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VANISHING LOGARITHMIC CARLESON MEASURES

BARBARA MACCLUER AND RUHAN ZHAO

Abstract. Vanishing Carleson-type measures defined with additional

logarithmic terms are characterized by using functions in BMOA and
the Bloch space. The results are applied to Cesàro type operators on
BMOA and the Bloch space.

1. Introduction

Let D = {z : |z| < 1} be the unit disk in the complex plane and let
H(D) denote the space of all analytic functions on D. Recall that a positive
Borel measure µ on D is called a Carleson measure if there is a positive finite
constant K such that

(1) µ(S(I)) ≤ K|I|
for all arcs I ⊂ ∂D, where |I| denotes the normalized arc length of I (so that
|∂D| = 1) and S(I) is the Carleson square defined by

S(I) = {z : 1− |I| < |z| < 1, z/|z| ∈ I}.
Carleson measures are ubiquitous in the study of function-theoretic operator
theory. A fundamental property of Carleson measures due to L. Carleson
addresses the issue of when the inclusion map is bounded from the Hardy
space Hp to Lp(D, dµ). Recall that for 0 < p < ∞, Hp consists of the
functions f ∈ H(D) satisfying

‖f‖pp ≡ sup
0<r<1

1
2π

∫ 2π

0

|f(reiθ)|p dθ <∞.

Theorem A (Carleson’s Theorem). For µ a positive Borel measure
on D and 0 < p <∞, the following are equivalent:

(i) µ is a Carleson measure.
(ii) There is a constant C1 > 0 such that, for all f ∈ Hp,∫

D

|f(z)|p dµ(z) ≤ C1‖f‖pp.
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(iii) There is a constant C2 > 0 such that, for every a ∈ D,∫
D

|ϕ′a(z)| dµ(z) ≤ C2,

where ϕa(z) = (a− z)/(1− az) is an automorphism of D.

For a proof see, for example, [D] or [CM]. If we write ‖µ‖ for

sup
I⊂∂D

µ(S(I))
|I|

,

then in Carleson’s theorem the quantities C1, C2, and ‖µ‖ are comparable,
meaning that there are absolute constants bounding the ratio of any two of
them.

If we have

lim
|I|→0

µ(S(I))
|I|

= 0,

then we say that µ is a vanishing Carleson measure. For vanishing Carleson
measures we have the following well-known analogue of Theorem A:

Theorem B. For µ a positive Borel measure on D and 0 < p < ∞, the
following are equivalent:

(i) µ is a vanishing Carleson measure.
(ii) The identity mapping I from Hp into Lp(D,µ) is a compact operator.
(iii) µ satisfies

lim
|a|→1−

∫
D

|ϕ′a(z)| dµ(z) = 0.

A proof can be found in [Z, Theorem 8.2.5]; the equivalence of (i) and (iii)
is contained in our proof of Theorem 2 below (with p = 0 and s = 1).

For 0 ≤ p < ∞ and 0 < s < ∞, we define p-logarithmic s-Carleson
measures by replacing the condition (1) by the following condition:

(2) µ(S(I)) ≤ K |I|s

(log 2
|I| )

p
.

If s = 1, we call µ a p-logarithmic Carleson measure; if moreover p = 2, we call
µ a logarithmic Carleson measure. In [Zh] the second author characterized
the p-logarithmic s-Carleson measures by criteria involving BMOA functions
when s = 1 and Bloch functions when s > 1. Recall that BMOA consists of
the analytic functions f on D for which

‖f‖∗ ≡ sup
a∈D
‖f ◦ ϕa − f(a)‖2 <∞,

where ϕa(z) is a disk automorphism as defined in Theorem A. The John-
Nirenberg Theorem ensures that ‖f‖∗ ≈ supa∈D ‖f ◦ϕa − f(a)‖p for 0 < p <
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∞. This means that there is a constant C > 0 such that
1
C
‖f‖∗ ≤ sup

a∈D
‖f ◦ ϕa − f(a)‖p ≤ C‖f‖∗.

BMOA is a Banach space under the norm ‖f‖BMOA = |f(0)|+ ‖f‖∗.
The purpose of this paper is to develop analogous criteria for vanishing

measures, defined by replacing the condition (2) by the corresponding little-
oh condition. Thus a positive Borel measure of D is said to be a vanishing
p-logarithmic s-Carleson measure if

µ(S(I)) = o

(
|I|s

(log 2
|I| )

p

)
as |I| → 0

More briefly, if s = 1, we call µ a vanishing p-logarithmic Carleson measure;
if moreover p = 2, we call µ a vanishing logarithmic Carleson measure.

Our main result in the case s = 1 is the following theorem.

Theorem 1. Let 0 < p <∞ and let µ be a positive Borel measure on D.
Then the following conditions are equivalent:

(i) µ is a vanishing p-logarithmic Carleson measure.
(ii) µ satisfies

lim
|a|→1

(
log

2
1− |a|

)p ∫
D

|ϕ′a(z)| dµ(z) = 0.

(iii) For any bounded sequence {fn} ⊂ BMOA satisfying fn → 0 uni-
formly on compact subsets of D,

lim
n→∞

sup
a∈D

∫
D

|fn(z)|p|ϕ′a(z)| dµ(z) = 0.

(iv) For 0 < q <∞, and for any bounded sequence {fn} ⊂ BMOA satis-
fying fn → 0 uniformly on compact subsets of D,

lim
n→∞

sup
g∈Hq, ‖g‖q=1

∫
D

|fn(z)|p|g(z)|q dµ(z) = 0.

Theorem 1 will be proved in Section 2, after we provide a general charac-
terization of vanishing p-logarithmic s-Carleson measures. Then we will give
an application of Theorem 1 to certain Cesàro type operators on BMOA.

In Section 3, we will give the corresponding results on p-logarithmic s-
Carleson measures for s > 1. Here the role of BMOA will be replaced by the
Bloch space, defined below. We will also give a similar application to Cesàro
type operators on the Bloch space.

In the following, we use the convention that C will be a finite positive
constant whose value may vary from line to line.
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2. Vanishing p-logarithmic Carleson measures

Before proving Theorem 1, we will give a general result for any vanishing
p-logarithmic s-Carleson measure for 0 ≤ p < ∞ and 0 < s < ∞. The p = 0
case of this result was first proved in [ASX].

Theorem 2. Let 0 ≤ p < ∞ and 0 < s < ∞. Let µ be a positive Borel
measure on D. Then µ is a vanishing p-logarithmic s-Carleson measure if
and only if

(3) lim
|a|→1

(
log

2
1− |a|

)p ∫
D

|ϕ′a(z)|s dµ(z) = 0.

Proof. Let (3) be satisfied. Take any I ⊂ ∂D. Let a = (1 − |I|)eiθ,
where eiθ is the center of I. Then 1 − |a| = |I|, and since for any z ∈ S(I),
|ϕ′a(z)| ≥ C/|I|, we get

(log 2
|I| )

p

|I|s
µ(S(I)) ≤ C

(
log

2
1− |a|

)p ∫
D

|ϕ′a(z)|s dµ(z).

Taking the limit as |I| → 0 (or, equivalently, |a| → 1) we see that

lim
|I|→0

(log 2
|I| )

p

|I|s
µ(S(I)) = 0.

Thus µ is a vanishing p-logarithmic s-Carleson measure.
Conversely, let µ be a vanishing p-logarithmic s-Carleson measure. For any

fixed ε > 0, there is a δ > 0 such that for all arcs I ⊂ ∂D with |I| ≤ δ,

(log 2
|I| )

p

|I|s
µ(S(I)) < ε.

Suppose a = reiθ and r > 1−δ. Denote by Iδ the arc centered at eiθ satisfying
|Iδ| = δ, and by S(Iδ) the corresponding Carleson box. Then

K(a) =
(

log
2

1− |a|

)p ∫
D

|ϕ′a(z)|s dµ(z)

=
(

log
2

1− |a|

)p ∫
D\S(Iδ)

|ϕ′a(z)|s dµ(z)

+
(

log
2

1− |a|

)p ∫
S(Iδ)

|ϕ′a(z)|s dµ(z)

= K1(a) +K2(a).

To estimate K2(a), let {In} be the arcs centered at eiθ with |In| = α(n−1)(1−
|a|), where 1 < α < 2/δ, n = 1, 2, · · · , N and N is the smallest integer such
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that α(N−1)(1− |a|) ≥ δ. Thus

logα
δα

1− |a|
≤ N ≤ logα

δα

1− |a|
+ 1.

Setting I0 = ∅, a calculation shows that for z ∈ S(In) \ S(In−1),

|ϕ′a(z)|s ≤ C

α2ns(1− |a|)s
.

Thus we get∫
S(Iδ)

|ϕ′a(z)|s dµ(z) ≤ C

(1− |a|)s
N−1∑
n=1

1
α2ns

µ(S(In) \ S(In−1))

+
C

(1− |a|)s
1

α2Ns
µ(S(Iδ) \ S(IN−1))

≤ C

(1− |a|)s
N−1∑
n=1

1
α2ns

ε|In|s

(log 2
|In| )

p

+
C

(1− |a|)sα2Ns

ε|Iδ|s

(log 2
|Iδ| )

p

≤ Cε

(1− |a|)s
N∑
n=1

1
α2ns

|In|s

(log 2
|In| )

p

≤ Cε
N∑
n=1

1
αns

1
(log 2

αn−1(1−|a|) )p
.

We may bound this last expression by

Cε
1

(log 2
1−|a|) )p

.

When p = 0 this is obvious; for p > 0 the sum is bounded above by

C

∫ 2+logα δ−logα(1−|a|)

1

1
αts

1
(log 2

αt−1(1−|a|) )p
dt,

since N ≤ logα(δα/(1− |a|)) + 1 = 2 + logα δ − logα(1 − |a|). Standard
estimates show that for |a| ≥ 3/4 this integral is bounded above by

C
1

(log 2
1−|a| )

p

for some constant C. Thus

(4) K2(a) < ε
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for |a| sufficiently close to 1. To estimate K1(a), notice that for z ∈ D \S(Iδ),
|1− āz| ≥ δ. Thus

(5) K1(a) ≤ 1
δ2s

(1− |a|2)s
(

log
2

1− |a|

)p
µ(D) < ε

if |a| is sufficiently close to 1. Combining (4) and (5) we see that

lim
|a|→1

K(a) = 0,

which finishes the proof. �

In order to prove Theorem 1, we need the following lemma.

Lemma 1. If µ is a vanishing p-logarithmic Carleson measure, and {fn}
is a bounded sequence in BMOA such that fn → 0 uniformly on compact
subsets of D as n→∞, then

(6) lim
n→∞

sup
a∈D

∫
D

|fn(a)|p|ϕ′a(z)| dµ = 0.

Proof. By Theorem 2, given any ε > 0, we may find δ > 0 such that

sup
a∈D\Dδ

(
log

2
1− |a|

)p ∫
D

|ϕ′a(z)| dµ(z) < ε,

where Dδ = { z ∈ D : |z| < δ}. Since point evaluation at a is a bounded
linear functional on BMOA, with uniformly bounded norm as a ranges over
Dδ (specifically |fn(a)| ≤ C‖fn‖∗ log(2/(1− |a|))), and {fn} is bounded in
BMOA, we have
(7)

sup
a∈D\Dδ

∫
D

|fn(a)|p|ϕ′a(z)| dµ ≤ C sup
a∈D\Dδ

(
log

2
1− |a|

)p ∫
D

|ϕ′a(z)| dµ < Cε.

Also, since fn → 0 uniformly on compact subsets of D, we see that for n
sufficiently large,

(8) sup
a∈Dδ

∫
D

|fn(a)|p|ϕ′a(z)| dµ ≤ ε sup
a∈Dδ

∫
D

|ϕ′a(z)| dµ ≤ C‖µ‖ε.

Combining (7) and (8) we see we can make

sup
a∈D

∫
D

|fn(a)|p|ϕ′a(z)| dµ

as small as desired by choosing n sufficiently large, and so (6) is proved. �
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Proof of Theorem 1. The equivalence of (i) and (ii) is the special case s = 1
of Theorem 2. Now we prove that (ii)⇒(iii). Let {fn} be a bounded sequence
in BMOA satisfying fn → 0 uniformly on compact subsets of D. Consider∫

D

|fn(z)− f(a)|p|ϕ′a(z)| dµ.

Since (ii) clearly guarantees that µ is a vanishing Carleson measure, for any
ε > 0, we may find r ∈ (0, 1) such that µ|D\Dr = µr is a Carleson measure
with Carleson constant ‖µr‖ < ε (see, [CM, p. 130]). For fixed a ∈ D let

gn,a(z) = (fn(z)− fn(a))(ϕ′a(z))1/p.

Since {fn} is a bounded sequence in BMOA, {gn,a} is a bounded sequence
in Hp, with Hp norms bounded independently of a ∈ D. Thus

sup
a∈D

∫
D\Dr

|fn(z)− fn(a)|p|ϕ′a(z)| dµ(z)(9)

= sup
a∈D

∫
D\Dr

|gn,a(z)|p dµr(z) ≤ C sup
a∈D
‖µr‖ ‖gn,a‖pp < Cε.

Since fn → 0 uniformly on compact subsets of D, we have

sup
a∈D

∫
Dr

|fn(z)|p|ϕ′a(z)| dµ ≤ ε sup
a∈D

∫
Dr

|ϕ′a(z)| dµ ≤ C‖µ‖ε

for n sufficiently large. By Lemma 1 we know that, for n large enough,

sup
a∈D

∫
Dr

|fn(a)|p|ϕ′a(z)| dµ < Cε.

Thus, for n sufficiently large,

(10) sup
a∈D

∫
Dr

|fn(z)− fn(a)|p|ϕ′a(z)| dµ(z) < Cε.

Combining (9) and (10) with Lemma 1, we get

lim
n→∞

sup
a∈D

∫
D

|fn(z)|p|ϕ′a(z)| dµ = 0.

Thus (iii) is true.
Next we prove that (iii)⇒(i). Suppose (i) does not hold. Then there is a

sequence of arcs {In} ⊂ ∂D with |In| → 0 and ε > 0 such that

(11) µ(S(In)) ≥ ε |In|
(log 2

|In| )
p
.

Let an = (1− |In|)eiθn , where eiθn is the center of In. Consider the sequence
of functions {gn} defined by

gn(z) =
(

log
2

1− |an|

)−1(
log

2
1− ānz

)2

.
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Then it is easy to check that {gn} is a bounded sequence in BMOA, and
gn → 0 uniformly on compact subsets of D as n→∞.

By (iii),

sup
a∈D

∫
D

|gn(z)|p|ϕ′a(z)| dµ(z)→ 0, as n→∞.

Thus

(12)
C

|In|

∫
S(In)

|gn(z)|p dµ(z)→ 0, as n→∞,

since |ϕ′an(z)| ≥ C/|In| for any z ∈ S(In), for some absolute constant C. But
on S(In),

|gn(z)|p ≥

[(
log

2
1− |an|

)−1(
k log

2
|In|

)2
]p

for some constant k. Using the estimate in (12) we see that

1
|In|

(
log

2
|In|

)p
µ(S(In))→ 0, as n→∞,

which contradicts (11). Thus (i) must hold.
Finally, we prove that (iii)⇔(iv). Let Xp

µ be the space of analytic functions
f on the unit disk D such that

‖f‖p
Xpµ
≡ sup
a∈D

∫
D

|f(z)|p|ϕ′a(z)| dµ(z) <∞,

and for 0 < q <∞, let Y p,qµ = Y pµ the space of analytic functions f on D such
that

‖f‖p
Y pµ
≡ sup
g∈Hq,‖g‖q=1

∫
D

|f(z)|p|g(z)|q dµ(z) <∞.

Then f ∈ Xp
µ if and only if dµf (z) = |f(z)|p dµ(z) is a Carleson measure,

which by Theorem A is equivalent to the condition

sup
g∈Hq,‖g‖q=1

∫
D

|f(z)|p|g(z)|q dµ(z) <∞.

Thus Xp
µ = Y pµ , and in fact, by the equivalence of the various constants in the

statement of Carleson’s theorem we know ‖f‖Xpµ and ‖f‖Y pµ are comparable.
Consequently, (iii) and (iv) are equivalent. The proof is completed. �

As an application of Theorem 1 we characterize the compactness of a Cesàro
type integral operator on BMOA. For f, g ∈ H(D), the integral operator Jf
with symbol f is defined by

Jfg(z) =
∫ z

0

g(ζ)f ′(ζ) dζ.



VANISHING LOGARITHMIC CARLESON MEASURES 515

If f(z) = − log(1 − z) then Jf is the well-known Cesàro operator. It was
first shown by Ch. Pommerenke [Po] that Jf is bounded on H2 if and only if
f ∈ BMOA. This operator was systematically studied by A. Aleman and A.
Siskakis [AS1][AS2]. In [AS1], it was proved that Jf is bounded on the Hardy
space Hp for any p ≥ 1, if and only if f ∈ BMOA. The boundedness and
compactness of Jg on BMOA was characterized by Siskakis and the second
author in [SZ]. Here we derive the criterion of compactness of Jg on BMOA
from Theorem 1. This result was first proved in [SZ].

Corollary 1. For f ∈ H(D), Jf is compact on BMOA if and only if

(13) lim
|a|→1

(
log

2
1− |a|

)2 ∫
D

|f ′(z)|2(1− |ϕa(z)|2) dA(z) = 0,

where dA(z) = dxdy/π is the normalized Lebesgue measure on D.

Proof. We will use the following criterion for a function in BMOA: if
f ∈ H(D), then f ∈ BMOA if and only if

B(f) = sup
a∈D

∫
D

|f ′(z)|2(1− |ϕa(z)|2) dA(z) <∞,

and B(f) is comparable to ‖f‖2∗ (see, for example, [AXZ]).
Since (Jfg)′ = gf ′, and 1−|ϕa(z)|2 = (1−|z|2)|ϕ′a(z)|, we know that Jf is

compact on BMOA if and only if, for any bounded sequence {gn} ⊂ BMOA
with gn → 0 uniformly on compact subsets of D,

lim
n→∞

sup
a∈D

∫
D

|gn(z)|2|f ′(z)|2(1− |z|2)|ϕ′a(z)| dA(z) = 0.

By Theorem 1, this means that dµf (z) = |f ′(z)|2(1−|z|2) dA(z) is a vanishing
logarithmic Carleson measure, or (13) is satisfied. The proof is complete. �

3. The case s > 1

When s > 1, s-Carleson measures are closely related, by analogues of
Theorems A and B, to the weighted Bergman spaces Lp,αa defined for 0 < p <
∞ and α > −1 as those f ∈ H(D) for which

‖f‖p
Lp,αa
≡
∫
D

|f(z)|p(1− |z|2)α dA(z) <∞.

The analogue of Theorem A asserts the equivalence of the conditions
(i) µ is an s-Carleson measure.
(ii) The identity map from Lp,s−2

a to Lp(D, dµ) is bounded.
(iii) There is a finite constant C > 0 such that, for every a ∈ D,∫

D

|ϕ′a(z)|s dµ(z) ≤ C.
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(See, for example, Theorem 2.36 in [CM].) Similarly there is a characterization
of vanishing s-Carleson measures, analogous to Theorem B, with Hp replaced
by Lp,s−2

a .
Correspondingly we may obtain a version of Theorem 1 characterizing van-

ishing p-logarithmic s-Carleson measures for s > 1 and p > 0, where the role
of BMOA is now played by the Bloch space B defined as follows. A function
f ∈ H(D) is said to be in the Bloch space B if

‖f‖B ≡ |f(0)|+ sup
z∈D
|f ′(z)|(1− |z|2) <∞.

For any s > 1 we have the following result:

Theorem 3. Let 1 < s < ∞, 0 < p < ∞, and let µ be a positive Borel
measure on D. Then the following conditions are equivalent:

(i) µ is a vanishing p-logarithmic s-Carleson measure.
(ii)

lim
|a|→1

(
log

2
1− |a|

)p ∫
D

|ϕ′a(z)|s dµ(z) = 0.

(iii) For any bounded sequence {fn} ⊂ B satisfying fn → 0 uniformly on
compact subsets of D,

lim
n→∞

sup
a∈D

∫
D

|fn(z)|p|ϕ′a(z)|s dµ(z) = 0

(iv) For 0 < q < ∞, and for any bounded sequence {fn} ⊂ B satisfying
fn → 0 uniformly on compact subsets of D,

lim
n→∞

sup
g∈Lq,s−2

a , ‖g‖=1

∫
D

|fn(z)|p|g(z)|q dµ(z) = 0.

The proof of Theorem 3 follows by arguments quite similar to those used
in Theorem 1, beginning with a version of Lemma 1 for the Bloch space, in
which condition (6) of that lemma is replaced by

lim
n→∞

sup
a∈D

∫
D

|fn(a)|p|ϕ′a(z)|s dµ = 0

for every s > 1. While the details of the proof of Theorem 3 are left to the
interested reader, we make a few comments about the relevant changes in the
proof of Theorem 1.

For the implication (ii)⇒(iii), we begin with the fact that when (ii) holds,
the norm of the restriction measure µr = µ|D\Dr (defined by setting ‖µr‖ =
sup{µr(S(I))/|I|s : I ⊂ ∂D}) can be made as small as desired by choosing
r sufficiently close to 1. This is obtained for s > 1 by an easy adaptation of
the argument in [CM, p. 130] in the case s = 1. Then assuming {fn} is a
bounded sequence in the Bloch space, the functions

gn,a(z) = (fn(z)− fn(a))(ϕ′a(z))s/p
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will be bounded in Lp,s−2
a for all n and a ∈ D. This follows from the fact that

for f ∈ H(D), the quantities

sup
a∈D
‖f ◦ ϕa − f(a)‖Lp,s−2

a

and
sup
z∈D
|f ′(z)|(1− |z|2)

are comparable (see [A]). The remainder of the argument for (ii)⇒(iii) then
proceeds as in the proof of Theorem 1.

For (iii)⇒(i) we make use of exactly the same test functions as in equation
(12); these are also a bounded sequence in B.

The equivalence of (iii) and (iv) follows from the chain of equivalences

sup
a∈D

∫
D

|f |p|ϕ′a|sdµ <∞

⇔ |f |pdµ is an s-Carleson measure

⇔ sup

{∫
D

|f |p|g|qdµ : g ∈ Lq,s−aa , ‖g‖ = 1

}
<∞,

with the two supremums being comparable for fixed f ∈ H(D).
We may apply Theorem 3 to study compactness of the integral operator

Jf on B.

Corollary 2. For f ∈ H(D), Jf is compact on B if and only if for
some (all) s > 1

lim
|a|→1

(
log

2
1− |a|

)2 ∫
D

|f ′(z)|2(1− |ϕa(z)|2)s dA(z) = 0.

Since for f analytic in the disk and any α > −1, supa∈D ‖f ◦ϕa−f(a)‖L2,α
a

and supz∈D |f ′|2(1− |z|2) are comparable, f ∈ B if and only if

sup
a∈D

∫
D

|f ′|2(1− |ϕa|2)sdA <∞

for some (all) s > 1. Thus Corollary 2 is proved in the same manner as
Corollary 1.
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