d in Theorem 2′ cannot be weakened.

Equivalently, α is torsion–free if and only if, for every nonzero integer m,
the degree of αm over K is equal to the degree of α over K. The next result
shows that an algebraic number α over Q is torsion–free if this condition holds
for 2 6 m 6 (eγ + o(1))d2 log log d, where the term o(1) tends to 0 as d→∞
and γ is Euler’s constant.

Proposition 2. Let α be an algebraic number of degree d > 3 over Q.
There is a positive constant c such that if the degree of αm over Q equals d
for every integer m in the range 2 6 m < cd2 log log d, then α is torsion–free.
Moreover, the above holds with c = 1.7811 for all sufficiently large d.

The proof of Proposition 2 is based on the trivial inequality deg(α/α′) 6
d(d− 1), where α and α′ are conjugate algebraic numbers of degree d over Q.
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It would be of interest to see whether this inequality can be replaced by the
inequality deg(α/α′) 6 d provided that α/α′ is a root of unity. If so, then the
bound cd2 log log d in the proposition could be replaced by cd log log d.

4. Forms with dominant term

Proof of Theorem 4. Let q1, . . . , qn ∈ R ⊂ K, where R is a subfield of the
real numbers. Assume that

q1α1 + q2α2 + · · ·+ qnαn = k ∈ K.

Note that there is no loss of generality in assuming that k = 0. Indeed, if
q1 + q2 + · · ·+ qn = 0, then applying all automorphisms of the Galois group to
this equation and summing the resulting equations we obtain 0 = (q1 + · · ·+
qn)Trace(α) = k|G| with G = G(α), which implies k = 0. (Throughout this
paper, the notation | | is used for the number of elements of a set and for
the modulus of a complex number. Also, Trace(α) = α1 + · · · + αd denotes
the trace of α over K.) If, on the other hand, q = q1 + q2 + · · ·+ qn 6= 0, then
on replacing α1 by α1 − k/q the right–hand side becomes 0.

On applying all |G| automorphisms σ ∈ G to the equation

q1α1 + q2α2 + · · ·+ qnαn = 0

we obtain a linear homogeneous system in d unknowns α1, . . . , αn, . . . , αd.
The coefficients in each equation are the numbers q1, . . . , qn, and d− n zeros.
Let A = (aij) be the matrix associated to this system, consisting of |G| rows
and d columns. Suppose that I is a subset of {1, . . . , |G|} and J is a subset
of {1, . . . , d}. We denote by A(I, J) the submatrix of A obtained as the
intersection of rows with indices in I and columns with indices in J . Also, for
brevity, we let J∗ = {1, . . . , d} \ J . We claim that either A has rank equal to
d (in which case α1 = · · · = αd = 0 is the only solution and we are finished),
or there exist I and J such that |I| > |J | > 3, the rank of A(I, J) is at least
|J | − 1, and the elements of A(I, J∗) are all equal to zero.

There is nothing to prove if the rank of A equals d. Assume that this
rank is smaller than d. Then there is a linear relation between the columns
c1, . . . , cd of A,

u1c1 + · · ·+ udcd = 0,

with real numbers u1, . . . , ud. Without loss of generality we may assume that
u1 is positive and u1 > |ui| for every i 6 d. We start by setting J = {1} and
letting I be the set of all indices i such that ai1 = q1. At this stage, we have
|I| > |J | > 1. From the equations

u1q1 + u2ai2 + · · ·+ udaid = 0,

where i ∈ I and {ai2, . . . , aid} = {q2, . . . , qn, 0, . . . , 0}, we deduce that, firstly,

ε1q1 = ε2q2 + · · ·+ εnqn,
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where εs is the sign of qs, and, secondly, u` = −εsu1/ε1 for every ` > 1 such
that ai` = qs for at least one i ∈ I and at least one s > 1. This associates a
plus sign or a minus sign to each column which belongs to I. Also, it is easily
seen that the rank of A equals d if |q1| > |q2|+ · · ·+ |qn|.

We now enlarge J (without changing the notation) by adding all these
indices `, and we enlarge I by adding all indices i such that aij = q1 for at
least one j ∈ J . The new sets I and J then satisfy |I| > |J | > n. Given j ∈ J ,
from the equations

u1ai1 + · · ·+ ujq1 + · · ·+ udaid = 0,

where i ∈ I, we deduce that u` = −εsuj/ε1 for every ` /∈ J such that ai` = qs
for at least one i ∈ I and for at least one s > 1. (We may get a contradiction
if the sign associated to the same column by two different rows happens to be
different, i.e., if for some `, u` = u1 and, at the same time, u` = −u1. But in
this case the rank of A equals d, which is impossible by our assumption.)

We again increase J (without changing notations) by adding all these new
indices `, and increase I as above, and so on. Since |J | 6 d, this process
will terminate after finitely many steps. This happens as soon as we get a
pair I, J such that in the matrix A(I, J∗) no nonzero elements are left. Then
all elements uj with j ∈ J are equal to ±u1, and every column of A(I, J),
except possibly the first, contains some qs with s > 1. (Here, the value of
s may be different for different columns.) Then the columns of the matrix
A(I, J ′), where A(I, J ′) is obtained from A(I, J) by removing an arbitrary
column other than the first, are linearly independent. Indeed, suppose this
were not the case, and assume the column which contains q`, where ` > 1, is
removed. Then, on dividing by u1, we would have the relation

q1 = ±q2 ± · · · ± q`−1 ± q`+1 ± · · · ± qn,

which is impossible. It follows that the rank of A(I, J ′) is equal to |J ′| =
|J | − 1. Thus the rank of A(I, J) is at least |J | − 1 as claimed.

From now on, it suffices to consider those conjugates of α1 with indices in
J , and we can ignore conjugates with indices in J∗. The homogeneous linear
system in |J | unknowns has a nonzero solution only if the rank of A(I, J) is
strictly smaller than |J |. By the above remark, in this case the rank must be
equal to |J | − 1. Without loss of generality, we assume that the columns of
A(I, J ′), where now A(I, J ′) is the matrix obtained from A(I, J) by removing
the first column, are linearly independent. On dividing by α1, we obtain
a nonhomogeneous linear system in |J | − 1 unknowns with coefficients in R.
This system has a unique real solution. In particular, if, for example, 2, 3 ∈ J ,
then α2/α1 = r1 and α3/α1 = r2 with r1, r2 ∈ R ⊂ K.

It follows easily that α2 = −α1. Indeed, assume that α2 = σ(α1), where
σ ∈ G is of order m. Multiplying all equations σj(α1) = r1σ

j−1(α1), j =
1, . . . ,m, and then dividing by α1σ(α1) . . . σm−1(α1), we obtain rm1 = 1. Since
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r1 ∈ R and r1 6= 1, we must have r1 = −1. Thus, α2 = −α1. Analogously,
α3 = −α1, and so α3 = α2, which is a contradiction. �

Proof of Theorem 4′. Let

αq11 α
q2
2 . . . αqnn = k ∈ K

with nonzero q1, q2, . . . , qn ∈ Z. There is no loss of generality in assuming
that k = 1. Indeed, if q1 + q2 + · · ·+ qn = 0, then we apply all automorphisms
of the Galois group and multiply the resulting equations. This gives 1 = k|G|,
and thus k is a root of unity. Replacing α1 by its |G|−th power, which
is torsion–free, results in replacing k by 1 on the right–hand side. If s =
q1 + q2 + · · ·+ qn 6= 0, then replacing α1 by αs1/k reduces the problem to the
case k = 1.

On applying all |G| automorphisms σ ∈ G to the equation

αq11 α
q2
2 . . . αqnn = 1

we obtain a system of |G| equations in d unknowns. This system has a solu-
tion with at least one αj 6= 1 if and only if the associated linear homogeneous
system in unknowns z1, . . . , zn, . . . , zd has a nonzero solution. (Here, for con-
venience, one can take formal logarithms zi = logαi, and then take formal
exponentials in order to change back to the multiplicative setting.) As above,
the coefficients in each equation are q1, . . . , qn and d− n zeros. Analogously,
the rank of the associated matrix A must be smaller than d. As above, this
can only happen if

|q1| = |q2|+ · · ·+ |qn|
and, say, z2/z1, z3/z1 ∈ Q.

We thus deduce that αr2α
q
1 = 1 and α`3α

s
1 = 1 with integers r > 0, ` > 0, q

and s. By Theorem 2′ (whose proof will be given in the next section) it follows
that r = ±q and ` = ±s. But r 6= −q because α1 is torsion–free. Similarly,
` 6= −s. Therefore, r = q and ` = s. From (α1α2)r = (α1α3)` = 1 we
deduce that αr2α

−`
3 = 1. Thus, as above, we conclude that r = −`. From

(α1α2)−` = (α1α3)` = 1 we see that α`2 = α`3, which is a contradiction. �

5. Other proofs

Proof of Theorem 1. Since d is a prime, in the Galois groupG = G(α) there
is a d−cycle. Without loss of generality we can assume that this d−cycle is
σ : (α1, α2, . . . , αd)→ (α2, α3, . . . , α1). Setting k1α1 + k2α2 + · · ·+ kdαd = β,
we obtain

(k1 − kd + 1)α1 + (k2 − k1 + 1)α2 + · · ·+ (kd − kd−1 + 1)αd
= β − σ(β) + Trace(α).

Without changing the notation we write (k1, k2, . . . , kd) for (k1 − kd + 1, k2 −
k1 +1, . . . , kd−kd−1 +1). Note that the elements ki are not all equal and their
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sum is equal to d. Thus k1 + · · ·+ kd 6= 0. On applying the d automorphisms,
1, σ, σ2, ..., σd−1, we obtain the linear system

M(α1, α2, . . . , αd)T = (γ, σ(γ), . . . , σd−1(γ))T ,

where T denotes the transpose, γ = β − σ(β) + Trace(α), and M is the d× d
matrix whose rows are (k1, k2, . . . , kd), (kd, k1, . . . , kd−1), . . . , (k2, k3, . . . , k1).
The determinant of this matrix is called a circulant. It is a standard exercise
to show that the circulant is given by

detM =
d−1∏
s=0

(
k1 + k2ω

s + k3ω
2s + · · ·+ kdω

(d−1)s
)
,

where ω = exp(2π
√
−1/d) is the primitive dth root of unity. (See, e.g., Prob-

lem 479 in [14], where this formula is easily obtained by multiplying detM
with the Vandermonde determinant ||ωij ||06i,j6d−1.) By the assumption on
the field K, none of the factors k1 +k2ω

s+ · · ·+kdω
(d−1)s with s > 0 is equal

to zero, for otherwise the nonzero polynomial (k1−kd)+ · · ·+(kd−1−kd)xd−2

vanishes at ωs. It follows that detM 6= 0.
Let L be the Galois closure of K(β) over K. The order of the Galois group

Gal(L/K) is divisible by d, because this group contains G as a subgroup. On
the other hand, by the main theorem of Galois theory, this order is also equal
to |H|[K(β) : K], where

H = {τ ∈ Gal(L/K) | τ(x) = x for every x ∈ K(β)}.
It suffices to show that d does not divide |H|. Assume, to the contrary, that
d divides |H|. Since d is prime, H, which acts as a permutation group of
α1, . . . , αd, contains a d−cycle. Therefore σ ∈ H, and σ(β) = β. It follows
that γ = Trace(α) ∈ K, so that α1, . . . , αd all belong to K. This is impossible
because d > 2. �

Proof of Theorem 1′. Starting from αq11 . . . αqdd = β and arguing as in the
proof of Theorem 1 (defining the new (q1, . . . , qd) as (q1 − qd + 1, . . . , qd −
qd−1 + 1) and letting γ = βα1 . . . αd/σ(β)), we obtain that a nonzero integer
power of α belongs to K, which is impossible because α is torsion–free. (The
polynomial q1 + q2x+ · · ·+ qdx

d−1 is equal to zero at ωs 6= 1 only if q1, . . . , qd
are all equal. The fact that the polynomial beongs to Q(x) allows us to remove
the extra condition that is present in the additive case.) �

Proof of Theorem 2. Let σ be an automorphism of the normal extension
of K(α) over K which maps α to α′. Assume that the order of σ is equal to
m, so that σ0(α) = σm(α) = α. Set α+ kα′ = β. On adding the m equations
σj−1(α)+kσj(α) = σj−1(β), j = 1, 2, . . . ,m, with weights (−k)j−1, we obtain

α(1− (−k)m) =
m∑
j=1

(−k)j−1σj−1(β).
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The right–hand side here is of degree at most D! < d, whereas the left–hand
side is of degree d over K, unless it is equal to 0. It follows that (−k)m = 1.
Consequently, −k is a root of unity, and hence so is k. Since k ∈ K, we deduce
that k ∈ U(K). �

Proof of Theorem 2′. Let again α′ = σ(α), where σ ∈ G is of order m.
Starting from αr(σ(α))q = β, we apply σj−1 with j = 1, . . . ,m and then
multiply all equations(

σj−1(α)
)rm−j+1(−q)j−1(

σj(α)
)−rm−j(−q)j =

(
σj−1(β)

)rm−j(−q)j−1

,

where j = 1, . . . ,m. The left–hand side of the product is equal to αr
m−(−q)m

and of degree at most D! < d. Since α is torsion–free, this is only possible if
rm = (−q)m. Thus, r = ±q is the only possibility. �

Proof of Corollary 1. Assume that the degree of α over K is odd, say,
2m + 1. Consider all distinct sets {σ(α), σ(α′)}, where σ runs over every
element of G. There are at least m+ 1 such sets, since m sets cover at most
2m conjugates, but the Galois group G is transitive. Hence there are at least
two sets having one joint element. This is impossible, because the sums of the
two elements in each such set are all equal. �

Proof of Corollary 1′. By Theorem 2′, r = ±q. Clearly, if (α/α′)r = k ∈ Q,
then by applying all automorphisms of G and taking the product, we obtain
that k|G| = 1. It follows that k ∈ U(K) ∩ Q ∈ {−1, 1}. In both cases,
α2r = (α′)2r, which is impossible because α is torsion–free. Consequently,
(αα′)r ∈ Q. As in the proof of Corollary 1, the degree of αr over K is even,
and since α is torsion–free, it is equal to the degree of α over K. �

Proof of Proposition 1. Assume that α+ β + γ = 0, where α, β and γ are
algebraic numbers of degrees d1, d2 and d3 over K, respectively, with d1 >
d2 > d3. Let L be the normal closure of K(α, β, γ) over K. Assume that there
are N different vectors 〈αi, βj , γ`〉 such that αi + βj + γ` = 0 and 1 6 i 6 d1,
1 6 j 6 d2, 1 6 ` 6 d3. On applying the automorphisms of the Galois
group of L/K which map α to its conjugates, we see that N is divisible by
d1. Similarly, N is divisible by d2 and d3. Write N = m1d1 = m2d2 = m3d3.
Note that N 6 d2d3, because two vectors must differ in at least two positions.
Thus m1 6 d2d3/d1 6 d3, m2 6 d3 and m3 6 d2.

Assume that (d1, d3) = (d2, d3) = 1. Then m3 = d1 = d2, m1 = m2 = d3.
It follows that, given an arbitrary ` (say, ` = 1), among the N = d2d3 vectors
there are d2 vectors of the form 〈αi, βj , γ1〉, where 1 6 i, j 6 d2. Furthermore,
the d2 vectors 〈αi, βj〉, without the component γ1, differ in both positions.
Thus, summing the corresponding equations we get Trace(α) + Trace(β) +
d2γ1 = 0. Hence γ = γ1 ∈ K, so that d3 = 1. Similarly, (d1, d2) = (d2, d3) = 1
implies that m2 = d1 = d3, and thus d1 = d2 = d3. Finally, from (d1, d2) =
(d1, d3) = 1 we get m1 = d2 = d3 and again d1 = d2 = d3.
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Replacing the sum by the product makes, of course, no difference in the
above proof, except that the equation Trace(α) + Trace(β) + d2γ1 = 0 is
replaced by Norm(α)Norm(β)γd2

1 = 1, where Norm(α) is the product of all
conjugates of α over K. Thus γd2

1 ∈ K. Because γ is torsion–free, this can
only happen if γ ∈ K, so that d3 = 1. �

Proof of Theorem 3. Let β = α + α′ be of degree D. Consider a graph Γ
with d vertices, labeled by α and its conjugates. The edge of Γ connecting
two vertices αi and αj is given the label ` ∈ {1, . . . , D} if β` = αi + αj . Let
f be the total number of edges labeled by `, where ` is fixed. By mapping β
to its conjugates, we see that the number f is independent of `. Note that
every vertex α has at most one edge with a given label incident to α, since
α+α′ = α+α′′ implies that α′ = α′′. Consequently, given a vertex, there are
at most D edges incident to it and labeled by one of the D numbers {1, . . . , D}.
Suppose there are s such edges. (Again, by mapping α to its conjugates, we
see that the number s is the same for every vertex.) By counting the number
of labeled edges, we obtain the formula

2fD = sd,

where s 6 D.
For D > 1 we have s < D. Indeed, otherwise, on adding the s = D

equations corresponding to the vertex α, we obtain Trace(β) = Dα + S,
where S is the sum of D distinct conjugates of α, none of which is α itself.
This is a contradiction to Theorem 4. If D = 2i with a positive integer i, then
2fD is divisible by 2i+1, whereas s < 2i. Since d = 2fD/s we conclude that
d is divisible by 4. �

Proof of Theorem 3′. This result follows as above by labeling the edges by
β` = αiαj and using Theorem 4′ instead of Theorem 4 to show that s < D. �

Proof of Proposition 2. Assume that α is not torsion–free. Let m be the
smallest positive integer such that degαm < d. There is a conjugate of α,
α′ 6= α, such that α/α′ is the mth root of unity. It follows that φ(m) =
deg(α/α′) 6 d(d − 1), where φ is Euler’s function. The result now follows
from the relation

lim inf
m→∞

φ(m) log logm
m

= e−γ ,

where γ = 0.577215 . . . is Euler’s constant (see Theorem 328 in [9]). �

6. Conjugate algebraic numbers whose sum is a given number

In this section we are interested in algebraic numbers over K that can be
represented as sums of two distinct conjugates over K. Clearly, an algebraic
number β can be expressed in this form if there exist fields E and F such
that [F : E] = 2 and K(β) ⊂ E ⊂ F ⊂ K, where K is the algebraic closure
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of K. If Q(x) = x2 + ex + e′ with e, e′ ∈ E is irreducible over E, then β is
the sum of two zeros of the irreducible (over E) polynomial Q(x− e/2− β/2)
with coefficients in E. These two zeros are conjugate over E and hence also
over K. (See also Section 3 in [5], where we show that β 6= 0 is the product
of two distinct conjugates over a number field.) On the other hand, if K is
the field of real numbers and β is a complex number (so that β is of degree
2 over K), then β cannot be expressed as either a sum or a product of two
distinct conjugates.

Let L be the Galois closure of K(β) over K. We say that β is a 2–normal
number if the degree of β over K is a (nonnegative integer) power of 2 and
K(β) = L. According to this definition, the elements of K are 2–normal
numbers, but all algebraic numbers whose degree over K is not a power of
2 are certainly not 2–normal. The following result shows that an algebraic
number whose degree over K is not a power of 2 can be expressed as the sum
of two distinct conjugates.

Theorem 5. Let β be an algebraic number over K which is not a 2–
normal number. Then there exist algebraic numbers α 6= α′ conjugate over K
such that β = α+ α′.

Proof. Since β /∈ K, we have |Gal(L/K)| > 1. Assume first that |Gal(L/K)|
is not a power of 2. Let σ ∈ Gal(L/K) be of odd prime order p. There is a
conjugate of β, say β′, such that σ(β′) 6= β′, for otherwise σ maps every ele-
ment of L to itself, which is a contradiction. If β′ can be expressed as the sum
of two distinct conjugates over K, then so can β (just map β′ to β). Hence
there is no loss of generality in assuming that β itself satisfies σ(β) 6= β.

Setting

α =
p−1∑
i=0

(−1)i(σi(β)/2) =
(
β − σ(β) + · · · − σp−2(β) + σp−1(β)

)
/2,

we see that β = α+ σ(α). Furthermore, we have α 6= σ(α), for otherwise, on
applying σ−1 to the equation

σ(β) + σ3(β) + · · ·+ σp−2(β) = σ2(β) + σ4(β) + · · ·+ σp−1(β),

we would have that σp−1(β) = β. Combining this with σp(β) = β we deduce
that σ(β) = β. This contradiction proves the result in the case |Gal(L/K)| 6=
2n.

Assume now that |Gal(L/K)| = 2n with a positive integer n. Clearly,
[K(β) : K] = 2m. Furthermore, as β is 2–normal, m < n. By the Galois
correspondence, there exists a subgroup H of order 2n−m of Gal(L/K) cor-
responding to the field K(β). The group H contains a subgroup H ′ of order
2n−m−1. The fixed field of H ′, say F , is thus a quadratic extension of K(β),
and we can complete the proof as above with the pair E = K(β), F . �
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From now on, we assume for simplicity thatK = Q. Clearly, every algebraic
number β over Q is equal to the sum of two distinct algebraic numbers α and
α′ conjugate over Q. It suffices to take α = β/2 +

√
p, where p is the prime

number such that
√
p /∈ Q(β1, . . . , βD). Then α and α′ = β/2−√p are distinct

conjugates of degree 2D over Q such that β = α + α′. What is the smallest
possible value for the degree d of α in such a representation?

Let d(β,Q) be the smallest possible value of d. The inequality D 6 d(d−1)
combined with the above example shows that

√
D < d(β,Q) 6 2D for every

β of degree D.
It is easy to see that for numbers β of degrees D = 1, 2, 3 we have d(β,Q) =

2, 4, 3, respectively. Indeed, d(β,Q) = 2 for every rational β, by the inequality
1 < d(β,Q) 6 2. For D = 2, by Theorem 3, d is divisible by 4. Therefore,
d(β,Q) = 4 for every quadratic β. For a cubic β, d(β,Q) is at least 3, by the
remark following Proposition 1. On the other hand, as in Theorem 5, setting

α = −β2 + Trace(β)/2

and mapping β2 to β3, we see that

α+ α′ = Trace(β)− β2 − β3 = β1 = β.

Consequently, for every cubic β, d(β,Q) = 3, as claimed.
For β of degree D > 3 the answer depends not only on D, but also on the

Galois group G(β) of Q(β1, . . . , βD)/Q and on linear relations in conjugates
of β. For example, for a quartic β, d(β,Q) is divisible by 4 (see Theorem 3).
If there is an α of degree 4 such that β = α+ α′, then the formula 2fD = sd
obtained in the proof of Theorem 3 with D = d = 4 gives the inequality
s = 2f < 4. Thus f = 1 and the graph Γ is the 4−cycle, and so the linear
relation β1−β2 +β3−β4 = 0 is a necessary condition for d(β,Q) = 4 to hold.
Such numbers β and α do exist. For example,

β =
√

3 +
√

2 +
√

3−
√

2

is the sum of two distinct conjugates of α =
√

3 +
√

2 +
√

2.
The next theorem describes all numbers β of odd prime degree D = 2`+ 1

such that d(β,Q) = D. Let σ ∈ G(β) be the D−cycle (β1, β2, . . . , βD) →
(β2, β3, . . . , β1), where β = β1, and

t(β) = β + σ(β) + σ2(β) + · · ·+ σ`−1(β).

Theorem 6. Let β be an algebraic number of an odd prime degree D over
Q. Then d(β,Q) is equal to D if the degree of t(β) over Q is D, and equal to
2D otherwise.

Note that the degree of t(β) over Q is at least D, because the numbers
σi(t(β)), 0 6 i 6 2`, are all distinct, by Theorem 1. The degree of t(β) over
Q is equal to D if, for example, G(β) is isomorphic to either the cyclic group
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CD of order D, or the dihedral group D2`+1 of order 2D = 4` + 2 generated
by the automorphisms σ of order D = 2`+1 and τ : (β1, β2, . . . , βD−1, βD)→
(βD, βD−1, . . . , β2, β1) of order 2.

For D = 3, we have that t(β) = β is always of degree 3 since the Galois
group of β is either C3 or D3. For other prime numbers D > 3, the degree of
t(β) can be greater than D, and usually this is the case. The Galois group
G(β) of a “generic” β is isomorphic to SD. The degree of t(β) for such β is
equal to (2`+1)!/`!(`+1)!, which is clearly greater than D = 2`+1 for ` > 1.

Proof of Theorem 6. Let β = α+α′ be of degreeD overQ, whereD = 2`+1
is an odd prime. By the remark following Proposition 1, the degree of α over
Q is divisible by D. Also, as was shown above, d(β,Q) 6 2D. Thus d(β,Q) is
either D or 2D. Our task is to find all algebraic numbers β of degree D over
Q for which there is an α of degree D over Q such that β = α+ α′.

Consider the graph Γ constructed in the proof of Theorem 3. In the formula
2fD = sd we now have D = d. Since α is of prime degree, on applying
Theorem 1 we see that different edges cannot have the same label. Hence
f = 1, and the number of vertices is equal to the number of edges. It follows
that every vertex is incident to exactly two edges. Consequently, the graph Γ
is either the D−cycle, or a union of s−cycles. The latter case is impossible,
because D is a prime. We thus deduce that the linear system σj(β) = σj(α)+
σj(α′), 0 6 j 6 2`, has a solution. Setting σj(α) = αj+1 for 0 6 j 6 2`,
and α′ = α`+1, we obtain the linear system β1 = α1 + α`+1, β2 = α2 +
α`+2, . . . , β2`+1 = α2`+1 + α`. The unique solution of this system is

αj = Trace(β)/2− σj(t(β)),

where j = 1, . . . , 2` + 1. Clearly, α = α1 is of degree D over Q if and only if
so is σ(t(β)). The proof is now complete, since σ(t(β)) and t(β) are conjugate
over Q and thus of the same degree. �
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