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TOEPLITZ ALGEBRAS AND C*-ALGEBRAS ARISING
FROM REDUCED (FREE) GROUP C*-ALGEBRAS

SHUANG ZHANG

ABSTRACT. Assume that I' is a free group on n generators, where 2 <
n < 4oo. Let Q be an infinite subset of I' such that I' \  is also
infinite, and let P be the projection on the subspace 12(Q2) of 12(T"). We
prove that, for some choices of 2, the C*-algebra C}(T", P) generated
by the reduced group C*-algebra CT" and the projection P has exactly
two non-trivial, stable, closed ideals of real rank zero. We also give a
detailed analysis of the Toeplitz algebra generated by the restrictions of
operators in C}(T, P) on the subspace [?(2).

Introduction

Throughout this article, we assume, except otherwise specified, that I is a
free group of n generators, say {g1,92,-..,9n}, and e is the unit of I', where

2 <n < +oo. Each element of I' is a reduced word g;'' ;"> ... g;'"™ in the sense

1

im

that it does not contain any factor of the forms gg=! and g~'g, where n; € Z
(the group of all integers). Let {f; : g € '} be a standard orthonormal basis
of the Hilbert space [?(I") of all complex valued, square-summable sequences
indexed by T'. Let A : I' — L(I>(T)) be the left regular representation of
I on L(I*(T")), where £(H) denotes the algebra of all bounded operators on
a Hilbert space H as usual, and \(g) := U(g) is a unitary operator defined
by U(g)(fn) = fg-1p for all g,h € T'. The reduced group C*-algebra C;T" is
the norm closure of the group ring C[I'] consisting of all linear combinations
{570 aU(hy) : hy € T, a; € C,and n € N}; in other words, C;T is the
C*-subalgebra of L(I2(T')) generated by the group A\(I') = {U(g) : g € T'}.

The purpose of this article is to investigate the structure of the C*-algebra
generated by the reduced group C*-algebra C;T' and a projection P onto a
subspace of the form [2(£2), denoted by C(T', P), where both  and I'\ ) are
infinite subsets of I'. We will consider the specific cases when 2 is equal to
one of the following sets:
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( ) F+ = {gxlgzn;gzj : j7n17n27'~~7nj€N};

(2) T =Ty U el

(3) Ty, a nontrivial subgroup of T'; and

(4) T4, the union of {e, g1, g2, - . ., gn } and the set of all admissible reduced
words with respect to A ([8]), where A is an n x n irreducible matrix
with entries in {0, 1} ([6]).

It turns out that the cases (1) and (2) result in the same C*-algebra C*(T', Py),
which has exactly two nontrivial, stable, closed ideals; one is the algebra
K(I12(T")) consisting of all compact operators on [2(I') and the other is gen-
erated by Py and denoted by Zp, (where P, is the projection onto I?(I'})).
Furthermore, Zp, /K(1?(T)) = O0,, ® K, and Zp, has real rank zero, where O,,
is the Cuntz algebra. The case (3) yields a C*-algebra C*(T', Py) that has a
nontrivial, stable, closed ideal, that is, C; Ty ® K. The case (4) results in a C*-
algebra C(T', R) that has exactly two non-trivial, stable, closed ideals; one is
K(I%(T')) and the other is generated by R and denoted by Zr (where R is the
projection onto the subspace 1?(I'4)). In addition, Zr/K(I1>(T)) = 04 ® K,
and Zg has real rank zero, where O 4 is the Cuntz-Krieger algebra associated
with A. Moreover, we will give a necessary and sufficient condition for the
equality Zp = C* (T, P).

The case n = +0o0 (i.e., the case when T is the free group on infinitely many
generators) and the cases when I is any free product of finite and infinite cyclic
groups have been studied in [16]; the resulting C*-algebras C;(I', Py) have
different structures. In [17] we proved that C}(T', P) can be a purely infinite
simple C*-algebra (and hence has real rank zero) for some other choices of P
(there I' can be more general free products of finite or infinite cyclic groups).
Thus, there are indeed many interesting C*-algebras in the class

{C*(D,Py): QCT, |Q=|0\Q=+ool.

It appears to be an interesting, but difficult problem to classify, up to
*_isomorphism, all C*-algebras of the form C (T, Pg).

This article is self-contained with only few references needed. More ref-
erences are provided only for the convenience of the reader in searching for
some relevant literature.

0. Preliminaries

Let Q be an infinite subset of T such that I' \ Q is also an infinite subset
of T, and let P be the projection in L£(I?(T')) onto the subspace 12(f2) of
I2(T). Tt easily follows from the definition that U(h)* = U(h™!) for h € T,
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U(h1ha) = U(ha)U(hy) for hi,he €T, and for any g € T’

fn  ifhe g,
0 ifh¢ g

fn ifheg™Q,
0 ifhdg Q.
Hence U(g)*PU(g) and U(g)PU(g)* are the projections onto the subspaces
12(gf) and I?(g71Q), respectively. As anatural analogue of the classic Toeplitz

operators associated with Q := Z* C T' := Z, for each g € T one defines a
Toeplitz operator Ty as follows:

T, := PU(g)P € L(I*(Q)).

U(g)*PU(g)fn = {

U(g)PU(9)" fn = {

Obviously,
foan ifhegn,
s(fu) = Pl {o itheg2nQ.
Thus, {T}, : g € I'} is a set of partial isometries on /() such that

TF =Ty,

T, T, is the projection onto 2(¢02NQ), and
T,Ty is the projection onto Pg~lanQ).

The C*-algebra Tp generated by {T, : g € Q} is called the Toeplitz C*-
algebra associated with @ (cf. [7], [8], [9]). The hereditary C*-subalgebra
Ap := PC(T,P)P is often called a corner algebra supported by P. It is
obvious that Ap is generated by {7, : g € I'} and hence contains 7p. We will
later prove that in some cases the corner Ap is actually equal to 7p.

Notice that all of the above observations remain valid when T' is any free
product of cyclic groups of finite or infinite order, consisting of all reduced
words of elements in the groups.

1. A criterion for Zp = C;(T',P)

In this section, we investigate under what condition on €2 the closed ideal Zp
of C*(T, P) generated by P is equal to C*(T', P). The following is a necessary
and sufficient condition for this equality.

1.1. THEOREM. Let T be any free product of cyclic groups with finite or
infinite order. Then Ip = CX(T', P) if and only if there exist finitely many
elements hy,ha, ..., hy € I' such that T = U;n:1 h;Q.

Before proving this criterion, we need to deal with some preliminary mat-
ters. The two operations V and A on projections are defined in a von Neumann
algebra but not in a C*-algebra in general, for the resulting projections Q1 VQ2
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and Q1 A Q2 may lie outside the C*-algebra. Nevertheless, V and A can be
partially executed in this particular C*-algebra C (T, P).

1.2. LEMMA.

(i) The projections U(h1)PU (h1)* and U(he)PU (h2)* commute for any
two elements hy,he €T

(ii) U(h1)PU(h1)* V -~V U(hw)PU(hm)* and U(h)PU(R)* A -+ A
U(hm)PU (hym)* are projections in C*(T', P) for any finitely many el-
ements hi,ho, ..., hy € 1.

Proof. (i) This is immediate, since U(hy)PU (hy)* and U(hg)PU (h2)* are
projections onto the subspaces 12(h; Q) and 12(h; 'Q).
(ii) U(h1)PU(h1)*U(ho) PU(hg)* is the projection onto I2(h;'Q N hy '),
that is in C*(T", P). By definition,
U(h1)PU(h1)* V U(h2)PU(h2)* = U(h1)PU(h1)* 4+ U(ha)PU (ha)*
— U(h1)PU(h1)*U(he)PU (ha)*,
U(h1)PU(h1)* AU (ho)PU(h2)* = U(h1)PU(h1)*U(h2)PU (hg)*,
which are both projections in C(T', P). The general conclusion follows by
induction. (]

1.3. PROOF OF THEOREM 1.1. First, assume that T' = [Jj_, h;Q, where
hi,ho,...,hy, € I'. We show that the identity I of C(T', P) is in Zp, and
hence Zp = C} (T, P). Clearly,

U(h1)PU(h2)* VU(h2)PU(h2)* V-V U (hp)PU (hp)* =1,
since the projection on the left-hand side of the above equality is onto the
subspace IQ(U;n=1 h;Q), that is, the whole space {*(T"). Thus, Zp = C;(T', P)

by the above lemma.
Secondly, assume that " # U;nzl h;§2 for any finitely many elements hy, ho,
c+shp of T Then I'\ JjZ, 7;€ must be an infinite subset of I'. We show
that the identity I is not in Zp. To do so, we suppose I € Zp and then reach
a contradiction.
Since the linear span of {U(g) : g € T'} is norm dense in CT, it is clear
that the linear span £’ of all products of elements in

{PU(9),U(g)P,PU(g)(I — P),(I = P)U(g9)P:g €T}
is norm dense in Zp. Take a linear combination X from £’ such that
X -1 <d<1.

Then
(I - P)X(I—-P)—(I-P) <5
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Obviously, the ith term of (I — P)X (I — P) can be written in the form

Xi = ai(I - P)U(k‘z)PlU(hll)PgU(hlz)Pg e BLU(hllL)Pl U(/{Z;)(I - P),

i+1
where a; € C and P; is equal to either P or I — P for 1 < j <i41 and at
least one of the P;’s is equal to P, and k;, k},h;; € T for 0 < j < ;. Let P;,

79

be the first term P from the left occurring in the above product. It is clear
that the range projection of X; is a subprojection of the range projection of
(I — P)U(k;)PLU (h;1)PU (hia) Ps . ~-Pj071U(hjofl,le,1)Pj
= (I = PYU(k)(I = P)U(hit)(I = P)...(I = PYU(hjo—14,, ) Po-

Let k] be the reduced form of the product hj, 1,

o1 ... hiohij1k;. Clearly, the
range projection of

U(ki)(I = P)U(hi1)(I = P)...(I = P)U(hjy—11,, ) Fj

is a subprojection of U(k[)PU(k})* for 1 < i < m. Take an element h €

r\Uj, k;le \ © and any element g € . Then h € hg~'€). It follows that
U(gh™Y)" PU(gh™")(I — UK PU(K})* v -+ v U (K}, ) PU(K},)* v P)

is a nonzero projection in C}(I", P), denoted by R. Furthermore, by the

construction R is a projection in Zp such that R(I — P) = R and R(I —
P)X(I — P) =0. We immediately reach the following contradiction:

L=|[R]| =R((I-P)X(I-P)-(I-P)f<d<L
Therefore, I ¢ Zp, and hence Zp # C} (T, P).

For a subgroup I'y of I', one denotes as usual the indexr of I'yg in I' by
[[" : Ty], the cardinality of the set of all left cosets {hI'g : h € T'}. Let Py be
the projection onto the subspace 1?(Ty).

1.4. COROLLARY. Let Iy be an infinite subgroup of T such that T'\ Tq is
infinite. Then Tp, = C*(T', Py) if and only if [T : Ty] < +o0.

Proof. This is immediate from Theorem 1.1. ]
1.5. COROLLARY. Assume that Ty is the subgroup of I' generated by
a subset Q. If [[ : Ty] = +oo and P is the projection onto 1%(S)), then

Proof. Let Py be the projection onto I2(Ty). If Zp = C(T', P), then Zp, =
CH (T, P) by Theorem 1.1, since 2 C I'y. O
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2. Real rank of 7, and 7

From now on, we will discuss some specific subsets €2 of the free group I'
on finitely many generators (2 < n < +00). In this and the next section, we
take Q to be IY, =T'y U {e}, where

r, = {gznllgfj. cgim el im,ny,ng, ... M EN},

and we let P, and P} be the projections onto the subspaces I2(T'y) and
[?(I",), respectively.
We first consider C}(I', P\). For h € I/, one observes immediately that

T, Ty = P} and Tj;T), is the projection onto the subspace 1*(hI",).
The C*-subalgebra 7/ of L(I*(I",)) generated by {T} : g € I, } involves the

following extension (see [7]):
0 — K(*(I)) — T, — 0, — 0,

where K(I2(I",)) is the algebra of all compact operators on [*(I",), and O, is
the Cuntz algebra generated by n isometries {S;}, such that

5157 + 9285 4+ -+ + 5,55 = 1.

The corner hereditary C*-subalgebra Alﬁ7 i.e., the corner P, C(I', P} )P, is
generated by

{Tg =P U(g)P, :g€ F} i
It is obvious that 7] is a *-subalgebra of Api’ Alﬁ is a C*-subalgebra of
T Pl and .Ap4 generates 7, p, as a closed ideal. We will clarify the relation
between 7 and Apjr by analyzing the elements of AP_;_, and then determine
the (closed) ideal structure of C:(I", P ).

2.0. PROPOSITION. Ip; # CX(I', P}).

Proof. This is immediate from Theorem 1.1. O

The main result of this section is as follows:

2.1. THEOREM.

(i) Tj = Ap.

(ii) The short sequence 0 — K(I*(I",)) — T — O, — 0 is ezact.
(ili) RR(Ap;) = RR(Zp;) = 0.

To prove this theorem, we need the following lemmas.

€1 €2

2.2. LEMMA. Suppose that g € T is represented by a reduced word g;'g;’
.. g;", where the €;’s are nonzero integers. Then Ty, # 0 if and only if there
st<m<nsuchthate1 >Of0r1<z<mand61 <0 form+1<i<mn,
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where the cases m = 0 and m = n are to be interpreted ase; < 0 for1 <i<mn
and €; > 0 for 1 < i < n, respectively.

Proof. 1f €; < 0 for all 1 <7 <n, then 7,7, = P! and T,T; is the projec-
tion onto the subspace 12(g;f”'g;i"l’1 0 95,79;, 7T ); note that g;"gi:i"l’l
—€2 —€n—1

95, 9;, Ty is the set of all those elements of I, that begin with g; “*g; ™
95,729, e > 0 forall 1 < i < n, then T,T; = P} and T;T, is the
projection onto the subspace associated with the subset

{h €T, : h starts with g{'gs...g"}.
If there is m such that 1 < m < mn, ¢ > 0for 1 < i < m, and ¢ < 0 for
m <1 <n, then T, T7 is the projection onto the subspace associated with

{h €T, : h starts with g; “g; "~ _em“} :

in “ G
and T;T, is the projection onto the subspace associated with
{h e, : hstarts with g'g2...gi" }.
This proves the direction “if” of the lemma.
We now verify the direction “only if”. Assume that T, # 0 and that €,
is the last positive power occurring in the reduced word g = g;'g;> ... g;". It
suffices to show that ¢; > O forany 1 <i < m. If¢; < 0forsome 1l <7< m—1,

then ¢gI'", NTY, = @; but this would imply T, = 0. 0
2.3. LEMMA. Let g = gilg;Z...g;" € 'y, where ¢; > 0 for 1 <i < m.

Then:

i e unitary operator U(g) can be written, with respect to the decom-
i) Th it tor U b it ith t to the d
position P & P_’ﬁ = I, in the matriz form

A 0

C D)’
) where A = P U(g)P}, C = PFU(g)P}, and D = P*U(g)P}*-.
(11) Tgilg;2...g;{” = Tgfy;n Tgfnnb_—ll e ngz Tg? .

Proof. (i) Since U(g)*P}U(g) is the projection onto the subspace I?(gI"})
and gI", C I, it follows that P[-U(g)*P,U(g)P* = 0. Thus PLU(g) P+ =
0.

(i) It is easily checked with a simple matrix multiplication that
P U(g1'95*) P} = PLU(g5*) P .U(g7") P whenever ¢; > 0. The general situa-
tion follows by induction. O

2.4. LEMMA. Assume that Ty # 0, where g = g;'g;>...g;", € > 0 for
1<i<m,ande; <0 form+1<i<n (0<m<n). Then
Tg — T*fenT*fen_l T*76m+1TEm Tem_l T61
g Ty, - ..

in_1 i1 Jim = Gigm_1 9iy*
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Proof. By the definition we have U(g) = U(gfm:l1 g U(gsh - gim)-
We claim that
PLU(gim .. gim)PLlU (g ... gim) Py = 0.

gim+1

For the cases m = 0 and m = n this equality is trivial. Assume 1 < m < n.
First, observe that the range projection of P{*U (95} ... gim )P, is a subpro-
jection of the projection onto the subspace associated with the set of all re-
duced words starting with g; “*...g; “* for some 1 < k < m — 1; secondly,
notice that the range projection of U(gfmj: ...gf:)PjrlU(gfll c.gim )P s a
subprojection of the projection onto the subspace associated with the set of
all reduced words starting with

—€m+1 _—€m —€k

i " Giy i
for some 1 < k < m — 1; thirdly, the set of all reduced words starting with

—€n —€m+1l —€m —€L
gin i gim .. 'gik

is disjoint from I'"_. Thus, the above equality is proved.
Using this equality, we have

PLU(g) - 952 Pe = PLU(g - i )PRUGE - 907 ) PL
+ Per(gf:Ll .. .gf:')Pf‘U(gfll .. gf::)Pjr
= PLU(g; 0} - 00 ) PLU (g5 - g5 ) P

Since ¢; > 0 for 1 < ¢ < m, from the definition and the matrix form of U(g;)
as given in Lemma 2.3(i) one sees that

_ €1 €2 € 4
Ty gom = PLU(GE 657 050 )PL

— (PLU(g.,)PL) (PLU(gi, )P,) ... (PLU(g;,)P})"
=Ty T;ZZ;ll T
Since U(g~1) = U(g)* for any g € T and ¢; < 0 for m + 1 < i < n, it is again
easily seen from Lemma 2.3(i) that
e = PLU (g™ L gim)PL

Tgfm+1 gl i1

il
= (PLU(g)PL) ™ . (PLU(g; )Py o
= T;_i” o T_‘f{’“rl

in i1
- T;;E"T;:;—l .. .T;i;i";“.
Therefore, we have the equality

Tg — T*—€nT*—6n71 T*—6m+1T6m T€mf1 T€1 O
g, . . .

Gip_q iy Gim = Gip_1 giq
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2.5. PROOF OF THEOREM 2.1. (i) By definition the C*-algebra 7 is
generated by {T, : g € I", }, i.e., 7 is the norm closure of the linear span
of all possible words of elements in {T};h € I, } U {T},, : h,h' € I, }. From
Lemmas 2.2 and 2.4 one sees that 7| coincides with the corner algebra Ap;
that is generated by the apparently larger set {7, : g € T'}.

(ii) By a result from [7] one has the *-isomorphism

T/ K(ET) 2 0,
via by the exact sequence 0 — K(I*(I"})) — T} — O, — 0. Since Ap; =
T{, we have therefore Ap; / K(*(T7)) = O,, and the following sequence is
also exact:
0 — K(*(I)) — Ap, — Op — 0.

(iii) Since K;(K(I*(I',)) = 0, RR(K(1*(I",))) = 0, and RR(O,) = 0 (see
[13] or [15]), it follows from [2, 3.14] or [15, 2.4] that RR(APJ/r) = 0. Thus,
RR(Ap; ® K) =0 (see [2, 2.5]). Since Ap; is a full corner of Zp; (i.e., Ap;
generates Zp; as a closed ideal), by [1, 2.8] one has

IP_/*_ ®/C%Ap4_ ® K.
Therefore, RR(Zp; ® K) = 0, and hence RR(Zp; ) = 0.

The following is a necessary condition for the product T}, T4, ... Th, to be
a nonzero operator.

2.6. PROPOSITION. Assume that hy, ha, ..., hy € I and Ty, Th,, ..., Th
satisfy

k

Ty, Th, ... Th, #0.
Loor g7lg, the element

Then, after canceling all factors of the forms gg~

hihg_1...hahy can be simplified to either e or to the form g;! g;> .. .gfl’, where
€ >0for0<i<mande <0 form+1<i<I (for somem <1 as in
Lemma 2.2).

Proof. By induction we only need to prove the lemma for k = 2. Because
T, = P! is the identity of 7, we can assume that h; # e for 1 <i < k.
Since T}, # 0 and T}, # 0, by Lemma 2.2 one can write

— 471 N2 ng  TN41 T2 Nty
hy = 95, 95, -+ 95, gjf,+1 gjt+2 o 'gjto ’
_mji M2 Mg —Mst1l —Mst2 —Ms,
ha =9k ks Ik Tkerr koo "'gkso ’
where n1,ng,...,n¢,, M1, Ma, ..., M, are all positive integers. By definition,

for the range projection Ry := Ty, T} of Ty, there are three possibilities:
(1) When s = 0, Ry is the projection onto the subspace associated with
the subset
{h e I, : h starts with gZ:Z" ...ggzgﬂl} :
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(2) When s = s, Ry = P
(3) When 1 < s < sg, Rs is the projection onto the subspace associated
with the subset

{h e I/, : h starts with gzzo g?il} .

Notice that Ty, Th, = P{U(h1)Th,. In case (1) the range projection of
U(h1)Th, is onto the subspace associated with the subset

{h €T, : h starts with the reduced form of hy'hy"}.

If PLU(h1)Th, # 0, then, by Lemma 2.2, hi'hy' can be simplified to the
required form (after canceling all factors of the form g; gj_1 or gj_1 gj); equiv-
alently, hahi can be simplified to the required form. In case (2) we always
have Ty, T}, # 0, since hoh; is of the required form for any 73, # 0. In case
(3) the range projection of U(hq)T}, is onto the subspace associated with the
subset
{h € I/, : h starts with the reduced form of hflgzzo .. g?il} .

s+1
+1
simplified to the required form; this happens if and only if hl_lh; 1 can be
simplified to the required form, which in turn holds if and only if hohq can be
reduced to the required form. O

If Ty, Th, # 0, then, by applying Lemma 2.2 again, hflg;ns“ c gpst can be
50 Vs

2.7. COROLLARY. Assume that the final projection of T, is a subprojec-
tion of the initial projection of Th, , for 2 < i <k, and that hiphg_1 ... hahy

. . ny no N, .~ Mm+1 —ny
can be simplified to a reduced word 952 955 95, g 9 where 0 <
m <1 and ni,ns,...,n; are all non-negative integers. Then
— RN RN —1 *Nm 41T M T Mm—1 mni
Th,Th, ... Th, Tgn ng‘z-1 e ngm+1 Ty ngmil .. 'T!le
= T*7lm+1 N2 ny TgﬁlgfLZ ,,_g",Lm .
a1 Dima 95 791 79z T m
Proof. This follows by combining Lemma 2.4 and Proposition 2.6. (]

2.8. REMARK. Assume that hy,ho, ..., hy € I'aresuch that Ty, Ty, ... Th
# 0. The reader is reminded that the relation T}, Th, ... Th, = Thphy_1...hohy
is not valid in general; thus, the condition in Proposition 2.6 is necessary, but
not sufficient.

An immediate counterexample is given by h; = gf3, ha = g3, and hz = g1;
in this case,

k

Ty ThyThy = ;{’TQ?Tgl = ngTm # Ty,

where P is the projection onto the subspace I?(g3T".). In fact, the initial
projection of Ty, is the projection Py, onto the subspace I?(g1I".), while the
initial projection of PsTy, is Py, the projection onto 2(giT").
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3. Ideal structure of C;‘(I‘7P/+)

In this section we will determine all non-trivial closed ideals of C} (T, P})
and the structure of Z, P, - The main result is the following theorem.

3.1. THEOREM.
(i) The only nontrivial closed ideals of C}(T, PL) are K(1*(T')) and Ip;.
(it) Zp; = Ip, ® K and Ip, /K(*(T)) = O, @ K.

Clearly, C (T, P.) contains K(1*(T)) as a closed ideal, since 7 contains a
rank one projection onto the subspace spanned by f.. We prove the remaining
assertions with the following lemmas.

3.2. LEMMA. The following short sequence is exact:

0— Ip, — Cy(,P,) — C:T — 0.

Proof. To prove the exactness of the above short sequence, one only needs

to show that the canonical map from C}(I', P} ) to the quotient

is injective. In fact, since CIT' is simple [10], each nonzero element of C;T’
generates C)I" as a closed ideal. If a nonzero element Y of C;I' is in Z Pl
then the closed ideal generated by Y, that is, CI', would be in 7 Pl - This
contradicts the fact that Zp, is a non-trivial closed ideal of C7T'. d

3.3. LEMMA.  Ip /K(I*(I)) = 0, ® K.
Proof. Consider the exact sequence
0 — K(A(T)) — Tp, — Tpy JK(E(T)) — 0.
Since P_’s_ImP_"_ = .Apjr, by [1, 2.8] it follows that
APL @)]ngpjr ® K.
By Theorem 2.1, Ap; JK(2(I",)) =2 O,,. Since O, is simple [4], it is clear that
K(I*(T")) is the only non-trivial closed ideal of Ip; . Let m be the Calkin map
from L£(I(T)) to L(I*(T))/K(1*(T)). Then it is obvious that
7(P}) {Zpy JKWET) | w(PL) = Apy [K(E(T)).
It follows from [1, 2.8] again (or by a direct proof) that
{To /K@) } 0 K= 0,0 K.

Thus, Zp; JK(I?(T)) is a purely infinite, simple C*-algebra (see [4] and [15,
1.4]). By using a structural result in [15, 1.2] stating that a o-unital (in
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particular, separable), purely infinite, simple C*-algebra is either unital or
stable, we see that Zp; JK(I?(T)) is stable; i.e., we have

Ty [K(AT)) = {Tp, [KED) } © K,
since Zp; /K (I?(T")) is non-unital (by Proposition 2.0) and separable. Finally,
2 ~
Ip /K(F()) = On @ K. O

3.4. COROLLARY. The *-isomorphism of Lemma 3.3 between Ip, JK(I2(T))
and O ® K induces the following exact sequence:

0— K(*I)) — Ipp — 00K —0.
Proof. This is obvious. O

3.5. LEMMA. Zp; and K(12(T)) are the only non-trivial closed ideals of
Cx(I,PL).

Proof. Using the fact that C;T is simple [10] and Lemma 3.2, one concludes
that there is no closed ideal between Zp; and CJ(I', P{). There is also no
closed ideal between K(I*(T')) and Zp;, since Zp, /K(*(T)) = O, ® K is
simple. There is obviously no other closed ideal in C;(T", P.). O

To finish the proof of Theorem 3.1, it remains to show that Z, P is a stable

C*-algebra. The following is an auxiliary lemma with a standard proof (see
[14, 2.5] for similar results).

3.6. LEMMA (cf. [14, 2.5]). Assume that T is a stable closed ideal of a
C*-algebra A with RR(Z) = 0, and assume that every projection in A/T lifts
to a projection in A. If a projection Ry € A/T lifts to a projection Ry € A
and a projection Ry € (I — Ry)A/Z(I — Ry) is equivalent to Ry, then Ry lifts
to a projection Ry € (I — R1)A(I — Ry) such that Ry ~ Rs.

Proof. Let V be a partial isometry in .A/Z such that V*V = Ry and VV* =
Ry. Let V € A be such that V is the image of V in A/Z. Set W = (I —
R1)VR;. Then W —V € T, since Ry Ry = 0. Since the real rank of R1ZR; is
again zero, one can take a projection R € R1ZR; such that

[(Ry = R)(Ry — W*W)(R1 — R)|| < 1.
Set

U={(R— AW*W(R, — R} "*w~.
Then UU* = Ry — R and U*U < I — Ry. Furthermore, from the construction
it is easy to see that the image of U*U in A/Z is Ry. Since T is stable, one
can find a projection R’ € (I — Ry —U*U)Z(I — Ry —U*U) such that R ~ R'.
Let Vi be a partial isometry in Z such that Vi*V, = R’ and V}V* = R.
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Set Wy = U + V4. Then WoW§ = Ry and W{W, = U*U & R’ := R, as
desired. 0

3.7. LEMMA. Ip4 %Im ® K.

Proof. Consider Zp; JK(3(T)) = 0, ® K. Let 1 denote the identity of O,
and let {e;;} be the set of matrix units of K. By repatedly applying Lemma
3.6, one can lift the projections 1 ® e;; of O, ® K to mutually orthogonal
projections Py, P>, ... P,,... of Im that are all equivalent in Ipi' Then
(I =322, P)Ip (13072, Pi) C K(1*(T)), where the reader is reminded that
the infinite sums above and below are taken in the corresponding multiplier
algebras instead of the underlying C*-algebras. Take mutually orthogonal,
one-dimensional projections {Qx} in T, Pl such that

I=) Pi=3) Qx
i=1 k

(where the sum ), Q) may contain a finite or infinite number of terms).
Take a one-dimensional subprojection R; of P; for each i > 1 such that all
P, — R; (i > 1) are still equivalent in ijr; this can be done by taking a
one-dimensional subprojection Ry of Py, and letting R; (i > 2) be the one-
dimensional subprojection of P; under the equivalence of P, and P;. Write
I =322, (P — Ry) = 372, R}, where

{R;:jeN} ={Qx:k}U{R;:ieN}.
Set P/ = (P, — R;) @ R, for i > 1. Then all P/ are mutually orthogonal

1
projections in 7, Pl and they are still mutually equivalent in Z P, - Also,

> P =1
i=1
Then it is clear that
ijr = (P{ijrpl/) ® K.
Since Py generates Zp; as a closed ideal, one sees from [1, 2.8] that
Ip, =Ip ®K. O
We have completed the proof of Theorem 3.1.

3.8 REMARK-PROPOSITION. Using exactly the same arguments in the
proofs of Lemma 3.6 and Lemma 3.7, one reaches the following general con-
clusion:

PROPOSITION.  Assume that H is any separable infinite-dimensional Hilbert
space. If A is a separable C*-subalgebra of L(H) such that K(H) C A and
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A/K(H) is a non-unital, purely infinite, simple C*-algebra, then A is a stable
C*-algebra.

4. The C*-algebra C:(T',P,)

After investigating the structure of C7(I", P} ) in the last two sections, we
now consider the relation between C} (T, P} ) and C(I', Py), where P, is the
projection onto the subspace [?(I';). The following are the conclusions:

4.1. THEOREM.
(i) Cx(I,P,)=Cx(I,Py), and T w =1p,.
(ii) The Toeplitz algebra T associated with Py coincides with the corner
AP+ = P+C:<F7 P+)P+; and AP+/IC(Z2<F+)) = On

Proof. (i) The projection Py = P U(g1g5")*P+U(g195 )Py is onto the
subspace 1?(g1g, 'T'y NI'y). Clearly, P is the projection onto the subspace
(T (g1)), since

9195 ' T+ NT4 = g195 ' T1(g2) = T (g1),

where T'; (g;) is the set of all reduced words in I'y with initial word g;. The
projection P, := P U(g1)*PyU(g1)P; is onto the subspace 1?(g;T'y NT,).
Since 1 I'+ NT. = 1"y = Ti(g1) \ {¢1}, PA — P is the one-dimensional
projection Py onto the subspace spanned by f,,. Consequently, K(i?(I)) is a
subalgebra of C*(T, Py).

Let P, be the one-dimensional projection onto the subspace spanned by fe.
The relation P} = P, + P, implies that

P, eCy(T,P.) and P eC:(T, P;).
Therefore, C} (T, Py) = C(T, P.).
(ii) First, all conclusions of Lemmas 2.2, 2.3 and 2.4 remain valid if T,

is replaced by I'y; the details are left to the reader. Then Ap, = 7., the
algebra generated by all Toeplitz operators

{T), ;= PLUW)P; :h el }.

Obviously, i, TpT,, = Py, since I'y is the disjoint union

n

U {h €Ty :h starts with ¢;}.

i=1

Thus, the same arguments as in [7] show that the following sequence is exact:
0— K(*(Ty)) — Ty — 0, — 0.

Therefore, 7, /K(1*(T4)) & O,,. O
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5. Ci(I',R) and the Cuntz-Krieger algebras

Assume from now on that A is not a permutation matrix. An n X n
matrix A = [¢;;] with all entries either 0 or 1 is said to be drreducible if
for any pair (i, j) there is k;; € N such that the (4, j)-entry of A¥i is nonzero.
The Cuntz-Krieger algebra O4 is generated by nonzero partial isometries
{S;:i=1,2,...,n} on a separable Hilbert space such that

S;Si= 1:;9;S;, SiSk=0 (I1#k).
j=1

In particular, if A is an n X n matrix with all entries 1, then O4 = O,,.
The reader can find more information about Q4 in [6], [4], and some of the
subsequent references.

Let Q4 be the subset of I'y consisting of the generators {g1,92,...,9n},
the identity e, and all admissible reduced words with respect to A, where
a reduced word g¢;,Gi, ... gi,, (i; = i for j # k is allowed) is said to be
admissible with respect to A if {i1,42,...,4m} C {1,2,...,n} and t;, ;,, =
tigis =+ = lip_1i, = 1 ([8])-

Let R be the projection onto the subspace (?(Q4). The Toeplitz algebra
Ta generated by {Tj, := RU(h)R : h € Q4} has been studied in [8]. The
following short sequence is exact (see [8]):

0— K(lQ(QA)) — Ty — 0y — 0.

Here we are interested in studying the structure of C*(I', R) and the corner al-
gebra Ag := RC} (T, R)R. As in [8] we assume that the number of generators
of T is precisely the matrix size n.

5.1. THEOREM. Assume that A is an irreducible n X n matriz with entries
in {0,1} and T is the free group on n generators. Then:
(i) Ag =7Ta.
(ii) C*(T', R) has two nontrivial closed ideals, K(1*(T)) and the closed ideal
Ir generated by R.
(iii) Zp 2 Ir @ K, Ip/K(*(T)) 2 04 ® K.
(iv) RR(AR) = RR(Ig) =0.

To prove this result, we again proceed in several steps as follows.

5.2. LEMMA. We have Tj, # 0 if and only if h = gi,i, ... 9i,, o7 h =
gj_klgj_kl_1 ...gj_Zlgj_ll, orh = ¢i, i, - - gilgj_klgj_kl_1 ...gj_21gj_11 such that iy > 0
and t;, ; = t;, ; =1 for some j € {1,2,...,n}, where all of the above words
are reduced words such that g;, g, - .. gi, and g;,Gj, - - - gj, are elements in Q4.

Proof. Since, for any h € ', T}, T} is the projection onto I?(h=1Q 4N 4) and
T}, is the projection onto 1?(h24 N§4), one sees that Tj, # 0 iff hQ4 N Q4
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is not empty. Thus, in order for T}, # 0, it is necessary that h = h1hy ! for
some hi, hy € Q 4, that is,

h=9iGis - 905, 95, -+ 90 G5 s
where £, i, = liy iy = -+ = ti_y 5, = L and tj, 5, = tj, 5, =+ =, 5, = 1.
Two extreme cases here are when either hy = e or hy = e.

The above condition is also sufficient. In fact, if h = gjjcl g;k: gjle g;ll
(when hy = e), then hQ24 N Q4 is the set of those reduced words in Q4 that
start with g; and satisfy ¢;, ; = 1 and e. Thus Ty, # 0. If h = 4,64, - - - g3,
(when hy =€), then

Th - T*71 -1 -1 _—1-
Giy 9iy_y9ig Jiy

Thus T}, # 0.

Ifth=g9,-.. gilgj_klgj_,il .. .gj_21gj_11 with ¢; > 0, then h24 N4 is the set
of those reduced words in {24 that start with g;, gi, ... gs,9;, where t;, ; = 1;
furthermore, t;, ; = 1 is also necessary for g;,gi, ... gi,g; € Qa. Therefore,
the existence of such a j with t;, ; = t;, ; = 1 is a necessary and sufficient
condition in order for h24 N Q4 # 0.

O

5.3. LEMMA. Assume that h = g;, ¢, - - .gilgj_klgj_kl_1 ...gj_zlgj_l1 with i >
1 and that t = tj,.; = 1 for some j € {1,2,...,n}. Then T), =

*
95195293 Tgil Gig---Gig *

i,J

Proof. Let hy = ¢i,9i, - .- 9i, and ha = ¢5,9j, - - - gj,- Then
Th =Tyt = RU(h1hy )R = RU (ha)*U(h1)R.
To show T}, hyt = Ty, Th, , it suffices to show that
RU (ho)*(I — R)U(h1)R = 0.
The range of (I — R)U(h1)R is the subspace
12(gi_l1 .. .gizlgi_llQA N(T\Qa4)).

Clearly, each reduced word in g;ll .. .g;lgalQA N (T\ Q4) starts with g;l
...gi_k1 for some 1 < k <1 —1. It follows that the range of U(hg)*(I —
R)U(h1)R is associated with the subset of T in which each reduced word
starts with the reduced word hggijl .. .gi_kl for some 1 < k£ <[ —1. Thus

the range projection of U(he)*(I — R)U(h1)R is a subprojection of I — R.
Therefore, RU (hs)*(I — R)U(h1)R = 0. O

5.4 PROOF OF THEOREM 5.1. From Lemma 5.2 and Lemma 5.3 one sees
that the two sets {T}, : h € Q4} and {T}, : h € T'} generate the same C*-
algebra. Equivalently, the Toeplitz algebra 74 is exactly the corner Agr :=
RC} (T, R)R.
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It follows from Theorem 1.1 that the projection R generates a nontrivial
closed ideal Zg of C(T', R). The same argument as for Lemma 3.2 shows that
the natural short sequence

0—Zr — C/{IR) — CT— 0
is exact. Using the short exact sequence (see [8])

0— K(1*(Q4) — Ty — Oy — 0
and the fact that 74 = Ag, one obtains the exact sequence

0 — K(*(Q4)) — Agp — Oa — 0.

Since A is irreducible, the C*-algebra O4 is purely infinite and simple [4].
Since Ap generates Zr as a closed ideal, Zgr/K(I?(T)) is stably isomorphic
to Ar/K(12(24)), and hence Zr/K(1%(T)) is stably isomorphic to O 4. Thus,
Ir/K(I*(T)) is purely infinite and simple; furthermore, Zg/K(1?(T)) is non-
unital and separable. From the general result [15, 1.2] that every non-unital,
o-unital, purely infinite simple C*-algebra is stable it follows that

Ir/K(PT) 2040 K.
Hence the following short sequence is exact:
0 — K(I*(T) — ZIp — 04 ® K — 0.

Using exactly the same proof as for Lemma 3.7, one shows that Ty is a stable
C*-algebra, that is, Tr 2 Tr ® K.

The above two exact sequences imply that C*(T", R) has only two nontrivial
closed ideals, K(1?(T")) and Zg.

Finally, we obtain RR(Ag) = 0 by combining the results of [4] and [13]
provided A is irreducible. Also, RR(Zr) = 0, since Zr and Ag are stably
*-isomorphic (by [1, 2.8]).

5.5. REMARK. In contrast to the cases I/, and I'j we discussed earlier,
it seems that 74 is not the closed linear span of Toeplitz operators associated
with R.

6. C:(T',P) associated with subgroups of T

Let Ty be a non-trivial subgroup of T (i.e., T'g # T, {e}). Then Ty is also
a free group, and, of course, I'y as well as I' \ I'y are infinite sets. Let Py be
the projection onto the subspace [?(I'g). Consider the C*-algebra C (T, P)
generated by C*T" and Py. In this situation, Ty, := PyU(h)Py for each h € T,
and the Toeplitz algebra is denoted by 7.

6.1. THEOREM.
(i) PoCr (T, Po)Py = To =2 CrTy.
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(ii) The closed ideal Ty of C*(T', Py) generated by the projection Py is
isomorphic to C Ty ® K (of course, Ty # C (T, Py) ).
(iii) The following short sequence is exact:

Proof. The result follows from the following claims.
Cramm 1. Ty, #0 if and only if h € Ty.

In fact, Ty, # 0 iff hI'g N Ty # @. Since 'y is a subgroup of T, we have
hT'oNTq # 0 iff h € Ty.

CLAIM 2. POC:(F, Po)Po = C:FO

In fact, one needs only to observe that T}, = U(h)Pp is a unitary operator
onto [2(T) for each h € Ty, and that PyU(h)Py = 0 for all h & T'y.

CLAM 3.  The closed ideal Ip, of Cf(T', Py) generated by Py is nontrivial
(cf. Corollary 1.4).

Cram 4. Ip, =2C Ty K.

In fact, since T'g is a subgroup of I, it is clear that hilg N hol'g # 0
if and only if hiI'g = hol'g. One can choose recursively a sequence h; =
e, ho,...,hy,... in I such that

hiloNhTo=0 (i#j) and T = U h;To.
i=1
On the other hand, U(h;)* PoU (h;) is the projection onto the subspace 12 (h;T')
for i > 1. Since Py ~ U(h1)*PoU(h;) for i > 1 and Y .o, U(hi)*PoU(h;) = 1,
it is clear that
PyCH (T, Py) Py @ K = Iy.
Hence it follows from Claim 2 above that 7o = C;Ty ® K.

CrLaM 5. The natural short sequence 0 — CiI'gy @ K — C*(I', Py) —
C:I' — 0 is exact.

In fact, the same argument as in the proof of Lemma 3.2 applies.
Combining the claims yields a complete proof of Theorem 6.1. U

6.2 EXAMPLE. Let us look at the following particular case. First, take any
element g € I'\{e} and let 'y := {¢" : n € Z}. Then I'; is an infinite subgroup
of T such that '\ T'; is an infinite subset of I'. Let P; be the projection onto
the subspace [?(I';). Consider the C*-algebra C(T, P;) generated by C:T’
and P;. Note that a Toeplitz operator with respect to P; is of the form
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Ty := PLU(h)P, for any h € T. We will denote the corresponding Toeplitz

algebra by 7z. Then we have the following corollary.

COROLLARY.
(i) AACH(T, P)P =Tz = C(S").

(ii) The closed ideal Iy of C*(T, P1) generated by Py is *-isomorphic to

C(SY) @ K (of course, Iy # C(T, Py) ).
(iii) The following short sequence is exact:

0—CSHeK— CHI,P) — CT — 0.

Proof. (i) The corner algebra PyC*(T', P;)P; is generated by {T}, : h € T'}.

On the other hand, Claim 1 in the proof of Theorem 6.1 implies that
{Th:hel}={Ty:nekl}.

Hence 77 is the abelian C*-algebra generated by the bilateral shift U(gy).
is well known that 77 = C(S?!).

(ii) and (iii) follow from Theorem 6.1 and the trivial fact that CT'y
C(Sh).
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