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TOEPLITZ ALGEBRAS AND C*-ALGEBRAS ARISING
FROM REDUCED (FREE) GROUP C*-ALGEBRAS

SHUANG ZHANG

Abstract. Assume that Γ is a free group on n generators, where 2 ≤
n < +∞. Let Ω be an infinite subset of Γ such that Γ \ Ω is also

infinite, and let P be the projection on the subspace l2(Ω) of l2(Γ). We
prove that, for some choices of Ω, the C*-algebra C∗r (Γ, P ) generated
by the reduced group C*-algebra C∗rΓ and the projection P has exactly
two non-trivial, stable, closed ideals of real rank zero. We also give a
detailed analysis of the Toeplitz algebra generated by the restrictions of
operators in C∗r (Γ, P ) on the subspace l2(Ω).

Introduction

Throughout this article, we assume, except otherwise specified, that Γ is a
free group of n generators, say {g1, g2, . . . , gn}, and e is the unit of Γ, where
2 ≤ n < +∞. Each element of Γ is a reduced word gn1

i1
gn2
i2
. . . gnmim in the sense

that it does not contain any factor of the forms gg−1 and g−1g, where ni ∈ Z
(the group of all integers). Let {fg : g ∈ Γ} be a standard orthonormal basis
of the Hilbert space l2(Γ) of all complex valued, square-summable sequences
indexed by Γ. Let λ : Γ −→ L(l2(Γ)) be the left regular representation of
Γ on L(l2(Γ)), where L(H) denotes the algebra of all bounded operators on
a Hilbert space H as usual, and λ(g) := U(g) is a unitary operator defined
by U(g)(fh) = fg−1h for all g, h ∈ Γ. The reduced group C*-algebra C∗rΓ is
the norm closure of the group ring C[Γ] consisting of all linear combinations
{
∑n
i=1 αiU(hi) : hi ∈ Γ, αi ∈ C, and n ∈ N}; in other words, C∗rΓ is the

C*-subalgebra of L(l2(Γ)) generated by the group λ(Γ) = {U(g) : g ∈ Γ}.
The purpose of this article is to investigate the structure of the C*-algebra

generated by the reduced group C*-algebra C∗rΓ and a projection P onto a
subspace of the form l2(Ω), denoted by C∗r (Γ, P ), where both Ω and Γ \Ω are
infinite subsets of Γ. We will consider the specific cases when Ω is equal to
one of the following sets:
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(1) Γ+ := {gn1
i1
gn2
i2
. . . g

nj
ij

: j, n1, n2, . . . , nj ∈ N};
(2) Γ′+ := Γ+ ∪ {e};
(3) Γ0, a nontrivial subgroup of Γ; and
(4) ΓA, the union of {e, g1, g2, . . . , gn} and the set of all admissible reduced

words with respect to A ([8]), where A is an n× n irreducible matrix
with entries in {0, 1} ([6]).

It turns out that the cases (1) and (2) result in the same C*-algebra C∗r (Γ, P+),
which has exactly two nontrivial, stable, closed ideals; one is the algebra
K(l2(Γ)) consisting of all compact operators on l2(Γ) and the other is gen-
erated by P+ and denoted by IP+ (where P+ is the projection onto l2(Γ+)).
Furthermore, IP+/K(l2(Γ)) ∼= On⊗K, and IP+ has real rank zero, where On
is the Cuntz algebra. The case (3) yields a C*-algebra C∗r (Γ, P0) that has a
nontrivial, stable, closed ideal, that is, C∗rΓ0⊗K. The case (4) results in a C*-
algebra C∗r (Γ, R) that has exactly two non-trivial, stable, closed ideals; one is
K(l2(Γ)) and the other is generated by R and denoted by IR (where R is the
projection onto the subspace l2(ΓA)). In addition, IR/K(l2(Γ)) ∼= OA ⊗ K,
and IR has real rank zero, where OA is the Cuntz-Krieger algebra associated
with A. Moreover, we will give a necessary and sufficient condition for the
equality IP = C∗r (Γ, P ).

The case n = +∞ (i.e., the case when Γ is the free group on infinitely many
generators) and the cases when Γ is any free product of finite and infinite cyclic
groups have been studied in [16]; the resulting C*-algebras C∗r (Γ, P+) have
different structures. In [17] we proved that C∗r (Γ, P ) can be a purely infinite
simple C*-algebra (and hence has real rank zero) for some other choices of P
(there Γ can be more general free products of finite or infinite cyclic groups).
Thus, there are indeed many interesting C*-algebras in the class

{C∗r (Γ, PΩ) : Ω ⊂ Γ, |Ω| = |Γ \ Ω| = +∞}.

It appears to be an interesting, but difficult problem to classify, up to
*-isomorphism, all C*-algebras of the form C∗r (Γ, PΩ).

This article is self-contained with only few references needed. More ref-
erences are provided only for the convenience of the reader in searching for
some relevant literature.

0. Preliminaries

Let Ω be an infinite subset of Γ such that Γ \ Ω is also an infinite subset
of Γ, and let P be the projection in L(l2(Γ)) onto the subspace l2(Ω) of
l2(Γ). It easily follows from the definition that U(h)∗ = U(h−1) for h ∈ Γ,
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U(h1h2) = U(h2)U(h1) for h1, h2 ∈ Γ, and for any g ∈ Γ

U(g)∗PU(g)fh =

{
fh if h ∈ gΩ,
0 if h 6∈ gΩ;

U(g)PU(g)∗fh =

{
fh if h ∈ g−1Ω,
0 if h 6∈ g−1Ω.

Hence U(g)∗PU(g) and U(g)PU(g)∗ are the projections onto the subspaces
l2(gΩ) and l2(g−1Ω), respectively. As a natural analogue of the classic Toeplitz
operators associated with Ω := Z

+ ⊂ Γ := Z, for each g ∈ Γ one defines a
Toeplitz operator Tg as follows:

Tg := PU(g)P ∈ L(l2(Ω)).

Obviously,

Tg(fh) = Pfg−1h =

{
fg−1h if h ∈ gΩ ∩ Ω,
0 if h 6∈ gΩ ∩ Ω.

Thus, {Tg : g ∈ Γ} is a set of partial isometries on l2(Ω) such that

T ∗g = Tg−1 ,

T ∗g Tg is the projection onto l2(gΩ ∩ Ω), and

TgT
∗
g is the projection onto l2(g−1Ω ∩ Ω).

The C*-algebra TP generated by {Tg : g ∈ Ω} is called the Toeplitz C*-
algebra associated with Ω (cf. [7], [8], [9]). The hereditary C*-subalgebra
AP := PC∗r (Γ, P )P is often called a corner algebra supported by P . It is
obvious that AP is generated by {Tg : g ∈ Γ} and hence contains TP . We will
later prove that in some cases the corner AP is actually equal to TP .

Notice that all of the above observations remain valid when Γ is any free
product of cyclic groups of finite or infinite order, consisting of all reduced
words of elements in the groups.

1. A criterion for IP = C∗r(Γ,P)

In this section, we investigate under what condition on Ω the closed ideal IP
of C∗r (Γ, P ) generated by P is equal to C∗r (Γ, P ). The following is a necessary
and sufficient condition for this equality.

1.1. Theorem. Let Γ be any free product of cyclic groups with finite or
infinite order. Then IP = C∗r (Γ, P ) if and only if there exist finitely many
elements h1, h2, . . . , hm ∈ Γ such that Γ =

⋃m
j=1 hjΩ.

Before proving this criterion, we need to deal with some preliminary mat-
ters. The two operations ∨ and ∧ on projections are defined in a von Neumann
algebra but not in a C*-algebra in general, for the resulting projections Q1∨Q2
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and Q1 ∧ Q2 may lie outside the C*-algebra. Nevertheless, ∨ and ∧ can be
partially executed in this particular C*-algebra C∗r (Γ, P ).

1.2. Lemma.

(i) The projections U(h1)PU(h1)∗ and U(h2)PU(h2)∗ commute for any
two elements h1, h2 ∈ Γ.

(ii) U(h1)PU(h1)∗ ∨ · · · ∨ U(hm)PU(hm)∗ and U(h1)PU(h1)∗ ∧ · · · ∧
U(hm)PU(hm)∗ are projections in C∗r (Γ, P ) for any finitely many el-
ements h1, h2, . . . , hm ∈ Γ.

Proof. (i) This is immediate, since U(h1)PU(h1)∗ and U(h2)PU(h2)∗ are
projections onto the subspaces l2(h−1

1 Ω) and l2(h−1
2 Ω).

(ii) U(h1)PU(h1)∗U(h2)PU(h2)∗ is the projection onto l2(h−1
1 Ω ∩ h−1

2 Ω),
that is in C∗r (Γ, P ). By definition,

U(h1)PU(h1)∗ ∨ U(h2)PU(h2)∗ = U(h1)PU(h1)∗ + U(h2)PU(h2)∗

− U(h1)PU(h1)∗U(h2)PU(h2)∗,

U(h1)PU(h1)∗ ∧ U(h2)PU(h2)∗ = U(h1)PU(h1)∗U(h2)PU(h2)∗,

which are both projections in C∗r (Γ, P ). The general conclusion follows by
induction. �

1.3. Proof of Theorem 1.1. First, assume that Γ =
⋃m
j=1 hjΩ, where

h1, h2, . . . , hm ∈ Γ. We show that the identity I of C∗r (Γ, P ) is in IP , and
hence IP = C∗r (Γ, P ). Clearly,

U(h1)PU(h2)∗ ∨ U(h2)PU(h2)∗ ∨ · · · ∨ U(hm)PU(hm)∗ = I,

since the projection on the left-hand side of the above equality is onto the
subspace l2(

⋃m
j=1 hjΩ), that is, the whole space l2(Γ). Thus, IP = C∗r (Γ, P )

by the above lemma.
Secondly, assume that Γ 6=

⋃m
j=1 hjΩ for any finitely many elements h1, h2,

. . . , hm of Γ. Then Γ \
⋃m
j=1 hjΩ must be an infinite subset of Γ. We show

that the identity I is not in IP . To do so, we suppose I ∈ IP and then reach
a contradiction.

Since the linear span of {U(g) : g ∈ Γ} is norm dense in C∗rΓ, it is clear
that the linear span L′ of all products of elements in

{PU(g), U(g)P, PU(g)(I − P ), (I − P )U(g)P : g ∈ Γ}

is norm dense in IP . Take a linear combination X from L′ such that

‖X − I‖ < δ < 1.

Then
‖(I − P )X(I − P )− (I − P )‖ < δ.
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Obviously, the ith term of (I − P )X(I − P ) can be written in the form

Xi := αi(I − P )U(ki)P1U(hi1)P2U(hi2)P3 . . . PliU(hili)Pli+1U(k′i)(I − P ),

where αi ∈ C and Pj is equal to either P or I − P for 1 ≤ j ≤ i + 1 and at
least one of the Pj ’s is equal to P , and ki, k

′
i, hij ∈ Γ for 0 ≤ j ≤ li. Let Pj0

be the first term P from the left occurring in the above product. It is clear
that the range projection of Xi is a subprojection of the range projection of

(I − P )U(ki)P1U(hi1)P2U(hi2)P3 . . . Pj0−1U(hj0−1,lj0−1)Pj0
= (I − P )U(ki)(I − P )U(hi1)(I − P ) . . . (I − P )U(hj0−1,lj0−1)Pj0 .

Let k′i be the reduced form of the product hj0−1,lj0−1 . . . hi2hi1ki. Clearly, the
range projection of

U(ki)(I − P )U(hi1)(I − P ) . . . (I − P )U(hj0−1,lj0−1)Pj0

is a subprojection of U(k′i)PU(k′i)
∗ for 1 ≤ i ≤ m. Take an element h ∈

Γ \
⋃m
j=1 k

′−1
j Ω \ Ω and any element g ∈ Ω. Then h ∈ hg−1Ω. It follows that

U(gh−1)∗PU(gh−1)(I − U(k′1)PU(k′1)∗ ∨ · · · ∨ U(k′m)PU(k′m)∗ ∨ P )

is a nonzero projection in C∗r (Γ, P ), denoted by R. Furthermore, by the
construction R is a projection in IP such that R(I − P ) = R and R(I −
P )X(I − P ) = 0. We immediately reach the following contradiction:

1 = ‖R‖ = ‖R((I − P )X(I − P )− (I − P ))‖ < δ < 1.

Therefore, I 6∈ IP , and hence IP 6= C∗r (Γ, P ).

For a subgroup Γ0 of Γ, one denotes as usual the index of Γ0 in Γ by
[Γ : Γ0], the cardinality of the set of all left cosets {hΓ0 : h ∈ Γ}. Let P0 be
the projection onto the subspace l2(Γ0).

1.4. Corollary. Let Γ0 be an infinite subgroup of Γ such that Γ \ Γ0 is
infinite. Then IP0 = C∗r (Γ, P0) if and only if [Γ : Γ0] < +∞.

Proof. This is immediate from Theorem 1.1. �

1.5. Corollary. Assume that Γ0 is the subgroup of Γ generated by
a subset Ω. If [Γ : Γ0] = +∞ and P is the projection onto l2(Ω), then
IP 6= C∗r (Γ, P ).

Proof. Let P0 be the projection onto l2(Γ0). If IP = C∗r (Γ, P ), then IP0 =
C∗r (Γ, P ) by Theorem 1.1, since Ω ⊂ Γ0. �
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2. Real rank of T+ and T ′+
From now on, we will discuss some specific subsets Ω of the free group Γ

on finitely many generators (2 ≤ n < +∞). In this and the next section, we
take Ω to be Γ′+ = Γ+ ∪ {e}, where

Γ+ :=
{
gn1
i1
gn2
i2
. . . gnmim ∈ Γ : m,n1, n2, . . . , nm ∈ N

}
,

and we let P+ and P ′+ be the projections onto the subspaces l2(Γ+) and
l2(Γ′+), respectively.

We first consider C∗r (Γ, P ′+). For h ∈ Γ′+ one observes immediately that

ThT
∗
h = P ′+ and T ∗hTh is the projection onto the subspace l2(hΓ′+).

The C*-subalgebra T ′+ of L(l2(Γ′+)) generated by {Tg : g ∈ Γ′+} involves the
following extension (see [7]):

0 −→ K(l2(Γ′+)) −→ T ′+ −→ On −→ 0,

where K(l2(Γ′+)) is the algebra of all compact operators on l2(Γ′+), and On is
the Cuntz algebra generated by n isometries {Si}ni=1 such that

S1S
∗
1 + S2S

∗
2 + · · ·+ SnS

∗
n = I.

The corner hereditary C*-subalgebra AP ′+ , i.e., the corner P ′+C
∗
r (Γ, P ′+)P ′+, is

generated by {
Tg := P ′+U(g)P ′+ : g ∈ Γ

}
.

It is obvious that T ′+ is a *-subalgebra of AP ′+ , AP ′+ is a C*-subalgebra of
IP ′+ , and AP ′+ generates IP ′+ as a closed ideal. We will clarify the relation
between T ′+ and AP ′+ by analyzing the elements of AP ′+ , and then determine
the (closed) ideal structure of C∗r (Γ, P ′+).

2.0. Proposition. IP ′+ 6= C∗r (Γ, P ′+).

Proof. This is immediate from Theorem 1.1. �

The main result of this section is as follows:

2.1. Theorem.

(i) T ′+ = AP ′+ .
(ii) The short sequence 0 −→ K(l2(Γ′+)) −→ T ′+ −→ On −→ 0 is exact.
(iii) RR(AP ′+) = RR(IP ′+) = 0.

To prove this theorem, we need the following lemmas.

2.2. Lemma. Suppose that g ∈ Γ is represented by a reduced word gε1i1 g
ε2
i2

. . . gεnin , where the εi’s are nonzero integers. Then Tg 6= 0 if and only if there
is 0 ≤ m ≤ n such that εi > 0 for 1 ≤ i ≤ m and εi < 0 for m + 1 ≤ i ≤ n,
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where the cases m = 0 and m = n are to be interpreted as εi < 0 for 1 ≤ i ≤ n
and εi > 0 for 1 ≤ i ≤ n, respectively.

Proof. If εi < 0 for all 1 ≤ i ≤ n, then T ∗g Tg = P ′+ and TgT
∗
g is the projec-

tion onto the subspace l2(g−εnin
g
−εn−1
in−1

. . . g−ε2i2
g−ε1i1

Γ′+); note that g−εnin
g
−εn−1
in−1

. . . g−ε2i2
g−ε1i1

Γ′+ is the set of all those elements of Γ′+ that begin with g−εnin
g
−εn−1
in−1

. . . g−ε2i2
g−ε1i1

. If εi > 0 for all 1 ≤ i ≤ n, then TgT
∗
g = P ′+ and T ∗g Tg is the

projection onto the subspace associated with the subset{
h ∈ Γ′+ : h starts with gε1i1 g

ε2
i2
. . . gεnin

}
.

If there is m such that 1 < m < n, εi > 0 for 1 ≤ i ≤ m, and εi < 0 for
m < i ≤ n, then TgT

∗
g is the projection onto the subspace associated with{

h ∈ Γ′+ : h starts with g−εnin
g
−εn−1
in−1

. . . g
−εm+1
im+1

}
;

and T ∗g Tg is the projection onto the subspace associated with{
h ∈ Γ′+ : h starts with gε1i1 g

ε2
i2
. . . gεmim

}
.

This proves the direction “if” of the lemma.
We now verify the direction “only if”. Assume that Tg 6= 0 and that εm

is the last positive power occurring in the reduced word g = gε1i1 g
ε2
i2
. . . gεnin . It

suffices to show that εi > 0 for any 1 ≤ i ≤ m. If εi < 0 for some 1 ≤ i ≤ m−1,
then gΓ′+ ∩ Γ′+ = ∅; but this would imply Tg = 0. �

2.3. Lemma. Let g = gε1i1 g
ε2
i2
. . . gεmim ∈ Γ′+, where εi > 0 for 1 ≤ i ≤ m.

Then:
(i) The unitary operator U(g) can be written, with respect to the decom-

position P ′+ ⊕ P ′⊥+ = I, in the matrix form(
A 0
C D

)
,

where A = P ′+U(g)P ′+, C = P ′⊥+ U(g)P ′+, and D = P ′⊥+ U(g)P ′⊥+ .
(ii) Tgε11 g

ε2
2 ...gεmm

= Tgεmm T
g
εm−1
m−1

. . . Tgε22
Tgε11

.

Proof. (i) Since U(g)∗P ′+U(g) is the projection onto the subspace l2(gΓ′+)
and gΓ′+ ⊂ Γ′+, it follows that P ′⊥+ U(g)∗P ′+U(g)P ′⊥+ = 0. Thus P ′+U(g)P ′⊥+ =
0.

(ii) It is easily checked with a simple matrix multiplication that
P ′+U(gε11 g

ε2
2 )P ′+ = P ′+U(gε22 )P ′+U(gε11 )P ′+ whenever εi > 0. The general situa-

tion follows by induction. �

2.4. Lemma. Assume that Tg 6= 0, where g = gε1i1 g
ε2
i2
. . . gεnin , εi > 0 for

1 ≤ i ≤ m, and εi < 0 for m+ 1 ≤ i ≤ n (0 ≤ m ≤ n). Then

Tg = T ∗−εngin
T ∗−εn−1
gin−1

. . . T ∗−εm+1
gim+1

T εmgimT
εm−1
gim−1

. . . T ε1gi1 .
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Proof. By the definition we have U(g) = U(gεm+1
im+1

. . . gεnin )U(gε1i1 . . . g
εm
im

).
We claim that

P ′+U(gεm+1
im+1

. . . gεnin )P ′⊥+ U(gε1i1 . . . g
εm
im

)P ′+ = 0.

For the cases m = 0 and m = n this equality is trivial. Assume 1 < m < n.
First, observe that the range projection of P ′⊥+ U(gε1i1 . . . g

εm
im

)P ′+ is a subpro-
jection of the projection onto the subspace associated with the set of all re-
duced words starting with g−εmim

. . . g−εkik
for some 1 ≤ k ≤ m − 1; secondly,

notice that the range projection of U(gεm+1
im+1

. . . gεnin )P ′⊥+ U(gε1i1 . . . g
εm
im

)P ′+ is a
subprojection of the projection onto the subspace associated with the set of
all reduced words starting with

g−εnin
. . . g

−εm+1
im+1

g−εmim
. . . g−εkik

for some 1 ≤ k ≤ m− 1; thirdly, the set of all reduced words starting with

g−εnin
. . . g

−εm+1
im+1

g−εmim
. . . g−εkik

is disjoint from Γ′+. Thus, the above equality is proved.
Using this equality, we have

P ′+U(gε1i1 . . . g
εn
in

)P ′+ = P ′+U(gεm+1
im+1

. . . gεnin )P ′+U(gε1i1 . . . g
εm
im

)P ′+
+ P ′+U(gεm+1

im+1
. . . gεnin )P ′⊥+ U(gε1i1 . . . g

εm
im

)P ′+
= P ′+U(gεm+1

im+1
. . . gεnin )P ′+U(gε1i1 . . . g

εm
im

)P ′+.

Since εi > 0 for 1 ≤ i ≤ m, from the definition and the matrix form of U(gi)
as given in Lemma 2.3(i) one sees that

Tgε1i1 ...g
εm
im

= P ′+U(gε1i1 g
ε2
i2
. . . gεmim )P ′+

= (P ′+U(gim)P ′+)εm(P ′+U(gim−1)P ′+)εm−1 . . . (P ′+U(gi1)P ′+)ε1

= T εmgimT
εm−1
gim−1

. . . T ε1gi1 .

Since U(g−1) = U(g)∗ for any g ∈ Γ and εi < 0 for m+ 1 ≤ i ≤ n, it is again
easily seen from Lemma 2.3(i) that

T
g
εm+1
im+1

...gεnin
= P ′+U(gεm+1

im+1
. . . gεnin )P ′+

= (P ′+U(g−1
in

)P ′+)−εn . . . (P ′+U(g−1
im+1

)P ′+)−εm+1

= T−εn
g−1
in

. . . T
−εm+1

g−1
im+1

= T ∗−εngin
T ∗−εn−1
gn−1

. . . T ∗−εm+1
gim+1

.

Therefore, we have the equality

Tg = T ∗−εngin
T ∗−εn−1
gin−1

. . . T ∗−εm+1
gim+1

T εmgimT
εm−1
gim−1

. . . T ε1gi1 . �
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2.5. Proof of Theorem 2.1. (i) By definition the C*-algebra T ′+ is
generated by {Tg : g ∈ Γ′+}, i.e., T ′+ is the norm closure of the linear span
of all possible words of elements in {T ∗h ;h ∈ Γ′+} ∪ {Th′ : h, h′ ∈ Γ′+}. From
Lemmas 2.2 and 2.4 one sees that T ′+ coincides with the corner algebra AP ′+
that is generated by the apparently larger set {Tg : g ∈ Γ}.

(ii) By a result from [7] one has the *-isomorphism

T ′+/K(l2(Γ′+)) ∼= On
via by the exact sequence 0 −→ K(l2(Γ′+)) −→ T ′+ −→ On −→ 0. SinceAP ′+ =
T ′+, we have therefore AP ′+/K(l2(Γ′+)) ∼= On, and the following sequence is
also exact:

0 −→ K(l2(Γ′+)) −→ AP ′+ −→ On −→ 0.

(iii) Since K1(K(l2(Γ′+)) = 0, RR(K(l2(Γ′+))) = 0, and RR(On) = 0 (see
[13] or [15]), it follows from [2, 3.14] or [15, 2.4] that RR(AP ′+) = 0. Thus,
RR(AP ′+ ⊗K) = 0 (see [2, 2.5]). Since AP ′+ is a full corner of IP ′+ (i.e., AP ′+
generates IP ′+ as a closed ideal), by [1, 2.8] one has

IP ′+ ⊗K ∼= AP ′+ ⊗K.

Therefore, RR(IP ′+ ⊗K) = 0, and hence RR(IP ′+) = 0.

The following is a necessary condition for the product Th1Th2 . . . Thk to be
a nonzero operator.

2.6. Proposition. Assume that h1, h2, . . . , hk ∈ Γ and Th1 , Th2 , . . . , Thk
satisfy

Th1Th2 . . . Thk 6= 0.
Then, after canceling all factors of the forms gg−1 or g−1g, the element
hkhk−1 . . . h2h1 can be simplified to either e or to the form gε1i1 g

ε2
i2
. . . gεlil , where

εi > 0 for 0 ≤ i ≤ m and εi < 0 for m + 1 ≤ i ≤ l (for some m ≤ l as in
Lemma 2.2).

Proof. By induction we only need to prove the lemma for k = 2. Because
Te = P ′+ is the identity of T+, we can assume that hi 6= e for 1 ≤ i ≤ k.

Since Th1 6= 0 and Th2 6= 0, by Lemma 2.2 one can write

h1 = gn1
j1
gn2
j2
. . . gntjt g

−nt+1
jt+1

g
−nt+2
jt+2

. . . g
−nt0
jt0

,

h2 = gm1
k1
gm2
k2

. . . gmsks g
−ms+1
ks+1

g
−ms+2
ks+2

. . . g
−ms0
ks0

,

where n1, n2, . . . , nt0 , m1,m2, . . . ,ms0 are all positive integers. By definition,
for the range projection R2 := Th2T

∗
h2

of Th2 there are three possibilities:
(1) When s = 0, R2 is the projection onto the subspace associated with

the subset {
h ∈ Γ′+ : h starts with g

ms0
ks0

. . . gm2
k2
gm1
k1

}
;
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(2) When s = s0, R2 = P ′+.
(3) When 1 ≤ s < s0, R2 is the projection onto the subspace associated

with the subset {
h ∈ Γ′+ : h starts with g

ms0
ks0

. . . g
ms+1
ks+1

}
.

Notice that Th1Th2 = P ′+U(h1)Th2 . In case (1) the range projection of
U(h1)Th2 is onto the subspace associated with the subset{

h ∈ Γ′+ : h starts with the reduced form of h−1
1 h−1

2

}
.

If P ′+U(h1)Th2 6= 0, then, by Lemma 2.2, h−1
1 h−1

2 can be simplified to the
required form (after canceling all factors of the form gjg

−1
j or g−1

j gj); equiv-
alently, h2h1 can be simplified to the required form. In case (2) we always
have Th1Th2 6= 0, since h2h1 is of the required form for any Th1 6= 0. In case
(3) the range projection of U(h1)Th2 is onto the subspace associated with the
subset{

h ∈ Γ′+ : h starts with the reduced form of h−1
1 g

ms0
ks0

. . . g
ms+1
ks+1

}
.

If Th1Th2 6= 0, then, by applying Lemma 2.2 again, h−1
1 g

ms0
ks0

. . . g
ms+1
ks+1

can be

simplified to the required form; this happens if and only if h−1
1 h−1

2 can be
simplified to the required form, which in turn holds if and only if h2h1 can be
reduced to the required form. �

2.7. Corollary. Assume that the final projection of Thi is a subprojec-
tion of the initial projection of Thi−1 for 2 ≤ i ≤ k, and that hkhk−1 . . . h2h1

can be simplified to a reduced word gn1
j1
gn2
j2
. . . gnmjm g

−nm+1
jm+1

. . . g−nljl
, where 0 ≤

m ≤ l and n1, n2, . . . , nl are all non-negative integers. Then
Th1Th2 . . . Thk = T ∗nlgjl

T ∗nl−1
gjl−1

. . . T ∗nm+1
gjm+1

TnmgjmT
nm−1
gjm−1

. . . Tn1
gj1

= T ∗
g
nm+1
jm+1

g
nm+2
jm+2

...g
nl
jl

Tgn1
j1
g
n2
j2
...gnmjm

.

Proof. This follows by combining Lemma 2.4 and Proposition 2.6. �

2.8. Remark. Assume that h1, h2, . . . , hk ∈ Γ are such that Th1Th2 . . . Thk
6= 0. The reader is reminded that the relation Th1Th2 . . . Thk = Thkhk−1...h2h1

is not valid in general; thus, the condition in Proposition 2.6 is necessary, but
not sufficient.

An immediate counterexample is given by h1 = g−3
1 , h2 = g3

1 , and h3 = g1;
in this case,

Th1Th2Th3 = T ∗g3
1
Tg3

1
Tg1 = Pg3

1
Tg1 6= Tg1 ,

where Pg3
1

is the projection onto the subspace l2(g3
1Γ′+). In fact, the initial

projection of Tg1 is the projection Pg1 onto the subspace l2(g1Γ′+), while the
initial projection of Pg3

1
Tg1 is Pg4

1
, the projection onto l2(g4

1Γ′+).
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3. Ideal structure of C∗r(Γ,P′+)

In this section we will determine all non-trivial closed ideals of C∗r (Γ, P ′+)
and the structure of IP ′+ . The main result is the following theorem.

3.1. Theorem.

(i) The only nontrivial closed ideals of C∗r (Γ, P ′+) are K(l2(Γ)) and IP ′+ .
(ii) IP ′+ ∼= IP ′+ ⊗K and IP ′+/K(l2(Γ)) ∼= On ⊗K.

Clearly, C∗r (Γ, P ′+) contains K(l2(Γ)) as a closed ideal, since T ′+ contains a
rank one projection onto the subspace spanned by fe. We prove the remaining
assertions with the following lemmas.

3.2. Lemma. The following short sequence is exact:

0 −→ IP ′+ −→ C∗r (Γ, P ′+) −→ C∗rΓ −→ 0.

Proof. To prove the exactness of the above short sequence, one only needs
to show that the canonical map from C∗r (Γ, P ′+) to the quotient

C∗r (Γ, P ′+)/IP ′+
is injective. In fact, since C∗rΓ is simple [10], each nonzero element of C∗rΓ
generates C∗rΓ as a closed ideal. If a nonzero element Y of C∗rΓ is in IP ′+ ,
then the closed ideal generated by Y , that is, C∗rΓ, would be in IP ′+ . This
contradicts the fact that IP ′+ is a non-trivial closed ideal of C∗rΓ. �

3.3. Lemma. IP ′+/K(l2(Γ)) ∼= On ⊗K.

Proof. Consider the exact sequence

0 −→ K(l2(Γ)) −→ IP ′+ −→ IP ′+/K(l2(Γ)) −→ 0.

Since P ′+IP ′+P
′
+ = AP ′+ , by [1, 2.8] it follows that

AP ′+ ⊗K ∼= IP ′+ ⊗K.

By Theorem 2.1, AP ′+/K(l2(Γ′+)) ∼= On. Since On is simple [4], it is clear that
K(l2(Γ)) is the only non-trivial closed ideal of IP ′+ . Let π be the Calkin map
from L(l2(Γ)) to L(l2(Γ))/K(l2(Γ)). Then it is obvious that

π(P ′+)
{
IP ′+/K(l2(Γ))

}
π(P ′+) = AP ′+/K(l2(Γ′+)).

It follows from [1, 2.8] again (or by a direct proof) that{
IP ′+/K(l2(Γ))

}
⊗K ∼= On ⊗K.

Thus, IP ′+/K(l2(Γ)) is a purely infinite, simple C*-algebra (see [4] and [15,
1.4]). By using a structural result in [15, 1.2] stating that a σ-unital (in
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particular, separable), purely infinite, simple C*-algebra is either unital or
stable, we see that IP ′+/K(l2(Γ)) is stable; i.e., we have

IP ′+/K(l2(Γ)) ∼=
{
IP ′+/K(l2(Γ))

}
⊗K,

since IP ′+/K(l2(Γ)) is non-unital (by Proposition 2.0) and separable. Finally,

IP ′+/K(l2(Γ)) ∼= On ⊗K. �

3.4. Corollary. The *-isomorphism of Lemma 3.3 between IP ′+/K(l2(Γ))
and On ⊗K induces the following exact sequence:

0 −→ K(l2(Γ)) −→ IP ′+ −→ On ⊗K −→ 0.

Proof. This is obvious. �

3.5. Lemma. IP ′+ and K(l2(Γ)) are the only non-trivial closed ideals of
C∗r (Γ, P ′+).

Proof. Using the fact that C∗rΓ is simple [10] and Lemma 3.2, one concludes
that there is no closed ideal between IP ′+ and C∗r (Γ, P ′+). There is also no
closed ideal between K(l2(Γ)) and IP ′+ , since IP ′+/K(l2(Γ)) ∼= On ⊗ K is
simple. There is obviously no other closed ideal in C∗r (Γ, P ′+). �

To finish the proof of Theorem 3.1, it remains to show that IP ′+ is a stable
C*-algebra. The following is an auxiliary lemma with a standard proof (see
[14, 2.5] for similar results).

3.6. Lemma (cf. [14, 2.5]). Assume that I is a stable closed ideal of a
C*-algebra A with RR(I) = 0, and assume that every projection in A/I lifts
to a projection in A. If a projection R̄1 ∈ A/I lifts to a projection R1 ∈ A
and a projection R̄2 ∈ (Ī − R̄1)A/I(Ī − R̄1) is equivalent to R̄1, then R̄2 lifts
to a projection R2 ∈ (I −R1)A(I −R1) such that R1 ∼ R2.

Proof. Let V̄ be a partial isometry in A/I such that V̄ ∗V̄ = R̄1 and V̄ V̄ ∗ =
R̄2. Let V ∈ A be such that V̄ is the image of V in A/I. Set W = (I −
R1)V R1. Then W − V ∈ I, since R̄1R̄2 = 0̄. Since the real rank of R1IR1 is
again zero, one can take a projection R ∈ R1IR1 such that

‖(R1 −R)(R1 −W ∗W )(R1 −R)‖ < 1.

Set
U = {(R1 −R)W ∗W (R1 −R)}−1/2

W ∗.

Then UU∗ = R1−R and U∗U ≤ I −R1. Furthermore, from the construction
it is easy to see that the image of U∗U in A/I is R̄2. Since I is stable, one
can find a projection R′ ∈ (I−R1−U∗U)I(I−R1−U∗U) such that R ∼ R′.
Let V1 be a partial isometry in I such that V ∗1 V1 = R′ and V1V

∗
1 = R.
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Set W0 = U + V1. Then W0W
∗
0 = R1 and W ∗0W0 = U∗U ⊕ R′ := R2, as

desired. �

3.7. Lemma. IP ′+ ∼= IP ′+ ⊗K.

Proof. Consider IP ′+/K(l2(Γ)) ∼= On ⊗K. Let 1 denote the identity of On,
and let {eij} be the set of matrix units of K. By repatedly applying Lemma
3.6, one can lift the projections 1 ⊗ eii of On ⊗ K to mutually orthogonal
projections P1, P2, . . . Pn, . . . of IP ′+ that are all equivalent in IP ′+ . Then
(I−

∑∞
i=1 Pi)IP ′+(I−

∑∞
i=1 Pi) ⊂ K(l2(Γ)), where the reader is reminded that

the infinite sums above and below are taken in the corresponding multiplier
algebras instead of the underlying C*-algebras. Take mutually orthogonal,
one-dimensional projections {Qk} in IP ′+ such that

I −
∞∑
i=1

Pi =
∑
k

Qk

(where the sum
∑
kQk may contain a finite or infinite number of terms).

Take a one-dimensional subprojection Ri of Pi for each i ≥ 1 such that all
Pi − Ri (i ≥ 1) are still equivalent in IP ′+ ; this can be done by taking a
one-dimensional subprojection R1 of P1, and letting Ri (i ≥ 2) be the one-
dimensional subprojection of Pi under the equivalence of P1 and Pi. Write
I −

∑∞
i=1(Pi −Ri) =

∑∞
j=1R

′
j , where{

R′j : j ∈ N
}

= {Qk : k} ∪ {Ri : i ∈ N} .

Set P ′i = (Pi − Ri) ⊕ R′i for i ≥ 1. Then all P ′i are mutually orthogonal
projections in IP ′+ and they are still mutually equivalent in IP ′+ . Also,

∞∑
i=1

P ′i = I.

Then it is clear that
IP ′+ ∼= (P ′1IP ′+P

′
1)⊗K.

Since P1 generates IP ′+ as a closed ideal, one sees from [1, 2.8] that

IP ′+ ∼= IP ′+ ⊗K. �

We have completed the proof of Theorem 3.1.

3.8 Remark-Proposition. Using exactly the same arguments in the
proofs of Lemma 3.6 and Lemma 3.7, one reaches the following general con-
clusion:

Proposition. Assume that H is any separable infinite-dimensional Hilbert
space. If A is a separable C*-subalgebra of L(H) such that K(H) ⊂ A and
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A/K(H) is a non-unital, purely infinite, simple C*-algebra, then A is a stable
C*-algebra.

4. The C*-algebra C∗r(Γ,P+)

After investigating the structure of C∗r (Γ, P ′+) in the last two sections, we
now consider the relation between C∗r (Γ, P ′+) and C∗r (Γ, P+), where P+ is the
projection onto the subspace l2(Γ+). The following are the conclusions:

4.1. Theorem.

(i) C∗r (Γ, P ′+) = C∗r (Γ, P+), and IP ′+ = IP+ .
(ii) The Toeplitz algebra T+ associated with P+ coincides with the corner
AP+ := P+C

∗
r (Γ, P+)P+; and AP+/K(l2(Γ+)) ∼= On.

Proof. (i) The projection P1 = P+U(g1g
−1
2 )∗P+U(g1g

−1
2 )P+ is onto the

subspace l2(g1g
−1
2 Γ+ ∩Γ+). Clearly, P1 is the projection onto the subspace

l2(Γ+(g1)), since

g1g
−1
2 Γ+ ∩ Γ+ = g1g

−1
2 Γ+(g2) = Γ+(g1),

where Γ+(gi) is the set of all reduced words in Γ+ with initial word gi. The
projection P2 := P+U(g1)∗P+U(g1)P+ is onto the subspace l2(g1Γ+ ∩ Γ+).
Since g1Γ+ ∩ Γ+ = g1Γ+ = Γ+(g1) \ {g1}, P1 − P2 is the one-dimensional
projection P1 onto the subspace spanned by fg1 . Consequently, K(l2(Γ)) is a
subalgebra of C∗r (Γ, P+).

Let Pe be the one-dimensional projection onto the subspace spanned by fe.
The relation P ′+ = P+ + Pe implies that

P+ ∈ C∗r (Γ, P ′+) and P ′+ ∈ C∗r (Γ, P+).

Therefore, C∗r (Γ, P+) = C∗r (Γ, P ′+).
(ii) First, all conclusions of Lemmas 2.2, 2.3 and 2.4 remain valid if Γ′+

is replaced by Γ+; the details are left to the reader. Then AP+ = T+, the
algebra generated by all Toeplitz operators{

Th := P+U(h)P+ : h ∈ Γ′+
}
.

Obviously,
∑n
i=1 T

∗
giTgi = P+, since Γ+ is the disjoint union

n⋃
i=1

{h ∈ Γ+ : h starts with gi} .

Thus, the same arguments as in [7] show that the following sequence is exact:

0 −→ K(l2(Γ+)) −→ T+ −→ On −→ 0.

Therefore, T+/K(l2(Γ+)) ∼= On. �
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5. C∗r(Γ,R) and the Cuntz-Krieger algebras

Assume from now on that A is not a permutation matrix. An n × n
matrix A = [tij ] with all entries either 0 or 1 is said to be irreducible if
for any pair (i, j) there is kij ∈ N such that the (i, j)-entry of Akij is nonzero.
The Cuntz-Krieger algebra OA is generated by nonzero partial isometries
{Si : i = 1, 2, . . . , n} on a separable Hilbert space such that

S∗i Si =
n∑
j=1

ti,jSjS
∗
j , S∗l Sk = 0 (l 6= k).

In particular, if A is an n × n matrix with all entries 1, then OA = On.
The reader can find more information about OA in [6], [4], and some of the
subsequent references.

Let ΩA be the subset of Γ+ consisting of the generators {g1, g2, . . . , gn},
the identity e, and all admissible reduced words with respect to A, where
a reduced word gi1gi2 . . . gim (ij = ik for j 6= k is allowed) is said to be
admissible with respect to A if {i1, i2, . . . , im} ⊂ {1, 2, . . . , n} and ti1,i2 =
ti2,i3 = · · · = tim−1,im = 1 ([8]).

Let R be the projection onto the subspace l2(ΩA). The Toeplitz algebra
TA generated by {Th := RU (h)R : h ∈ ΩA} has been studied in [8]. The
following short sequence is exact (see [8]):

0 −→ K(l2(ΩA)) −→ TA −→ OA −→ 0.

Here we are interested in studying the structure of C∗r (Γ, R) and the corner al-
gebra AR := RC∗r (Γ, R)R. As in [8] we assume that the number of generators
of Γ is precisely the matrix size n.

5.1. Theorem. Assume that A is an irreducible n×n matrix with entries
in {0, 1} and Γ is the free group on n generators. Then:

(i) AR = TA.
(ii) C∗r (Γ, R) has two nontrivial closed ideals, K(l2(Γ)) and the closed ideal
IR generated by R.

(iii) IR ∼= IR ⊗K, IR/K(l2(Γ)) ∼= OA ⊗K.
(iv) RR(AR) = RR(IR) = 0.

To prove this result, we again proceed in several steps as follows.

5.2. Lemma. We have Th 6= 0 if and only if h = gi1gi2 . . . gil , or h =
g−1
jk
g−1
jk−1

. . . g−1
j2
g−1
j1

, or h = gi1gi2 . . . gilg
−1
jk
g−1
jk−1

. . . g−1
j2
g−1
j1

such that il > 0
and til,j = tjk,j = 1 for some j ∈ {1, 2, . . . , n}, where all of the above words
are reduced words such that gi1gi2 . . . gil and gj1gj2 . . . gjk are elements in ΩA.

Proof. Since, for any h ∈ Γ, ThT ∗h is the projection onto l2(h−1ΩA∩ΩA) and
T ∗hTh is the projection onto l2(hΩA ∩ΩA), one sees that Th 6= 0 iff hΩA ∩ΩA
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is not empty. Thus, in order for Th 6= 0, it is necessary that h = h1h
−1
2 for

some h1, h2 ∈ ΩA, that is,

h = gi1gi2 . . . gilg
−1
jk
g−1
jk−1

. . . g−1
j2
g−1
j1
,

where ti1,i2 = ti2,i3 = · · · = til−1,il = 1, and tj1,j2 = tj2,j3 = · · · = tjk−1,jk = 1.
Two extreme cases here are when either h1 = e or h2 = e.

The above condition is also sufficient. In fact, if h = g−1
jk
g−1
jk−1

. . . g−1
j2
g−1
j1

(when h1 = e), then hΩA ∩ ΩA is the set of those reduced words in ΩA that
start with gj and satisfy tjk,j = 1 and e. Thus Th 6= 0. If h = gi1gi2 . . . gil
(when h2 = e), then

Th = T ∗
g−1
il
g−1
il−1

...g−1
i2
g−1
i1

.

Thus Th 6= 0.
If h = gi1gi2 . . . gilg

−1
jk
g−1
jk−1

. . . g−1
j2
g−1
j1

with il > 0, then hΩA∩ΩA is the set
of those reduced words in ΩA that start with gi1gi2 . . . gilgj , where tjk,j = 1;
furthermore, til,j = 1 is also necessary for gi1gi2 . . . gilgj ∈ ΩA. Therefore,
the existence of such a j with til,j = tjk,j = 1 is a necessary and sufficient
condition in order for hΩA ∩ ΩA 6= ∅. �

5.3. Lemma. Assume that h = gi1gi2 . . . gilg
−1
jk
g−1
jk−1

. . . g−1
j2
g−1
j1

with il ≥
1 and that til,j = tjk,j = 1 for some j ∈ {1, 2, . . . , n}. Then Th =
T ∗gj1gj2 ...gjk

Tgi1gi2 ...gil .

Proof. Let h1 = gi1gi2 . . . gil and h2 = gj1gj2 . . . gjk . Then

Th = Th1h
−1
2

= RU (h1h
−1
2 )R = RU (h2)∗U(h1)R.

To show Th1h
−1
2

= T ∗h2
Th1 , it suffices to show that

RU (h2)∗(I −R)U(h1)R = 0.

The range of (I −R)U(h1)R is the subspace

l2(g−1
il
. . . g−1

i2
g−1
i1

ΩA ∩ (Γ \ ΩA)).

Clearly, each reduced word in g−1
il
. . . g−1

i2
g−1
i1

ΩA ∩ (Γ \ ΩA) starts with g−1
il

. . . g−1
ik

for some 1 ≤ k ≤ l − 1. It follows that the range of U(h2)∗(I −
R)U(h1)R is associated with the subset of Γ in which each reduced word
starts with the reduced word h2g

−1
il
. . . g−1

ik
for some 1 ≤ k ≤ l − 1. Thus

the range projection of U(h2)∗(I − R)U(h1)R is a subprojection of I − R.
Therefore, RU(h2)∗(I −R)U(h1)R = 0. �

5.4 Proof of Theorem 5.1. From Lemma 5.2 and Lemma 5.3 one sees
that the two sets {Th : h ∈ ΩA} and {Th : h ∈ Γ} generate the same C*-
algebra. Equivalently, the Toeplitz algebra TA is exactly the corner AR :=
RC∗r (Γ, R)R.
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It follows from Theorem 1.1 that the projection R generates a nontrivial
closed ideal IR of C∗r (Γ, R). The same argument as for Lemma 3.2 shows that
the natural short sequence

0 −→ IR −→ C∗r (Γ, R) −→ C∗rΓ −→ 0

is exact. Using the short exact sequence (see [8])

0 −→ K(l2(ΩA)) −→ TA −→ OA −→ 0

and the fact that TA = AR, one obtains the exact sequence

0 −→ K(l2(ΩA)) −→ AR −→ OA −→ 0.

Since A is irreducible, the C*-algebra OA is purely infinite and simple [4].
Since AR generates IR as a closed ideal, IR/K(l2(Γ)) is stably isomorphic
to AR/K(l2(ΩA)), and hence IR/K(l2(Γ)) is stably isomorphic to OA. Thus,
IR/K(l2(Γ)) is purely infinite and simple; furthermore, IR/K(l2(Γ)) is non-
unital and separable. From the general result [15, 1.2] that every non-unital,
σ-unital, purely infinite simple C*-algebra is stable it follows that

IR/K(l2(Γ)) ∼= OA ⊗K.

Hence the following short sequence is exact:

0 −→ K(l2(Γ)) −→ IR −→ OA ⊗K −→ 0.

Using exactly the same proof as for Lemma 3.7, one shows that IR is a stable
C*-algebra, that is, IR ∼= IR ⊗K.

The above two exact sequences imply that C∗r (Γ, R) has only two nontrivial
closed ideals, K(l2(Γ)) and IR.

Finally, we obtain RR(AR) = 0 by combining the results of [4] and [13]
provided A is irreducible. Also, RR(IR) = 0, since IR and AR are stably
*-isomorphic (by [1, 2.8]).

5.5. Remark. In contrast to the cases Γ′+ and Γ+ we discussed earlier,
it seems that TA is not the closed linear span of Toeplitz operators associated
with R.

6. C∗r(Γ,P) associated with subgroups of Γ

Let Γ0 be a non-trivial subgroup of Γ (i.e., Γ0 6= Γ, {e}). Then Γ0 is also
a free group, and, of course, Γ0 as well as Γ \ Γ0 are infinite sets. Let P0 be
the projection onto the subspace l2(Γ0). Consider the C*-algebra C∗r (Γ, P0)
generated by C∗rΓ and P0. In this situation, Th := P0U(h)P0 for each h ∈ Γ,
and the Toeplitz algebra is denoted by T0.

6.1. Theorem.

(i) P0C
∗
r (Γ, P0)P0 = T0

∼= C∗rΓ0.
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(ii) The closed ideal I0 of C∗r (Γ, P0) generated by the projection P0 is
isomorphic to C∗rΓ0 ⊗K (of course, I0 6= C∗r (Γ, P0) ).

(iii) The following short sequence is exact:

0 −→ C∗rΓ0 ⊗K −→ C∗r (Γ, P0) −→ C∗rΓ −→ 0.

Proof. The result follows from the following claims.

Claim 1. Th 6= 0 if and only if h ∈ Γ0.

In fact, Th 6= 0 iff hΓ0 ∩ Γ0 6= ∅. Since Γ0 is a subgroup of Γ, we have
hΓ0 ∩ Γ0 6= ∅ iff h ∈ Γ0.

Claim 2. P0C
∗
r (Γ, P0)P0 = C∗rΓ0.

In fact, one needs only to observe that Th = U(h)P0 is a unitary operator
onto l2(Γ0) for each h ∈ Γ0, and that P0U(h)P0 = 0 for all h 6∈ Γ0.

Claim 3. The closed ideal IP0 of C∗r (Γ, P0) generated by P0 is nontrivial
(cf. Corollary 1.4).

Claim 4. IP0
∼= C∗rΓ0 ⊗K.

In fact, since Γ0 is a subgroup of Γ, it is clear that h1Γ0 ∩ h2Γ0 6= ∅
if and only if h1Γ0 = h2Γ0. One can choose recursively a sequence h1 =
e, h2, . . . , hn, . . . in Γ such that

hiΓ0 ∩ hjΓ0 = ∅ (i 6= j) and Γ =
∞⋃
i=1

hiΓ0.

On the other hand, U(hi)∗P0U(hi) is the projection onto the subspace l2(hiΓ0)
for i ≥ 1. Since P0 ∼ U(h1)∗P0U(hi) for i ≥ 1 and

∑∞
i=1 U(hi)∗P0U(hi) = I,

it is clear that
P0C

∗
r (Γ, P0)P0 ⊗K = I0.

Hence it follows from Claim 2 above that I0
∼= C∗rΓ0 ⊗K.

Claim 5. The natural short sequence 0 −→ C∗rΓ0 ⊗K −→ C∗(Γ, P0) −→
C∗rΓ −→ 0 is exact.

In fact, the same argument as in the proof of Lemma 3.2 applies.
Combining the claims yields a complete proof of Theorem 6.1. �

6.2 Example. Let us look at the following particular case. First, take any
element g ∈ Γ\{e} and let Γ1 := {gn : n ∈ Z}. Then Γ1 is an infinite subgroup
of Γ such that Γ \ Γ1 is an infinite subset of Γ. Let P1 be the projection onto
the subspace l2(Γ1). Consider the C*-algebra C∗r (Γ, P1) generated by C∗rΓ
and P1. Note that a Toeplitz operator with respect to P1 is of the form
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Th := P1U(h)P1 for any h ∈ Γ. We will denote the corresponding Toeplitz
algebra by TZ. Then we have the following corollary.

Corollary.

(i) P1C
∗
r (Γ, P1)P1 = TZ ∼= C(S1).

(ii) The closed ideal I0 of C∗r (Γ, P1) generated by P1 is *-isomorphic to
C(S1)⊗K (of course, I0 6= C∗r (Γ, P1) ).

(iii) The following short sequence is exact:

0 −→ C(S1)⊗K −→ C∗r (Γ, P1) −→ C∗rΓ −→ 0.

Proof. (i) The corner algebra P1C
∗
r (Γ, P1)P1 is generated by {Th : h ∈ Γ}.

On the other hand, Claim 1 in the proof of Theorem 6.1 implies that

{Th : h ∈ Γ} =
{
Tgn1 : n ∈ Z

}
.

Hence TZ is the abelian C*-algebra generated by the bilateral shift U(g1). It
is well known that TZ ∼= C(S1).

(ii) and (iii) follow from Theorem 6.1 and the trivial fact that C∗rΓ1 =
C(S1). �
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