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ON PROBLEMS BY BAER AND KULIKOV USING V =1L

LUTZ STRUNGMANN

ABSTRACT. Let T be a torsion abelian group and X a cardinal. Among
all torsion-free abelian groups H of rank less than or equal to A satisfying
Ext(H,T) = 0 a group G is called A-universal for T if it is universal with
respect to group-embedding. We show that in Gdédel’s constructible
universe (V = L) there always exists a A-universal group for T if T
has only finitely many non-trivial bounded p-components. This answers
a question by Kulikov in the affirmative. Moreover, we prove that in
V = L for a large class of torsion-free abelian groups G there exists a
completely decomposable group C' such that Ext(G,T”) = 0 if and only
if Ext(C,T”") = 0 for any torsion abelian group 7”. This is related to a
question of Baer.

Introduction

In 1936 R. Baer [B] asked for a characterization of all pairs of torsion-free
abelian groups G and torsion abelian groups T satisfying Ext(G,T) = 0. This
is a simpler version of the problem of characterizing the pairs G and T such
that any mixed abelian group M with torsion subgroup 7' and torsion-free
quotient M/T = G has to split, i.e., that M =2 T @& G in a canonical way.
Baer himself [B] gave such a characterization for countable G. The question
was first considered again by Wallutis and the author [SW] who, in the frame-
work of cotorsion theories that are singly cogenerated by a torsion-free abelian
group G (as introduced by Salce [S]), introduced the class 7C(G) of all torsion
abelian groups T satisfying Ext(G,T) = 0. The characterization of the class
TC(G) for torsion-free abelian groups G is closely related to Griffith’s solution
of the Baer problem [G], which in this terminology can be stated as follows:
A torsion-free abelian group G is free if and only if 7C(G) is the class of all
torsion groups, i.e., G is free if and only if every mixed abelian group M with
M/t(M) = G splits. For rational groups R C @, and hence for completely
decomposable groups C, a complete description was obtained for 7C(R) and
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TC(C), respectively (see [SW]). Moreover, a necessary and sufficient criterion
was given for a class of torsion abelian groups € to be of the form 7C(C)
for some completely decomposable group C. A similar result was obtained
by the author [St] for rational groups instead of completely decomposable
groups, and it was shown that any finite rank torsion-free abelian group G
satisfies 7C(G) = TC(R) for some rational group R. In Section 2 of this
paper we will prove that the criterion from [SW] is satisfied for a large class
of torsion-free abelian groups, assuming Godel’s universe of constructibility.
Hence, for a group G in this class, we have 7C(G) = TC(C) for some com-
pletely decomposable group C. Since 7C(C) is well understood, this gives a
characterization of 7C(G) for torsion-free abelian groups G in this class. We
are not able to show that in V' = L every torsion-free abelian group is of this
kind, but we formulate a conjecture (“7 C-Conjecture”) stating that this is in
fact the case.

In Section 3 we consider Kulikov’s problem on the existence of A-universal
groups. As defined in the abstract, a torsion-free abelian group G is -
universal for a torsion abelian group T and a cardinal A if G is of rank less
than or equal to A\, Ext(G,T) = 0, and every torsion-free abelian group H
of rank less than or equal to A satisfying Ext(H,T) = 0 embeds into G.
Clearly, the existence of a A-universal group G for T" answers the question
which torsion-free groups H (of cardinality at most \) satisfy Ext(H,T) = 0:
namely, these groups are precisely the subgroups of G. Kulikov [KN] asked
if for uncountable \ and arbitrary T there is always a A-universal group for
T. We first deal with the case when A is a positive integer or w, and we ob-
tain satisfactory classification results in this case. Moreover, we show that in
V = L for every A and every torsion abelian group 7" with only finitely many
non-trivial bounded p-components there is always a A-universal group for T'.

Our notations are standard; notations that are not explained here can be
found in [F] or [EM]. All groups under consideration are abelian. The set of
primes is denoted by II. All rational groups R C Q are assumed to contain
the element 1. Moreover, we identify rational groups with their types since
this does not cause any confusion. However, if S and R are rational groups,
we write S C R if we mean set inclusion and S < R if we mean inequality as

types.

1. Preliminaries

We first recall a definition from [SW].

DEFINITION 1.1. Let G be a (torsion-free) group. By 7C(G) we denote
the class of all torsion groups T such that Ext(G,T) = 0.
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It is easy to see that 7C(G) is closed under taking epimorphic images and
contains all finite groups. Moreover, a torsion group T is in 7C(G) if and
only if its reduced part is in 7C(G).

We shall need the following lemma, which is well known. For the conve-
nience of the reader we provide a proof.

First recall that a basic subgroup B of a torsion group 7T is the direct sum
B= @pen By, of basic subgroups B,, of the p—components T},; for each prime
p, By is a direct sum of cyclic p-groups, B,, is a pure subgroup of 7},, and the
quotient T,/B, is divisible (see [F]).

LEMMA 1.2. Let T be a torsion group and B C T a basic subgroup of T.
Then, for any group G, T is an element of TC(G) if and only if B is.

Proof. The short exact sequence 0 - B — T — T/B — 0 induces the
exact sequence Ext(G, B) — Ext(G,T) — Ext(G,T/B) = 0, where the last
term is zero since T'/ B is divisible. Thus Ext(G, B) = 0 implies Ext(G,T) = 0,
ie,if BeTC(G) then T € TC(G).

Conversely, assume T € 7C(G). By [F, Theorem 36.1] B is an epimorphic
image of T" and thus also belongs to 7C(G). O

It is well known that the functor Ext(G, —) is closed under taking epi-
morphic images, but in general not closed under taking (pure) subgroups.
However, if we restrict ourselves to the class 7C(G), then this property holds.

LEMMA 1.3.  Let G be any group and T a torsion group. Then T € TC(Q)
if and only if T' € TC(QG) for all pure subgroups T' of T such that |T'| < |G].
Moreover, T' € TC(Q) for all pure subgroups T' of T

Proof. Assume that T' € 7C(G) and let T’ be a pure subgroup of T'. Choose
a basic subgroup B’ of T”. Then B’ is pure in T, and by [F, Corollary 36.2]
B’ is an epimorphic image of T. Thus B’ € T7C(G), and hence T' € TC(G) by
Lemma 1.2. Conversely, assume that T' ¢ TC(G), but 77 € TC(G) for all pure
subgroups T" of T of cardinality less than or equal to |G|. Since T ¢ T7C(G),
T is infinite. Let

(1.1) 0—TY% pm-26-—0

be a non-splitting short exact sequence. For g € G choose m, € ¢~ '({g})
and put M’ = (mg : g € G) C M. Note that [M'| = |G|. By [F, Proposition
26.2] there exists a pure subgroup M* C M such that M’ C M* and |[M*| =
|M’| = |G|. We obtain the short exact sequence

(1.2) 0 — 7" M0 e g,

where T = M* NT. Since T" is pure in T the sequence splits and we obtain
¥ € Hom(G, M*) such that ¢ [p+ 01p = idg. Thus also ¢ o 1) = idg and
therefore (1.1) splits, which is a contradiction. O
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To conclude this section we recall some of the basic results obtained in [St,
Theorem 2.5] and [SW, Proposition 2.2 and Corollary 3.7], which we shall
need in the next sections. For a torsion-free group G we denote by OT(G) its
outer type (see [A, page 84]).

ProPOSITION 1.4 ([St], [SW]). Let G be a torsion-free group and T a
reduced torsion group with T}, its p-component (where p is a prime). Then we
have:

(i) If G CQ, then T € TC(Q) if and only if the following conditions are
satisfied, where r, = Xf(l):
(a) T, is bounded for all p such that r, = co.
(b) T, =0 for almost all p such that r, # 0.
(ii) If G is countable, then there exists a completely decomposable group
C such that TC(G) = TC(C).
(i) If G is of finite rank, then TC(G) = TC(OT(Q)).

2. Characterization of 7C(G) in V =L

In [B] Baer asked to characterize 7C(G) for all torsion-free groups G. For
countable groups Proposition 1.4 gives a satisfactory description of 7C(G)
since the structure of 7C(C') is well understood for completely decomposable
groups C (see [SW]). In this section we shall show that assuming V' = L a large
class of torsion-free groups G satisfy 7C(G) = TC(C) for some completely
decomposable group C.

We first recall Theorem 3.6 from [SW], which characterizes the classes of
torsion groups that are of the form 7C(C') for some completely decomposable
group C.

THEOREM 2.1 ([SW]). Let € be a class of torsion groups. Then € =
TC(C) for some completely decomposable group C if and only if the following
conditions are satisfied:

(i) € contains all torsion cotorsion groups.

(ii) € is closed under epimorphic images.

(iii) For all primes p, @, ¢, Z(p") € € if and only if € contains all p-
groups.

(iv) If P is an infinite set of primes, then EBPGPZ(p) € € if and only if
@pep T, € € for all p—groups T), € €.

(v) If P is an infinite set of primes such that @, p Z(p) € &, then there
exists an infinite subset P’ of P such that @peX Z(p) ¢ € for all
infinite X C P’.
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Note that, by Proposition 1.4, for countable torsion-free groups G, 7C(G)
satisfies all conditions of Theorem 2.1, Moreover, it was shown in [SW, Corol-
lary 3.9] that under the assumption V' = L Theorem 2.1(iii) is always satisfied
for TC(G) when G is a torsion-free group.

LEMMA 2.2 (V = L, [SW]). Let G be a torsion—free group and let p be
any prime number. Then the following are equivalent:
(i) TC(G) contains all p—groups.
(ii) 7C(G) contains @,,,, Z(p")-
(iii) Zp) ® G is a free Z,y-module.
Hence, Theorem 2.1(iii) holds for TC(G).

The following example of a Shelah group shows that Lemma 2.2 does not
hold in ZFC (see [SW, Lemma 3.10]).

ExAMPLE 2.3 (MA + - CH, [SW]). For any prime number p there exists a
non-free Z,)-module G of cardinality ®; such that Ext(G, ,,c,, Z(p")) = 0.

Next we prove that Theorem 2.1(iv) holds under the assumption V = L.
We need the following basic lemma on the vanishing of Ext (see [ET, Lemma

1)).

LEMMA 2.4 ([ET]). Let T be a torsion group. Suppose that the torsion-
free group G is the union of a continuous ascending chain of subgroups G,
(o < X) such that T € TC(Go) and T € TC(Got1/Gq) for all a« < A. Then
T e TC(G).

Using Lemma 1.3 and Theorem XII.1.15 from [EM] it is now easy to prove
that a torsion-free group G satisfies Ext(G,T) = 0 (where T is a torsion group)
if and only if G is the union of a continuous well-ordered ascending chain {G,, :
a < A} of subgroups (Go = 0) such that |G,| < |G| and Ext(Go+41/Ge,T) =0
for all @ < A. But we can do even better using results from [BFS, Theorem
3.1].

ProrosITION 2.5 (V = L). Let G be a torsion-free group of infinite rank
and T a torsion group. Then Ext(G,T) = 0 if and only if G is the union of a
continuous well-ordered ascending chain {G,, : o < A} of subgroups (Go =0)
such that Go41/Gqo is countable, |Go| < |G|, and Ext(Go41/Ga,T) = 0 for
all o < .

Proof. The proof of [BFS, Theorem 3.1] carries over verbatim to the present
situation. All one has to do is to replace the property of being Whitehead by
the condition Ext(G,T) = 0. O
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PROPOSITION 2.6 (V = L). Let G be a torsion-free group and let T be a
torsion group. If G is of singular cardinality X\, then Ext(G,T) = 0 if and
only if Ext(H,T) =0 for all H C G of smaller cardinality than \.

Proof. See [E, Theorem 5.5] or the proof of [BFS, Theorem 3.1] which
uses Shelah’s Singular Compactness Theorem [Sh]. The notion of freeness is
defined as follows: G is “free” if and only if there exists a chain {G,} of the
type described in Proposition 2.5. It is readily checked that this definition
satisfies the assumptions of Shelah’s Singular Compactness Theorem. O

We remark that Proposition 2.6 does not hold in ZFC; see [SS1].

THEOREM 2.7 (V = L). Let G be a torsion-free abelian group. If P is
an infinite set of primes, then @pep Z(p) € TC(G) if and only if @pep T, €
TC(G) for all p-groups T,, € TC(G). In particular, Theorem 2.1(iv) holds for
TC(Q).

Proof. We first note that we only have to prove that P, p Z(p) € T7C(G)
implies P, p T, € TC(G) for all p-groups T}, € TC(G); the converse impli-
cation is trivial.

We use induction on the cardinality of G. If G is countable, then the claim
is true by Proposition 1.4. Hence assume that A = |G| is greater than or equal
to Ny. If A is singular, then P, p Z(p) € TC(G) implies that P, p Z(p) €
TC(H) for all subgroups H of G of smaller cardinality. Moreover, TC(G) C
TC(H). Hence the induction hypothesis implies that P p 7, € TC(H)
for all p—groups T, € 7C(G) C TC(H). Thus Proposition 2.6 shows that
®D,cp 1y € TC(G) for all p-groups T, € TC(G). Finally, assume that A
is regular. Fix T, € TC(G) for p € P. By Lemma 1.3, we may assume
without loss of generality that 7}, is of cardinality less than or equal to A.
Let G = B<x G be an appropriate M-filtration of G of the type described
in Proposition 2.5, i.e., such that @, p Z(p) € TC(Ga+1/Ga) for all a < A.
Similarly, for each p € P choose Mfiltrations G = Uﬁ<)\ Ggs,p of G such
that T, € TC(Ga+1,p/Ga,p) for all @ < A. It is well known that for each
p € P there is a cub D, of A such that Gg = Gg,, for all 3 € D,. Since
A = cf(A) > No, the intersection D = (,.p D, is still a cub in A. Thus,
for a <y € D we have P, p Z(p) € TC(G4/Gq) and T), € TC(G,/Gy) for
all p € P. Therefore, by the induction hypothesis, for « < v € D we obtain
®D,cp 1y € TC(G,/Ga). Hence, by [EM, Proposition XIL.1.14] or Lemma
2.4, we have @, p T, € TC(G). O

Note that Theorem 2.7 already implies that for a large class of torsion-
free groups G there exists a completely decomposable group C' such that
TC(G) =TC(C), if we assume V = L. In fact, this holds for all torsion-free
groups G satisfying Theorem 2.1(v).
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However, we consider condition (v) in V' = L. We will prove that the
smallest torsion-free group G violating Theorem 2.1(v) (if it exists) must be
of size Ny in V = L.

THEOREM 2.8 (V = L). Let G be a torsion-free group and assume that
for all groups H of size less than or equal to Xy Theorem 2.1(v) is satisfied.
If P is an infinite set of primes such that @, p Z(p) & TC(G), then there
exists an infinite subset P’ of P such that ®p€X Z(p) & TC(G) for all infinite
X C P'. Hence Theorem 2.1(v) is satisfied for G.

Proof. Assume that the claim is not true and let G be a counterexample
of minimal cardinality. By assumption |G| = A > Ny, and for all groups H
of smaller cardinality than A Theorem 2.1(v) holds. If A is singular, then, by
Proposition 2.6, @, p Z(p) ¢ TC(G) implies that P, p Z(p) ¢ TC(H) for
some subgroup H of G of smaller cardinality. Thus, by assumption, our claim
holds for H and therefore also for G. Finally, assume that A is regular. For
any infinite subset X of P put Tx = €P,c x Z(p). Hence Tp ¢ TC(G). Choose
a Miltration G = |, ¢, Ga such that Tp € TC(Gaq1/Ga) if, for some 3 > a,
Tp € TC(Gp/Gy). Let W = {P, : a € 280} be an enumeration of all infinite
subsets of P. Note that || = 2% = X; since we work in V = L. Since
G is a counterexample to Theorem 2.1(v) for every P, € W, there exists a
set X, € W such that X, C P, and Tx, € 7C(G). Choose Afiltrations
G = Up<)Gp,p of G for each P, € W (p < Ry) as in Proposition 2.5, such
that Tx, € TC(Gat1,p/Ga,p) for all < A. For all 4 < v < X we therefore
have Tx, € TC(G,,,/Gp,p)- 1t is well known that for each p < Ry there is a
cub D, of A such that Gg, = Gg for all 8 € D,. Since A = cf(\) > Ry, the
intersection C' = 1, .y, D, is still a cub in A. Assume that there exists 3 € C
such that Tp ¢ TC(Gp+1/Gp). Since Gg4+1/Gp is of smaller cardinality than
G, there exists an infinite subset X C P such that Ty € TC(Gpg4+1/Gp) for all
infinite subsets ¥ C X. Choose 3+ 1 <~ € C. Then also Ty € TC(G,/Gp)
for all infinite subsets ¥ C X. But this implies X = P, for some P, € W,
and hence Tx, € TC(G,/Gp) = TC(G,,,/Gp,p), which is a contradiction.
Thus, for all 8 € C we have Tp € TC(Gg+1/Gp). Hence the relative I'-
invariant ', (G) is equal to 0, and therefore, by [EM, Proposition XII.1.14],
Tp € TC(G), which is a contradiction. O

COROLLARY 2.9 (V = L). Assume that for all torsion-free groups H of
size less than or equal to Ny there exists a completely decomposable group
Cy such that TC(H) = TC(Cyg). Then all torsion-free groups G satisfy
TC(G) =TC(C) for some completely decomposable group C.

Proof. Let G be any torsion-free group. By Lemma 2.2 and Theorem 2.7,
conditions (i)—(iv) of Theorem 2.1 are satisfied for 7C(G). Moreover, Theorem
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2.8 shows that Theorem 2.1(v) is also satisfied. Hence, by Theorem 2.1,
TC(G) =TC(C) for some completely decomposable group C. O

As a corollary we obtain a special case of [EFS, Theorem CJ.

COROLLARY 2.10 (V = L). Let G be a torsion-free abelian group. Then
G is free if and only if @ ey De, Z(p") € TC(G). Hence there exists a
countable test-group for freeness.

Proof. If G is free, then trivially @,y D,.c,, Z(p") € TC(G). Hence
assume that P, ey D,.c,, Z(p") € TC(G). Since we assume V = L, we know
that conditions (i)—(iv) of Theorem 2.1 are satisfied for 7C(G). Therefore, by
Theorem 2.1(iii), @, ¢, Z(p") € TC(G) implies that 7C(G) contains all p-
groups for all primes p € II. Thus @, cy; Z(p) € T7C(G) and Theorem 2.1(iv)
imply that 7C(G) contains all direct sums of arbitrary p-groups (for p € II),
and hence contains all torsion groups. Thus 7C(G) is the class of all torsion
groups, and by Griffith’s solution of the Baer problem [G] it follows that G is
free. O

REMARK 2.11. The Example 2.3 of a Shelah group under Martin’s axiom
shows that the above corollary does not hold in ZFC.

We were not able to show that in V' = L every torsion-free group G satisfies
TC(G) = TC(C) for some completely decomposable group C. Hence we
conclude this section with a conjecture.

CONJECTURE 2.12 (7C-Conjecture). In Gdédel’s constructible universe
V = L, for every torsion-free group G there exists a completely decompos-

able group C such that TC(G) = TC(C).

3. Kulikov’s problem

Let T be any torsion group and A any cardinal. A torsion-free group G
of rank X is called A-universal for T if it satisfies Ext(G,T) = 0 and every
torsion-free group H of rank less than or equal to A satisfying Ext(H,T) = 0
can be embedded into G. Kulikov [KN, Question 1.66] asked if, for arbitrary
T and uncountable A, there is always a A-universal group. For a large class
of torsion groups we will show that this is the case in V' = L. Since, to the
author’s knowledge, there are no published results on Kulikov’s question for
countable or finite A, we begin with the case when A is an integer. We first
note that it is easy to see that G is A-universal for T if and only if G is A
universal for the reduced part of T. Hence we may always assume that T is
reduced. Recall that a group T is called cotorsion if Ext(Q,T) = 0.

LEMMA 3.1. If T is a torsion cotorsion group, then for any cardinal A
there exists a A-universal group G for T.
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Proof. Clearly the direct sum of A copies of the rationals Q forms a A-
universal group for T since every torsion-free group can be embedded into its
divisible hull. O

LEMMA 3.2. Let T be a torsion group and let G be n-universal for T for
some n > 0. Then G is homogeneous completely decomposable.

Proof. Since G is of finite rank n, it follows from Proposition 1.4(iii) that
the outer type R = OT(G) satisfies TC(R) = TC(G), and hence Ext(R,T) =
0. Thus, by universality, €,_,, R can be embedded into G. Therefore there
exists a maximal linearly independent set {x1,- - - , x,, } of elements of G having
type greater than or equal to R. Thus the inner type IT(G) is greater than
or equal to R (for the definition of inner type see [A, page 84]). Hence R =
OT(G) = IT(G) and it follows from [A, Proposition 3.1.13] that G must be
homogeneous completely decomposable of type R. (]

THEOREM 3.3. Let T be a torsion group and n € N. Then there exists an
n-universal group G for T if and only if T has only finitely many non-trivial
bounded p-components. In this case G is completely decomposable.

Proof. Without loss of generality we may assume that T is reduced. As-
sume that G is n-universal for T for some positive integer n. Then, by
Lemma 3.2, G must be homogeneous completely decomposable, and hence
TC(G) = TC(S) for some rational group S C Q. Assume that T has infinitely
many bounded p-components, say 7}, is bounded and non-trivial for p € P,
where P is an infinite set of primes. Then Ext(Q®),T) = 0 for all p € P.
Hence Q(P) embeds into G and thus, by Proposition 1.4(i), x5 (1) = oo for all
p € P. But then, again by Proposition 1.4(i), we have Ext(S,T) # 0, which
is a contradiction. Thus T can have only finitely many bounded non-trivial
p-components.

Conversely, assume that T has only finitely many non-trivial bounded p-
components. Let P = {p € Il : T}, is unbounded } and put R = (1/p> : p ¢ P)
C Q. Then, by Proposition 1.4(i), C' = @,.,, R clearly satisfies Ext(C,T) =
0. Let G be any torsion-free group of rank less than or equal to n satisfy-
ing Ext(G,T) = 0. We will show that G can be embedded into C. Since
Ext(G,T) = 0 it follows that for any type S in the typeset of G we have
Ext(S,T) = 0. Hence S < R since R is idempotent. Thus the tensor product
G ® R is homogeneous of type R. Moreover, the short exact sequence

(3.1) 0—-Z—-R—D—0
with D torsion divisible induces the short exact sequence
(3.2) 0-G—-GRR—-D®R—0,

and thus G is embeddable into G ® R. Note that D has non-trivial p-
components only for p € P. Let T' = T1 &1, with T} finite and T, = @pGP Tp.
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Then Ext(G®R,T) = 0 if and only if Ext(G® R,T») = 0. Applying the Hom-
functor to the sequence (3.2) we obtain

(3.3) Ext(D ® R, T>) — Ext(G ® R, Ty) — Ext(G,T») — 0,

and since D is g-divisible for all ¢ € P it follows that Ext(D ® R, T>) = 0, and
hence Ext(G® R, T) = 0. By Proposition 1.4(iii) there exists a rational group
S C Q such that 7C(G ® R) = TC(S). It follows that S > R, and since R
is idempotent and Ext(G ® R,T) = 0 we obtain S = R. Thus [St, Corollary
2.11] implies that G ® R is completely decomposable, and hence embeddable
into C. O

In the case of w-universal groups the situation is more delicate.

LEMMA 3.4. If T is a torsion group with only finitely many non-trivial
bounded p-components, then there is an w-universal group C for T which is
completely decomposable.

Proof. Without loss of generality assume that T is reduced torsion and
has only finitely many non-trivial bounded p-components. As in the proof
of Theorem 3.3 we define P = {p € II : T, is unbounded} and put R =
(1/p>* :p ¢ P) C Q. We will show that C = €,,, R is w-universal for T'. Let
G be countable torsion-free such that Ext(G,T) = 0. By the same arguments
as in the proof of Theorem 3.3 we see that G ® R is homogeneous of type R
and that Ext(G ® R,T) = 0. By Proposition 1.4(ii) there exists a completely
decomposable group H such that 7C(G® R) = TC(H). It follows that S < R
for all types S in the typeset of H since R is idempotent and Ext(GQR,T) = 0.
Therefore TC(R) C TC(H) = TC(G® R). Moreover, by homogeneity we have
TC(G®R) CTC(R), and hence TC(G ® R) = TC(R). Griffith’s solution of
the Baer problem [G] then implies that G ® R is completely decomposable of
type R and therefore embeds into C. (]

If T has infinitely many non-trivial bounded p-components, then we can
find at least a completely decomposable (< w)-universal group for T, i.e., a
completely decomposable countable torsion-free group G satisfying Ext(G,T)
= 0, and every finite rank torsion-free group H such that Ext(H,T) = 0 is
embeddable into G.

LEMMA 3.5. Let T be a torsion group. Then there exists a (< w)-universal
group for T which is completely decomposable.

Proof. Let T be torsion and define P; to be the set of all primes p such
that the p-component T}, of T' is bounded but non-trivial. Moreover, let P,
contain all primes such that T, = 0, and let P; = II\(P; U P,). For a finite
subset Q C P; we put

Rq = (1/p™ :pe (QUP))
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and define Cq = €@,¢, Rq. Finally, let C = D¢ (nite) cp, Co- Then
Ext(C,T) = 0 by Proposition 1.4(i).

We will show that every finite rank torsion-free group H such that Ext(H,T)
= 0 is embeddable into C. Let H be such a group. Then, by Proposition
1.4(iil), TC(H) = TC(K) for some rational group K C Q. Note that K is the
outer type of G. Thus, if S is in the typeset of H then, by Proposition 1.4(i),
clearly S < R, for some finite subset Qg of P;. Let Q) = USeTst(H) Qs C Py.
Then @ must be finite, for otherwise X;I)( (1) = oo for infinitely many primes
p € Py, which is a contradiction since Ext(K,T) = 0. We let R = sup{Rq, K'}
and conclude that H ® R must be homogeneous of type R. Notice that R is
idempotent and that Ext(R,T) = 0. We consider the short exact sequence

(3.4) 0—-Z—R—D-—0,

where D is torsion divisible with non-trivial p-components for Xf(l) = o0,
say U = {p € Il : D, # 0}. Note that U N P, is finite by the choice of R. By
applying first the ®-functor and then the Hom-functor to (3.4) we obtain the
short exact sequence

(3.5) Ext(D ® H,T) — Ext(H ® R, T) — Ext(H,T) = 0.

From the elementary properties of Ext it follows that

Ext(De HT)=Ext| @ D,oH, P T,
peUNP; peUNP;

By the choice of P; and the finiteness of U N P; we obtain that ®peUnP1 Ty,
and hence also Ext(D ® H,T), is bounded. But Ext(H ® R,T) is divisible
and an epimorphic image of Ext(D ® R, T), and hence trivial. Thus Ext(H ®
R,T) = 0. By Proposition 1.4(iii) there exists a rational group S C Q such
that 7TC(H®R) = TC(S), and hence R < S. Note that S must be idempotent.
Assume now that S > R. Then there exists p € P; such that xg(l) = 00
and x[(1) = 0. Since K < R, it follows that there exists an unbounded
p-group Ty € TC(H). We now prove by induction on the rank of H that
T, € TC(H ® R) = TC(S), which yields a contradiction. If H is of rank
one, then clearly x®#(1) < oo, and hence Ext(H @ R,Ti) = 0. Assume
that H is of rank n and choose a pure subgroup M of H of rank n — 1. Let
N = H/M C Q. From the exact sequence

(3.6) 0—-M—-H—-N=0
we obtain the short exact sequence
(3.7) Ext(N® R,Ty) — Ext(H ® R, T1) — Ext(M ® R,T}) — 0.

By the induction hypothesis, Ext(M ® R,T;) = 0. Moreover, we have N <
K since K = OT(G), and therefore Ext(G,T1) = 0 implies Ext(K,Ty) =

0 = Ext(N,T1). Thus, x)'(1) < oo, and hence also x,'®f(1) < co. We
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conclude that Ext(N ® R,T}) = 0, and hence Ext(H ® R,T}) = 0, which is a
contradiction. Thus S = R and TC(H ® R) = TC(R). By Griffith’s solution
of the Baer problem or [St, Corollary 2.11] it follows that H ® R is completely
decomposable of type R. Hence H C H ® R embeds into C. O

Note that Lemma 3.2 cannot hold for w-universal groups, for if G is w-
universal for T" and H is countable torsion-free satisfying Ext(H,T) = 0, then
G @ H is also w-universal for 7. We can even show that no w-universal group
for T (if it exists) can be completely decomposable if T has infinitely many
non-trivial bounded p-components. Recall that a torsion-free group B is called
a By-group if Bext(G,T) = 0 for all torsion groups 7.

LEMMA 3.6 ([SW]). Let B be a Byi-group. Then we have TC(B) =
TC(Drersi(p) 1), where Tst(B) denotes the typeset of B.

PropPOSITION 3.7. Let T be a torsion group with infinitely many non-
trivial bounded p-components. Then there exists a countable torsion-free group
G with Ext(G,T) = 0 such that G is not embeddable into any completely
decomposable group C satisfying Ext(C,T) = 0.

Proof. The proof is very similar to that given in [A, Example 3.4.2]. Hence
we will only give a brief outline. Let P be the set of primes such that 7T}, is
non-trivial and bounded. Let S be the set of words on the alphabet {0,1} and
denote by () the trivial word. We divide P into two disjoint infinite subsets
Py and P, and enumerate these by w, e.g., P, = {p;; : j <w} (i =0,1). For
s e Slet Xy = (1/p5 :s(j) =i) € Q. Then the family X, (s € S) forms a
tree, i.e., satisfies X; = X0 N X for all s € S, and clearly Ext(X,,T) = 0.
Moreover, if R is a type and for each n € N there is s € S with I(s) = n such
that R > X, then xf(l) = oo for infinitely many primes p € P, and hence
Ext(R,T) # 0.

Now define, forn € N, G,, = @P{X; : s € S,1(s) = n}, so that Ext(G,,T) =
0, and let G be the direct limit of {G,, f, : n > 1}, where f, : G,, — Gp11,
x — (z,z). Then G is a B;j-group and the typeset Tst(G) of the group G is
contained in the (even finite) meet closure of the sets X;. Since Ext(X,,T) =0
for all s € 5, it follows by Lemma 3.6 that T' € TC(P, g Xs) = T7C(G), and
thus Ext(G,T) = 0. Finally, assume that G is a subgroup of a completely de-
composable group C' = P, ., C; satisfying Ext(C,T') = 0. Since G is reduced,
we may assume that C' is reduced. There exists m > 1 such that Xy = Z C
Ci® - -@®Cp. Let 0# 2 € Xy and n > 1. Then x = P{x; : I(s) =n} € G,
with each z; # 0. Moreover, x5, = ¢(1,s) @ --- @ c(k, s) for some k > m
and c(i,$) € C;. Hence, X; = type(zs) < N{type(c(i,s)) : 1 <i <k} <
N{type(c(i,s)) : 1 <i < m}, and since x # 0 there exists j with 1 < j <m
such that ¢(j,s) # 0. Thus, for every n > 1 there exists s € S with I(s) =n
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and j with 1 < 7 < m such that X, < C;. By the choice of the sets X it
follows that Ext(C;,T) # 0, and we have reached a contradiction. O

COROLLARY 3.8. If T has infinitely many non-trivial bounded p-compo-
nents and X is an infinite cardinal, then no A-universal group G for T can be
completely decomposable.

To conclude this section we show that in V = L every torsion group with
only finitely many non-trivial p-components has A-universal groups for every
A. This contrasts the consistency result from [SS2], which shows that there is
a model of ZFC in which for every torsion group 7T that is not cotorsion there
is a class of cardinals A such that there exist no A-universal groups for T'.

THEOREM 3.9 (V = L). IfT is a torsion group with only finitely many
non-trivial bounded p-components and X\ is a cardinal, then there is a A-
universal group C for T which is completely decomposable.

Proof. Assume that T is reduced torsion and has only finitely many non-
trivial p-bounded components. We define P = {p € II : T}, is unbounded} and
put R = (1/p> :p ¢ P) € Q. Then, by Proposition 1.4(i), C = @, R clearly
satisfies Ext(C,T) = 0. We will show that C is A-universal for T. Let G be
torsion-free of cardinality less than or equal to A and satisfying Ext(G,T) = 0.
Since Ext(G,T) = 0, it follows that for any type S in the typeset of G we have
Ext(S,T) = 0. Hence S < R, since R is idempotent. Thus the tensor product
G ® R is homogeneous of type R. As in the proof of Theorem 3.3 it follows
that Ext(G ® R,T) = 0. Since we do not know whether the 7C-Conjecture
holds, we show directly that Theorem 2.1(v) holds for 7C(G ® R). Assume
that @ is an infinite set of primes such that @, Z(p) € 7C(G @ R). Then
Q\P must be infinite since 7" = ®pEQﬂP Z(p) is an epimorphic image of T,
and hence 77 € TC(G ® R). It follows that condition (v) of Theorem 2.1
holds for 7C(G ® R) since it holds for 7C(R). Thus V = L and the results
from Section 2 imply that there exists a completely decomposable group H
such that 7C(G) = TC(H). As in the proof of Theorem 3.4 we conclude that
TC(G®R) = TC(R). Thus Griffith’s solution of the Baer problem [G] implies
that G ® R is completely decomposable of type R and therefore embeds into
C. O

To the author’s knowledge, it is not known whether under V. = L for
every torsion group 7T and every infinite cardinal A\ there exists a A-universal
group for T. The author strongly conjectures that the answer is yes, but the
techniques developed in this article are not sufficient to provide a complete
solution. Therefore we pose the following open question.
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QUESTION 3.10 (V = L). Let T be a torsion group (with infinitely many
non-zero p-components) and X\ an infinite cardinal. Does there exist a A-
universal group for T'?

[EFS]
[EM]

[ET]

[GSW]
[G]
[KN]

(3]

[Sh]
[SS1]
[SS2]
St]

[SWI
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