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HULLS OF CLOSED PRIME IDEALS IN H∞

PAMELA GORKIN AND RAYMOND MORTINI

Dedicated to the memory of Carroll Guillory

Abstract. We show that hulls of closed prime ideals inH∞ are “small”:
they are contained in the k-hulls of single points. Combined with our

notion of p-parts, this will prove Alling’s conjecture for a large class of
prime ideals.

Let H∞ be the uniform algebra of all bounded analytic functions in the
open unit disk D. Its spectrum, or maximal ideal space, is the spaceM(H∞) of
all nonzero multiplicative linear functionals on H∞ endowed with the weak-∗
topology. It is a compact, connected Hausdorff space. As usual, we identify
a function f in H∞ with its Gelfand transform, f̂ , defined by f̂(m) = m(f)
for m ∈ M(H∞). Moreover, by considering point evaluations, we may look
upon D as a subset of M(H∞). By the Corona Theorem (see [Ga]), M(H∞)
can then be viewed as a compactification of the unit disk: it is the smallest
compact T2-space for which every bounded analytic function on D has a con-
tinuous extension. Intimately related to H∞ is the uniform algebra H∞ + C
of sums of boundary values of H∞ functions and continuous complex-valued
functions on the circle T = {z ∈ C : |z| = 1}. Its maximal ideal space is
exactly the corona M(H∞) \ D (see [Ga, p. 377]). Finally we recall that the
Shilov boundary of a uniform algebra A is the smallest closed subset of its
spectrum M(A) such that (the modulus of) every function f ∈ A takes its
maximum there.

It is well known that the Shilov boundary of H∞ can be identified with
the spectrum, M(L∞), of L∞. Hoffman [Ho1, p. 184] showed that each m ∈
M(H∞) has a unique norm preserving extension to a linear functional on L∞.
Letting suppm in M(L∞) denote the support set of the representing measure
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µm for m, one can show (see [Ga, p. 375]) that this extension is given by

m(f) =
∫

suppm

f dµm (f ∈ L∞).

It follows that each function f ∈ L∞ can be thought of as a continuous
function on M(H∞). This point of view will be adopted throughout this
paper and we write f(m) := m(f). We note that this extension to M(H∞)
of f ∈ L∞ coincides on D with the Poisson integral of f .

In this paper we are interested in the structure of the closed prime ideals
in H∞ and H∞ + C. Of course every maximal ideal is prime and closed. In
order to come up with examples of non-maximal closed prime ideals, we need
to know something about the analytic structure of M(H∞).

For two points x,m in M(H∞), we define the pseudohyperbolic distance
of x to m by

ρ(x,m) = sup{|f(m)| : f ∈ H∞, ||f ||∞ ≤ 1, f(x) = 0}.
It is well-known that the relation defined on M(H∞) by

x ∼ m ⇐⇒ ρ(x,m) < 1

defines an equivalence relation on M(H∞). The equivalence class containing
a point m is called the Gleason part of m and is denoted by P (m). If the
part, P (m), consists of a single point, we call the part (or point) trivial. If the
part consists of more than one point, the part (or point) is called nontrivial.
Hoffman’s theory [Ho2] shows that for every Gleason part P (m) there is a
continuous map Lm of D onto P (m) with Lm(0) = m such that f ◦ Lm is
analytic on D for all f ∈ H∞. If (zα) is a net in D converging to m, then Lm
is given by Lm(z) = lim

α
(z + zα)/(1 + zαz). One can also view the Gleason

parts in M(A), A = H∞ or H∞ +C, as the connected components of M(A),
when endowed with the operator norm topology.

When the Gleason part of m is trivial, Lm is just a constant map. When
P (m) is nontrivial, the map Lm is a bijection. The set of all nontrivial points
in M(H∞) is denoted by G, and the set of all trivial points is denoted by Γ.
Since for every f ∈ H∞ + C one has f ◦ Lm ∈ H∞, when f(m) = 0 it makes
sense to talk about the order of the zero of f at m. For m ∈ M(H∞ + C)
and f ∈ H∞ + C with f(m) = 0 we let

ord(f,m) := sup
{
j ∈ N : (f ◦ Lm)(k−1)(0) = 0 for k = 1, 2, . . . , j

}
.

If f(m) 6= 0, we say ord(f,m) = 0. If I is an ideal in H∞ or H∞ + C, we let
ord(I,m) = min{ord(f,m) : f ∈ I}. Hoffman showed that if ord(f,m) = ∞
for some m ∈M(H∞+C), then f ∈ H∞+C vanishes identically on the part
P (m) (see [Ho2, p. 79 and p. 101])

An ideal I in H∞ is said to have inner factor 1, if the weak-∗ closure of
I in H∞ coincides with H∞. This is equivalent to the fact that the greatest
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common divisor of the inner factors of the functions in I is a unimodular
constant (see [Ga, p. 83–84]). It is easy to see that every nonmaximal prime
ideal in H∞, different from zero, has inner factor 1.

Let A be a uniform algebra. Then ZA(f) = {m ∈ M(A) : f(m) = 0}
denotes the zero set of a function f ∈ A and ZA(I) =

⋂
f∈I ZA(f) the zero

set (or hull) of an ideal I in A. When no ambiguity arises, we write Z(f) for
ZH∞+C(f) whenever f ∈ H∞+C. The zero set of infinite order of a function
f ∈ H∞ + C is written as Z∞(f).

Finally, (weak-∗) closures of sets E in M(H∞) will be denoted by E. The
set of interior points with respect to M(H∞+C) of E is given by E0. More-
over, we write {|f | < 1} for sets of the form {x ∈ M(H∞ + C) : |f(x)| < 1},
f ∈ H∞ + C.

We can now proceed with an “explicit” example of a non-maximal closed
prime ideal in H∞, which was given by N. Alling [A] in 1970:

Let m ∈ G, m 6∈ D. Then the set

I = {f ∈ H∞ : f vanishes identically on the part P (m)}

is a nonmaximal closed prime ideal in H∞.
The hull of I is the closure of the Gleason part P (m) in M(H∞), as was

shown by Gorkin [Go] in 1988. In [GM2], we proved that every closed prime
ideal P in H∞ is uniquely determined by its hull; that is, each such P has
the form

P = I(E,H∞) := {f ∈ H∞ : f vanishes identically on E}

for some closed set E ⊆M(H∞) (which can be chosen to be ZH∞(P )).
Alling’s conjecture now reduces to the following question: Let P be a

nonmaximal closed prime ideal in H∞. Is ZH∞(P ) = P (m) for some m ∈ G?
In Theorem 1.1 we shall first prove that there is a one-to-one correspon-

dence between nonzero, nonmaximal closed prime ideals in H∞ and H∞+C.
Thus we have a result in the same spirit as that of [GHM], where it was shown
that every closed ideal in H∞ with inner factor 1 can be lifted to a unique
closed ideal in H∞ + C. (Note, however, that the H∞-trace (i.e., the inter-
section with H∞) of an arbitrary closed ideal in H∞ + C may very well be
{0}.)

The real importance of Theorem 1.1 now will be that, due to the more
flexible behaviour of functions in H∞+C, we actually can prove results more
easily in the setting of H∞ + C functions, than in the quite narrow class of
bounded analytic functions.

After some results on the zero sets of Blaschke products in M(H∞+C), we
finally prove the main result on the structure of the hull of closed prime ideals.
This result, and its proof, uses an important class of subsets of M(H∞ +C),
connected to the spectral synthesis problem: the so-called k-hulls (see p. 526
for the definition).
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In the final section we then introduce the concept of p-parts, reminiscent of
the well-known notion of p-points in topology (see [GJ]). These p-parts allow
us to confirm Alling’s conjecture for quite a wide class of prime ideals. For
previous results on closed prime ideals and/or related material we refer the
reader to [Mo1], [Mo2], [GM2] and [Su].

1. Closed prime ideals

Our first theorem shows that there exists a one-to-one correspondence
between nonmaximal closed prime ideals, different from zero, in H∞ and
H∞ + C. Note that the zero ideal is prime in H∞ but not in H∞ + C.

Theorem 1.1.

(1) Let P be a closed prime ideal in H∞+C. Then P ∩H∞ is a nonzero
closed prime ideal in H∞. Moreover P is maximal (for H∞ + C) if
and only if P ∩H∞ is maximal (for H∞).

(2) Let Q be a nonzero, closed prime ideal in H∞, not of the form

M(z0) = {f ∈ H∞ : f(z0) = 0}

for some z0 ∈ D. Then P := Q(H∞ + C), the closed ideal generated
by Q in H∞ + C, is a closed prime ideal in H∞ + C satisfying

Q(H∞ + C) ∩H∞ = Q.

(3) We have ZH∞+C(P ) = ZH∞(P ∩H∞) whenever P is a closed prime
ideal in H∞ + C.

Proof. (1) Let QC = {f ∈ H∞ + C : f ∈ H∞ + C} denote the largest
C∗-subalgebra contained in H∞ + C. Note that QC can be identified with
C(M(QC)). It is easy to see that if P is a closed prime ideal in H∞+C, then
P ∩QC is a closed prime ideal in QC. Hence, by Shilov, P ∩QC is a maximal
ideal. In particular, we see that the hull of P is entirely contained in a single
QC-level set Ex = {m ∈M(H∞+C) : f(m) = f(x) for every f ∈ QC}, where
x ∈M(QC). Let λ = id(x), where id(z) = z. Then λ− z ∈ P ∩QC ⊆ P . So
P ∩H∞ is not the zero ideal. Obviously P ∩H∞ is closed and prime.

The second assertion follows from the fact that the maximal ideal space of
H∞ + C can be identified with M(H∞) \ D.

(2) By Theorem 3.8 in [GHM], we see that Q(H∞ + C) ∩H∞ = Q. Next,
we show that P := Q(H∞ + C) is a prime ideal in H∞+C. Let f, g ∈ H∞+C
satisfy fg ∈ P . By [Mo1] we may assume without loss of generality that the
hull of Q is contained in a single fiber, say ZH∞(Q) ⊆M1, where M1 = {m ∈
M(H∞) : id(m) = 1}. Since functions in H∞ + C coincide on fibers with
bounded analytic functions, we choose F,G ∈ H∞ so that F |M1 = f |M1 and
G|M1 = g|M1 . By combining [He] (see also [Mo1, p. 215]) and [GHM, p. 637–
638], any closed ideal in H∞ + C whose hull is contained in a single fiber
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contains all bounded analytic functions vanishing identically on that fiber.
Hence for every q ∈ H∞+C with q|M1 ≡ 0, one has (1− ((1 + z)/2)n) q ∈ P ,
and limn (1− ((1 + z)/2)n) q = q uniformly on M(H∞+C). Since P is closed,
we get that q ∈ P . In particular, q := FG−fg ∈ P . Hence FG ∈ P∩H∞ = Q.
Since Q is prime, F ∈ Q ⊆ P or G ∈ Q ⊆ P . Thus, by the same argument as
above, f ∈ P or g ∈ P . Therefore P is prime.

(3) Let Q = P ∩H∞. Since by (1) and [GHM] we have P = Q(H∞ + C),
we immediately get that ZH∞+C(P ) = ZH∞(Q). �

Using, among other results, the fact, proven in [GM2], that any closed
prime ideal in H∞ is an intersection of maximal ideals, we get the following
result.

Theorem 1.2. Let P be a closed prime ideal in A = H∞ or H∞ + C.
Then P is an intersection of maximal ideals. The ideal P is maximal if the
hull of P is contained either in the set of nontrivial points or in the set of
trivial points. If the hull of P meets the Shilov boundary, then P is maximal,
too. If P is a nonmaximal closed prime ideal, then ZA(P ) is a union of
closures of Gleason parts.

Proof. The result follows from Theorem 1.1 and the corresponding results
for H∞ (see [Mo1] and [GM2]). �

The following important lemma has been proven independently by K. Izuchi
[Iz4] and the first author of this paper (see [GM4]). Recall that for a sequence
(kn) of positive integers, a weak power B of a Blaschke product

b(z) =
∞∏
n=1

an
|an|

an − z
1− anz

is given by

B(z) =
∞∏
n=1

( an
|an|

an − z
1− anz

)kn
.

Lemma 1.3. Let b be a Blaschke product and (Kn) a sequence of closed
subsets of M(H∞ + C) such that {|b| < 1} ∩Kn = ∅ for every n ∈ N. Then
there exists a weak power B of b vanishing identically on {|b| < 1} such that
|B| = 1 on ∪nKn.

Proposition 1.4. Let Bj, j = 1, 2, . . . , N , be Blaschke products and x ∈⋂N
j=1 Z(Bj)0. Then there exists an interpolating Blaschke product b so that
{|b| < 1} ⊆

⋂N
j=1 Z(Bj)0 and |b(x)| < 1.
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Proof. Let U be an open set in M(H∞) so that x ∈ U and

U ∩M(H∞ + C) ⊆
N⋂
j=1

Z(Bj)0.

If x is a trivial point—necessarily outside the Shilov boundary—then we
choose according to [GM1] a nontrivial point m ∈ U satisfying suppm ⊆
suppx. Take an interpolating Blaschke product b with b(m) = 0 satisfying
Z(b) ⊆ U . Obviously |b(x)| < 1. Since every zero of b in M(H∞+C) is a zero
of infinite order of Bj (note that Z(Bj)0 ⊆ Z∞(Bj)), we may apply the result
in [AG] and [GIS] to conclude that for every j ∈ {1, . . . , N}, the Blaschke
product Bj is divisible in H∞ + C by all powers of b and hence {|b| < 1} ⊆
Z(Bj)0. But actually more holds. In fact, let {|Bj | > 0} =

⋃
n∈N{|Bj | ≥ 1/n}

and Kj
n = {|Bj | ≥ 1/n}. Since {|b| < 1} ⊆ Z(Bj), we see that for every n

and j ∈ {1, . . . , N} we have Kj
n ∩ {|b| < 1} = ∅. Hence, by Lemma 1.3, there

exists a weak power b∗ of b so that |b∗| = 1 on
⋃N
j=1

⋃
nK

j
n. Thus, for every

j ∈ {1, . . . , N}, |b∗| = 1 on {|Bj | > 0}, which is the complement of Z(Bj)0.
Now b∗ vanishes identically on {|b| < 1}. Hence {|b| < 1} ⊆

⋂N
j=1 Z(Bj)0. If

x ∈ G we simply let in the above proof m = x. �

Remark. The proof shows that if x ∈ G, then b can be taken so that,
additionally, b(x) = 0.

By a result of Izuchi [Iz2, p. 57] we know that the zero set of infinite order
of a Blaschke product is a Gδ set. Here we obtain additional information.

Theorem 1.5. Let B be a Blaschke product. Then the following assertions
hold:

(1) Z(B)0 = Z∞(B).
(2) Z(B)0 is a union of closures of Gleason parts.

Proof. (1) First we note that, due to the analytic structure of the Gleason
parts in H∞ + C, the inclusion Z(B)0 ⊆ Z∞(B) is clear. To prove the
denseness, let x ∈ Z∞(B) and let U be a neighborhood of x in M(H∞ + C).
Choose an open set V in M(H∞) so that x ∈ V and such that M(H∞+C)∩
V ⊆ U . By the Corona Theorem there exists a net (zα) in V ∩ D converging
to x. Actually (za) may be chosen to be a subnet of a certain sequence (zn)
in V ∩ D. By Hoffman [Ho2], f ◦ Lzα → f ◦ Lx uniformly on {z ∈ D :
|z| ≤ r} for every 0 < r < 1 and every f ∈ H∞. Choose an interpolating
subsequence (znk)k∈N of (zn) so that sup|z|≤r |B ◦ Lznk | → 0 if k → ∞. Let
b be the interpolating Blaschke product associated with {znk : k ∈ N}. Then
Z(b) ⊆ Z∞(B). By [AG] or [GIS] every power of b divides B in H∞ + C.
Thus B ≡ 0 on {|b| < 1}. In particular, Z(b) ⊆ Z(B)0. Noticing that
Z(b) ⊆M(H∞+C)∩V ⊆ U , gives the result that Z(B)0 is dense in Z∞(B).
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(2) Let x ∈ Z(B)0. We show that P (x) ⊆ Z(B)0. By Proposition 1.4 there
exists an interpolating Blaschke product b so that |b(x)| < 1 and {|b| < 1} ⊆
Z(B)0. But P (x) ⊆ {|b| < 1}. This yields the desired conclusion. �

Remark. An analysis of the proof shows that the result also holds for
arbitrary functions in H∞ + C. See [GMS] for further generalizations to
Douglas algebras.

For a subset S in M(L∞), we denote its complement M(L∞) \ S by Sc.
The characteristic function associated with a clopen (that is, closed and open)
subset S of M(L∞) is given by χS . Obviously, χS ∈ L∞. As explained in the
introduction, we will look upon χS as a continuous function defined on the
whole maximal ideal space of H∞.

Lemma 1.6 ([GM3, Lemma 2.2]). Let f ∈ H∞ +C and let E be a clopen
subset of M(L∞). Then

fχEc ∈ H∞ + C ⇐⇒ f ≡ 0 on {0 < χE < 1}.
Moreover, if S(E) = {ϕ ∈ M(H∞ + C) : suppϕ ⊆ E}, then both statements
imply that

Z(fχEc) = S(E) ∪ {0 < χE < 1} ∪
(
Z(f) ∩ S(Ec)

)
,

with an analogous formula if Z is replaced by Z∞. In particular, Z(f) ⊆
Z(fχEc) and Z∞(f) ⊆ Z∞(fχEc).

We proceed with another lemma, due to D. Sarason. Since we could not
locate its proof in the literature, we will present it for the reader’s convenience.

Lemma 1.7. Let u be an inner function and let x ∈M(H∞+C)\M(L∞).
Then either u is a unimodular constant on suppx or u(suppx) = ∂D.

Proof. Suppose that u|supp x is not constant. Without loss of generality let
1 ∈ u(suppx).

Case 1: u(x) = 0. Assume that u(suppx) 6= ∂D. Since u(suppx) is
compact, there exists an arc (α, β) on the circle ∂D which is disjoint from
u(suppx). Choose n ∈ N so that the image of ∂D \ (α, β) with respect to
an appropriate branch of z1/n is contained within the arc (−π/4, π/4). By
Runge’s approximation theorem, there exists a sequence of polynomials pj
converging uniformly to z1/n−1 on ∂D \ (α, β). Hence zpj(z) converges uni-
formly to z1/n on ∂D\ (α, β). This implies that Re(zpj)→ Re z1/n. However,
Re z1/n ≥ δ > 0 on ∂D\(α, β). Thus there exists a polynomial p with p(0) = 0
such that Re p > 0 on ∂D \ (α, β) ⊇ u(suppx). This implies that

0 <
∫

supp x

Re(p ◦ u) dµx = Re
∫

supp x

(p ◦ u) dµx = Re(p ◦ u)(x) = p(0) = 0,
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an obvious contradiction. This shows that u(suppx) = ∂D.
Case 2: u(x) 6= 0. Since u is not constant on suppx, we have that |u(x)| <

1. Let v =
(
u−u(x)

)
/
(
1−u(x)u

)
. Then v is an inner function with v(x) = 0.

Case 1 applied to v now yields the result that v(suppx) = ∂D and therefore
u(suppx) = ∂D, too. �

We will now recall the concept of k-hulls, which we introduced in [GM4]
to study spectral synthesis problems in the spectrum of H∞ +C. Let A be a
uniform algebra and let E ⊆M(A) be closed. Define the ideals

I(E,A) = {f ∈ A : f vanishes identically on E},
and

J(E,A) = {f ∈ A : f vanishes identically in a neighborhood of E}.
If the context is clear, we simply write I(E) and J(E). As usual, we define
the hull h(E) of E to be the hull kernel closure of E in M(A), that is, h(E) =
ZA(I(E)). If E = h(E), we say that E is a hull. Finally, we let k(E) =
ZA(J(E)); this is the k-hull of E.

In H∞, we obviously have that J(E) = {0}, so that is an uninteresting
case. But in H∞ + C, there are a lot of functions vanishing on open sets in
the spectrum. For example if E ⊆M(H∞+C)\M(L∞), then k(E) does not
meet the Shilov boundary, either. Moreover we know that k(k(E)) = k(E)
for any closed set E ⊆M(H∞ + C). See [GM4] for a detailed exposition. In
general, k(E) is strictly bigger than E. It is a union of closures of Gleason
parts (see [GM4]). If E ⊆M(H∞+C) \M(L∞), then the k-hull, k(E), of E
can be represented as

(1) k(E) =
⋂

c∈J(E)

Z(c) =
⋂

b∈I(E)

{|b| < 1},

where b and c are Blaschke products (see [GM4]).
In the case we are interested in here, E = {x} is a singleton. We know that

P (x) ⊆ k(x). In general this inclusion is strict (see [GM4]). In the second
section, we present examples of nontrivial points x, for which k(x) = P (x).

The following lemma is implicitly contained in [GM4].

Lemma 1.8. Let x ∈M(H∞+C)\M(L∞) and let y ∈M(H∞+C)\k(x).
Then there exists a Blaschke product B vanishing in a neighborhood of x such
that y /∈ {|B| < 1}.

Proof. By [GM4], k(x) =
⋂
{|b| < 1}, where the intersection is taken over

all Blaschke products b vanishing at x. Hence there exists b vanishing at x
such that y /∈ {|b| < 1}. Let K be a compact neighborhood of y disjoint from
{|b| < 1}. Now apply Lemma 1.3 for Kn = K to get a weak power B of b
which vanishes in a neighborhood of x but for which y /∈ {|B| < 1}. �
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We are now ready to prove our main result.

Theorem 1.9. Let A denote either the algebra H∞ or H∞+C and let P
be a nonzero, nonmaximal closed prime ideal in A. Suppose that x ∈ Z(P ).
Then Z(P ) ⊆ k(x).

Proof. In view of Theorem 1.1 it is sufficient to prove the result for closed
prime ideals in H∞ + C. This has the advantage that we can use H∞ + C
techniques which are more flexible than those for H∞.

So let P be a closed prime ideal in H∞ + C. Using the nonmaximality
of P and Theorem 1.2, we may assume that x ∈M(H∞ + C) \M(L∞). Let
y ∈M(H∞ + C) \ k(x). We are going to prove that y /∈ Z(P ).

By Lemma 1.8 there exists a Blaschke product B vanishing identically on
a neighborhood of x such that

(2) y /∈ {|B| < 1}.

Choose according to Proposition 1.4 an interpolating Blaschke product b such
that |b(x)| < 1 and

(3) {|b| < 1} ⊆ Z(B)0.

Without loss of generality b(y) = 1. Consider for every n ∈ N the sets

En = {η ∈M(L∞) : |b(η)− 1| > 1/n}.

Since M(L∞) is extremely disconnected, the closures En of the sets En are
clopen subsets of M(L∞). Let χEn be the associated characteristic functions.
Let eiθ1,n and eiθ2,n be the two intersection points of the unit circle with the
circle {z ∈ C : |z − 1| = 1/n}. We claim that the functions

(b− eiθ1,n)(b− eiθ2,n)BχEn and (b− eiθ1,n)(b− eiθ2,n)BχEcn
are in H∞ +C. To see this it suffices to show, by Lemma 1.6, that whenever
m ∈M(H∞ + C) is such that

(4) suppm ∩ En 6= ∅ and suppm ∩ En
c 6= ∅,

then fn := (b− eiθ1,n)(b− eiθ2,n)B vanishes at m. So, assume that (4) holds.
If suppm ∩ En 6= ∅ and suppm ∩ {η ∈ M(L∞) : |b(η) − 1| < 1/n} 6= ∅, then
b|suppm cannot be constant. Hence |b(m)| < 1. Thus, by (3), B(m) = 0. If,
on the other hand, either of the sets suppm ∩En or suppm ∩ {η ∈M(L∞) :
|b(η) − 1| < 1/n} is empty, then, by Sarason’s Lemma 1.7, b|suppm must be
constant. Since b is unimodular on M(L∞), we deduce from (4) that this
constant is either eiθ1,n or eiθ2,n . Thus b(m) = eiθ1,n or b(m) = eiθ2,n . In any
case, we obtain that fn(m) = 0. This proves our claim that fnχEn ∈ H

∞+C
and fnχEcn

∈ H∞ + C.
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We obviously have 0 = (fnχEn)(fnχEcn) ∈ P . Since P is prime, we have
the following, not necessarily disjoint, alternatives:

fnχEcn
∈ P for some n or fnχEn ∈ P for every n.

So suppose that for some n, fnχEcn ∈ P . Since b(y) = 1 implies that supp y ⊆
En

c
, we deduce that χEcn(y) = 1. Because eiθ1,n and eiθ2,n are different from

1, we obtain from (2) that fnχEcn(y) 6= 0. Hence y /∈ Z(P ).
Now suppose that fnχEn ∈ P for every n. Choose any ψ ∈M(H∞ +C) \

Z(B) satisfying b(ψ) 6= 1. By (3), we have |b(ψ)| = 1. Since for n → ∞ we
have eiθ1,n → 1 and eiθ2,n → 1, there exists n0, depending on ψ, so that for
n ≥ n0, b(ψ) /∈ (eiθ1,n , eiθ2,n), the arc on the circle containing 1 with endpoints
eiθ1,n and eiθ2,n .

Thus, for n ≥ n0, suppψ ⊆ En. (Note that b takes only the value b(ψ) on
suppψ.) Therefore(

fnχEn
)

(ψ) = fn(ψ) =
(
b(ψ)− eiθ1,n

) (
b(ψ)− eiθ2,n

)
B(ψ) 6= 0.

Hence ψ /∈ Z(P ). Thus we showed that

Z(P ) ⊆ Z(B) ∪ {b = 1}.
Hence (1−b)B vanishes identically on Z(P ), the hull of P . Since P is a closed
prime ideal, we have, by Theorem 1.2, that P is an intersection of maximal
ideals. Hence (1 − b)B ∈ P . Since |b(x)| < 1 and x ∈ Z(P ), we see that
1 − b /∈ P . Hence, since P is prime, B ∈ P . In particular, by (2), y /∈ Z(P ).
This finishes the proof of the theorem. �

We do not know whether every nonmaximal, closed prime ideal P in A =
H∞ or H∞ + C is given by

P = {f ∈ A : f ≡ 0 on P (m)}
for some nontrivial point m (which precisely is Allling’s conjecture). In or-
der to find counterexamples, good candidates could be the ideals I(k(x)).
Therefore we ask the following question.

Question Q1. For which x ∈ M(H∞ + C) is the set I(k(x)) a closed
prime ideal?

Note that, in view of Theorem 1.2, we can restrict our search for counterex-
amples to Alling’s conjecture to prime ideals whose hull does not meet the
Shilov boundary and whose hull is not entirely contained in the set of trivial
points.

We also have the following consequences of Theorem 1.9.

Corollary 1.10. Suppose that I(k(x)) is a (closed) prime ideal. Then
k(x) is a minimal k-hull.
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Proof. Let P = I(k(x)). Obviously Z(P ) = k(x). Let y ∈ k(x). Then, by
Theorem 1.9, Z(P ) ⊆ k(y). Hence k(x) ⊆ k(y) ⊆ k(x). �

Let us point out that Keiji Izuchi [Iz5] recently showed that for every
x ∈ M(H∞ + C), the ideals J(x) are prime in H∞ + C. Note also that by
[GM4] one has J(x) = I(k(x)). As a further corollary of Theorem 1.9 we
obtain:

Corollary 1.11. Let P be a nonzero closed prime ideal in H∞ + C.
Suppose that x ∈ Z(P ). Then J(x) ⊆ P .

Proof. As noted above, J(x) = I(k(x)). But Theorem 1.9 implies that
Z(P ) ⊆ k(x). Therefore I(k(x)) ⊆ I(Z(P )). Since P is closed and prime, by
Theorem 1.2 we know that P = I(Z(P )). Hence J(x) ⊆ P . �

2. p-parts

We shall now present a class of nontrivial Gleason parts for which Alling’s
conjecture is true. Recall that a point x in a topological Hausdorff space
X is said to be a p-point, if any continuous function on X is constant in a
neighborhood of x (see [GJ, p. 63])

In analogy to this, we give the following definition:

Definition. A part P (m) in M(H∞ +C) is called a p-part, if any func-
tion f ∈ H∞ + C vanishing identically on P (m) vanishes in a neighborhood
of P (m).

The first question which comes to mind is the following: do there exist
p-parts in M(H∞ + C)? The following result gives an affirmative answer,
provided we assume the continuum hypothesis.

Proposition 2.1. The set of points m ∈M(H∞+C) for which P (m) is
a nontrivial p-part is dense in M(H∞ + C).

Proof. Assume the continuum hypothesis. Let U be any open set in
M(H∞ +C). We show that U contains a nontrivial point m such that P (m)
is a p-part. Choose an open set U∗ in M(H∞) so that U∗∩M(H∞+C) ⊆ U .
Let (zn) be any interpolating sequence in D ∩ U∗, b the associated interpo-
lating Blaschke product, and let E = {zn : n ∈ N} \ {zn : n ∈ N}. We may
assume that E ⊆ U . We know that E is homeomorphic to S := βN \ N,
where βN is the Stone-Čech compactification of N. A result in topology (see
[GJ, p. 100]), tells us that, under the continuum hypothesis, S has p-points.
This implies that every function f ∈ H∞ + C, viewed as a continuous func-
tion on E, is constant in a relative neighborhood of some m in E. Moreover,
m ∈ U . We claim that P (m) is a p-part. To see this, let f ∈ H∞ + C vanish
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identically on P (m) and let V1 ⊆ E be a neighborhood of m in E on which
f is identically zero. Since E is totally disconnected, we may also assume
that V1 is a clopen set in E. Hence, by [Iz1] there exists a subproduct b1
of b satisfying Z(b) ∩ V1 = Z(b1). Thus Z(b1) ⊆ Z(f). By [AG] and [GIS],
f1 := fb1 ∈ H∞+C. Moreover, since f vanishes identically on the part P (m),
we see that f1 has the same property. Continuing this procedure, we get a
sequence of neighborhoods Vn of m in E, Vn+1 ⊆ Vn, and a sequence of inter-
polating Blaschke products bn dividing f(b1 . . . bn−1). Since m is a p-point,
every Gδ set (in E) containing m is a neighborhood of m (see [GJ, p. 63]); this
holds in particular for V :=

⋂
n Vn. Choose a clopen set W of E satisfying

m ∈ W ⊆ V and let b0 be the factor of b satisfying Z(b0) = Z(b) ∩W . It is
clear that b0 divides each bn (in H∞ + C). Hence bn0 divides f in H∞ + C
for every n ∈ N. Thus, by [AG] and [GIS], {|b0| < 1} ⊆ Z(f). Noticing that
b0(m) = 0 we obtain that m ∈ Z(f)0. Hence, by Theorem 1.5 and the remark
following it, P (m) ⊆ Z(f)0. Thus P (m) is a p-part. �

Proposition 2.2. Let P (m) be a nontrivial p-part. Then the following
assertions hold:

(a) k(m) = P (m).
(b) P (m) is a strong synthesis set.
(c) P (m) is a maximal part; that is, if P (m) ⊆ P (x) for some x ∈

M(H∞ + C), then P (m) = P (x).
(d) suppm is a maximal support set.
(e) Alling’s conjecture is true for m; i.e., if I is a closed prime ideal in

A = H∞ (or A = H∞+C) such that its hull contains m, then either
I = Kerm, and hence I is maximal, or I = {f ∈ A : f ≡ 0 on P (m)}.

Proof. (a) This follows from the definition of a p-part and the fact that
P (m) is, by [Go], hull-kernel closed.

(b) Follows from (a) and [GM4, Theorem 3.1].
(c) Follows from (a) and formula (1) (see Example 5 in [GM4]).
(d) Suppose there exists y ∈M(H∞+C) such that suppm ⊆ supp y. Then

it follows from k(m) =
⋂
B(m)=0 {|B| < 1} that y ∈ k(m). By (a), we then

obtain that y ∈ P (m). Hence supp y ⊆ suppm. Therefore supp y = suppm,
which shows the maximality of the support set for m.

(e) Let I be a closed prime ideal in H∞ and suppose that m ∈ Z(I). If
I contains an interpolating Blaschke product b, necessarily vanishing at m,
then by [Mo1, Theorem 3.1], I is maximal, so I = Kerm. If I does not
contain an interpolating Blaschke product, then, by [Mo1, Proposition 3.4],
for every f ∈ I we have ord(f,m) = ∞. Hence P (m) ⊆ Z(I). By Theorem
1.9, Z(I) ⊆ k(m). Since P (m) is a p-part, we have by (a) that k(m) = P (m).
Hence Z(I) = P (m). Since by Theorem 1.2 I is an intersection of maximal
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ideals, we obtain that

I = {f ∈ H∞ : f ≡ 0 on P (m)}.

The result for A = H∞ + C follows from this and Theorem 1.1. �
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