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ON THE REPRESENTATION OF DERIVATIVE ALGEBRAS
IN CHARACTERISTIC p > 0

JIANGFENG ZHANG AND JIANGHUA ZHANG

Abstract. In this paper we show that neither the Weyl algebra An(K)
nor the derivative algebra DAn(K) has infinite irreducible representa-

tions in the case when the ground field K has characteristic p > 0. We
also give a complete classification of irreducible representations of the

first derivative algebra DA1 when K is algebraically closed. Finally, we
present an algorithm that determines, in finitely many steps, whether
DA1/L is a simple DA1-module, where L is any left ideal of DA1.

1. Introduction

Let K be a field with characteristic ch(K) = 0 and K[X] := K[x1, . . . , xn]
the polynomial ring in n variables. Then the Weyl algebra An(K), the ring of
differential operators D(K[X]), and the derivative algebra ∆(K[X]) generated
by {xi, ∂i : i = 1, . . . , n} in EndK K[X] are all isomorphic (see [8]). Because
of this relation, the derivative algebra has defining relations as Weyl algebra,
and hence has many applications. For example, symbolic computation in
∆(K[X]) makes symbolic computation overD-modules and automatic proving
of function identities possible. However, if ch(K) = p > 0, then ∆(K[X])
is only a quotient of An(K) (see [12]). Hence the study of ∆(K[X]) and
D(K[X]) becomes as difficult as any other problem in characteristic p, and
only a few properties of D(K[X]) and ∆(K[X]) are known in the case when
ch(K) = p (see [9], [10], and [12]). Some elementary properties and the
computing theory of ∆(K[X]) were developed in the papers [12] and [11]. In
this paper we consider the representation theory of ∆(K[X]) in the case when
ch(K) = p > 0.

It is well known that, when ch(K) = 0, the representation theory of the
Weyl algebra An(K) has important applications to several areas of mathemat-
ics and, in particular, to Lie algebras. Significant work has been done on the
irreducible representations of the first Weyl algebra A1(K); see, e.g., [4], [5],
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[6], [1], [2]. The paper [13] gives a complete classification of finite dimensional
simple A1-modules when K is algebraically closed and ch(K) = p > 0.

In this paper we use a simple fact from polynomial identity rings to show
that, when ch(K) = p > 0, both the Weyl algebra and the derivative algebra
have only finite irreducible representations. Using this result, we give a com-
plete classification of irreducible representations of the first derivative algebra
∆(K[x1]) for the case when K is algebraically closed with ch(K) = p > 0.
However, this classification does not provide the structure of simple modules.
That is, given any left ideal L of ∆(K[x1]), the classification does not allow one
to determine whether ∆(K[x1])/L is a simple module. Using computational
methods developed in recent years for commutative and noncommutative al-
gebras (see, e.g., [7]), we will give an algorithm to determine, in finitely many
steps, whether ∆(K[x1])/L is simple, for any given left ideal L.

Throughout this paper, we suppose that K is a field with characteristic p >
0, and we set K[X] = K[x1, . . . , xn]. We denote by Z≥0 the set of nonnegative
integers. In order to stress the connection between An and ∆(K[X]) , we write
DAn for ∆(K[X]). To make this paper self-contained, we state preliminary
results in Section 2.

Acknowledgment. The authors are grateful to Professor Huishi Li for
his generous help.

2. Preliminaries

For convenience, we list some properties of the derivative algebra DAn and
the ring of differential operators D(K[X]).

2.1 Definition ([12]). Let x1, . . . , xn be the left multiplication operators
on K[X] (that is, xi(f) = xi·f for any f ∈ K[X]), ∂1, . . . , ∂n the partial
differential operators on K[X] (that is, ∂i(f) = ∂f/∂xi for any f ∈ K[X]).
We denote by DAn(K) (or DAn) the K-subalgebra of the endomorphism
ring EndK(K[X]) generated by x1, . . . , xn, ∂1, . . . , ∂n, and we call DAn the
derivative algebra of K[X].

For n-tuples α = (α1, . . . , αn) and β = (β1, . . . , βn) ∈ Zn≥0 set

xα = xα1
1 . . . xαnn , ∂β = ∂β1

1 . . . ∂βnn , |α| =
n∑
i=1

αi.

2.2 Proposition ([12]). The set{
xα∂β : α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn≥0,

βi ≤ p− 1, i = 1, . . . , n
}

is a K-basis of DAn.
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From now on we assume that, for any element f ∈ DAn, f is expressed in
terms of the above K-basis, and we call this representation the standard form
of f .

2.3 Lemma ([12]). For any α, β ∈ Zn≥0, |α| ≥ |β|, we have

∂α(xβ) =

{
α! if α = β, αi ≤ p− 1, 1 ≤ i ≤ n,
0 otherwise,

where α! = α1!·α2! . . . αn!, 0! = 1.

2.4 Lemma ([12]). We have

∂i·xj = xj ·∂i (i 6= j), ∂i·xi = xi·∂i + 1,

∂mi x
s
i = xsi∂

m
i + s·m·xs−1

i ∂m−1
i + s(s− 1)·m(m− 1)xs−2

i ∂m−2
i

+ s(s− 1)(s− 2)·m(m− 1)(m− 2)·xs−3
i ∂m−3

i + . . . .

2.5 Theorem ([12]). Let An be the nth Weyl algebra over K, that is,
the associative K-algebra generated by x1, . . . , xn, y1, . . . , yn and the relations
yixj − xjyi = δij, xixj − xjxi = yiyj − yjyi = 0, i, j = 1, . . . , n. Then there
exists a K-algebra isomorphism DAn ∼= An/〈yp1 , . . . , ypn〉. Furthermore, the
center of An (resp. DAn) is K[xp1, . . . , x

p
n, yp1 , . . . , y

p
n], (resp. K[xp1, . . . , x

p
n]),

and An (resp. DAn) is a finitely generated free module over its center.

By Theorem 2.5, we have DAn ∼= An/〈yp1 , . . . , ypn〉. Hence there is a one-
to-one correspondence between the set of left ideals of DAn and the set of left
ideals of An which contain 〈yp1 , . . . , ypn〉. This correspondence can be obtained
as follows:

By Proposition 2.2, any element f ∈ DAn, can be written in the standard
form

f =
∑
α,β

cαβx
α∂β ,

where α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Zn≥0, βi ≤ p − 1, i = 1, . . . , n,
cαβ ∈ K. Let f ′ ∈ An, f ′ =

∑
cαβx

αyβ , with the same tuples α and β as
in the representation of f . Suppose L = 〈f1, . . . , fs〉 is any left ideal of DAn.
Then it is easy to show that

L′ = 〈f ′1, . . . , f ′s, y
p
1 , . . . , y

p
n〉

is the left ideal of An corresponding to L. Thus we have the following isomor-
phisms of K-vector spaces:

DAn/L ∼= (An/〈yp1 , . . . , ypn〉)/(〈f ′1, . . . , f ′s, y
p
1 , . . . , y

p
n〉/〈y

p
1 , . . . , y

p
n〉)(2.1)

∼= An/L
′.

This isomorphism is especially important in the computing theory of DAn,
since DAn is not a domain and therefore does not have a Groebner basis. We
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can use the above isomorphism and Groebner bases in An to perform efficient
computations in DAn; see [11].

3. Representation theory of DAn

3.1 Theorem. If K is a field with characteristic p > 0, then neither
DAn(K) nor An(K) has an infinite dimensional irreducible representation,

Proof. By Theorem 2.5, An(K) and DAn(K) are finitely generated over
their center, Hence, by [8, Corollary 13.1.13], they are polynomial identity
rings. Moreover, it is obvious that both An and DAn are affine K-algebras.

By [8, Theorem 13.10.3], in a affine polynomial identity K-algebra R, any
simple left R-module is a finite dimensionalK-vector space. Thus every simple
module over An or DAn is finite over K, so An and DAn do not have infinite
irreducible representations. This completes the proof. �

It is easy to derive the following corollaries.

3.2 Corollary. K[X] is not a simple DAn-module.

Notice that if ch(K) = 0, then DAn ∼= An, and K[X] is a simple DAn-
module (see [3]). By the corollary this result does not hold in the case when
ch(K) = p > 0.

3.3 Corollary. Let M be any left DAn-module (or left An-module). If
GK-dimM > 0, then M is not simple.

Proof. By the definition of the Gelfand-Kirillov dimension (see [8]), M is
not finite dimensional over K when GK-dimM > 0. Thus M is not a simple
module. �

Since for general n the classification of simple DAn-modules is quite com-
plex, we consider here only the case n = 1. We shall use the concept of
Harish-Chandra modules to obtain a classification for finite irreducible repre-
sentations of DA1 when K is also algebraically closed. Since, by Theorem 3.1,
DA1 has only finite irreducible representations, this classification provides a
complete classification of all simple DA1-modules.

3.4 Definition. Let h1 = ∂1x1, and let V be any DA1-module. If V
satisfies

(i) V =
⊕

λ∈K Vλ, where Vλ = {v ∈ V : h1v = λv},
(ii) dimK Vλ <∞, for all λ ∈ K,

then V is called a Harish-Chandra module over (DA1, h1).

We retain the notation Vλ through the rest of this paper.
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3.5 Theorem. Let Λ = {0, 1, . . . , p− 1} ⊆ K, λ, µ ∈ K.

(1) If µ 6= 0, let V (λ, µ) =
⊕

i∈ΛKvi, where {vi : i ∈ Λ} is an arbitrary
set of p elements. Define the action of DA1 on V (λ, µ) as follows:

x1vi = vi+1, 0 ≤ i < p− 1,
x1vp−1 = µv0,

∂1v0 =
λ− 1
µ

vp−1,

∂1vj = (λ+ j − 1)vj−1, 0 < j ≤ p− 1,

where v−1 = vp−1, vp = v0. Then V (λ, µ) is a finite dimensional
irreducible DA1-module and also a Harish-Chandra module.

(2) Let V =
⊕

i∈ΛKvi, where {vi : i ∈ Λ} is an arbitrary set of p ele-
ments. Define the action of DA1 on V as follows:

x1vi = −ivi−1, 0 ≤ i ≤ p− 1,
∂1vi = vi+1, 0 ≤ i < p− 1,

∂1vp−1 = 0,

where v−1 = vp−1, vp = v0. Then V is a finite dimensional irreducible
DA1-module and also a Harish-Chandra module.

Proof. (1) It is obvious from the definition that V (λ, µ) is a finite dimen-
sional left DA1-module, and that

h1vi = ∂1x1vi = ∂1vi+1 = (λ+ i)vi, 0 ≤ i < p− 1,

h1vp−1 = ∂1x1vp−1 = µ∂1v0 = (λ− 1)vp−1 = (λ+ p− 1)vp−1.

Let Vλ+i = Kvi for 0 ≤ i ≤ p − 1, and set Vδ = 0 for δ ∈ K and δ 6= λ + i,
i = 0, 1, . . . , p − 1. Clearly, V (λ, µ) =

⊕
δ∈K Vδ is a Harish-Chandra module.

We now prove that V (λ, µ) is an irreducible DA1-module.
Suppose this is not true. Then V (λ, µ) has some nonzero proper submodule

N . If there exists an element vi ∈ N , i ∈ Λ, then {vj ; j ∈ Λ} ⊆ N by
definition. Hence N = V (λ, µ), contradicting our hypothesis. Therefore vi 6∈
N for all i ∈ Λ. Take any nonzero element f in N . Then f has the form

f = a1vi1 + a2vi2 + · · ·+ asvis ,

where s > 1, aj ∈ K, aj 6= 0, j = 1, . . . , s, and p− 1 ≥ i1 > i2 > · · · > is ≥ 0.
(We have s > 1 since for any i ∈ Λ, vi 6∈ N .)
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Note that h1vi = (λ+ i)vi for i = 0, . . . , p− 1. Hence

f = a1vi1 + a2vi2 + · · ·+ asvis ∈ N,
h1f = (λ+ i1)a1vi1 + (λ+ i2)a2vi2 + · · ·+ (λ+ is)asvis ∈ N,
h2

1f = (λ+ i1)2a1vi1 + (λ+ i2)2a2vi2 + · · ·+ (λ+ is)2asvis ∈ N,
...

hs−1
1 f = (λ+ i1)s−1a1vi1 + (λ+ i2)s−1a2vi2 + . . .

+ (λ+ is)s−1asvis ∈ N.

We put this system of equations in matrix form:
(3.1)

f
h1f
...
hs−1

1 f

=


a1 a2 . . . as
(λ+ i1)a1 (λ+ i2)a2 . . . (λ+ is)as
...

...
...

(λ+ i1)s−1a1 (λ+ i2)s−1a2 . . . (λ+ is)s−1as



vi1
vi2
...
vis

 .

The determinant of the above matrix equals

(3.2) a1a2 . . . as

∣∣∣∣∣∣∣∣∣
1 1 . . . 1
(λ+ i1) (λ+ i2) . . . (λ+ is)
...

...
...

(λ+ i1)s−1 (λ+ i2)s−1 . . . (λ+ is)s−1

∣∣∣∣∣∣∣∣∣ .
Since a1a2 . . . as 6= 0 and the determinant in (3.2) is a Vandermonde de-

terminant with pairwise distinct entries λ+ ij , j = 1, . . . , s, the determinant
of the system (3.1) is non-zero. Hence this system has a unique solution.
Thus vi1 , . . . , vis can be expressed as K-combinations of f, h1f, . . . , h

s−1
1 f ,

and hence of vi1 , . . . , vis ∈ N . This contradicts the fact that vi 6∈ N for all i.
Hence V (λ, µ) is an irreducible left DA1-module.

(2) It is obvious that V is a finite dimensional DA1-module, and that

h1vi = ∂1x1vi = −i∂1vi−1 = −ivi, i = 1, . . . , p− 1,
h1v0 = ∂1x1v0 = 0.

Let

V−i = Kvi, i = 0, 1, . . . , p− 1,
Vδ = 0, δ ∈ K, δ 6= −i, i = 0, 1, . . . , p− 1.

Then V =
⊕

δ∈K Vδ is a Harish-Chandra module. We now show that V is an
irreducible DA1-module.

Suppose this is not true. Then there exists a nonzero proper submodule N
of V . As in the proof of part (1) we see that if vi ∈ N then N = V . Thus
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vi 6∈ N for all i ∈ Λ. Take any nonzero element f in N . Then f has the form

f = a1vi1 + a2vi2 + · · ·+ asvis ,

where s > 1, aj ∈ K, aj 6= 0, j = 1, . . . , s, p − 1 ≥ i1 > i2 > · · · > is ≥ 0.
Since h1vi = −ivi for i = 0, . . . , p− 1, we have

f = a1vi1 + a2vi2 + · · ·+ asvis ∈ N,
h1f = (−i1)a1vi1 + (−i2)a2vi2 + · · ·+ (−is)asvis ∈ N,

...

hs−1
1 f = (−i1)s−1a1vi1 + (−i2)s−1a2vi2 + · · ·+ (−is)s−1asvis ∈ N.

Thus
f
h1f
...
hs−1

1 f

 =


a1 a2 . . . as
(−i1)a1 (−i2)a2 . . . (−is)as
...

...
...

(−i1)s−1a1 (−i2)s−1a2 . . . (−is)s−1as



vi1
vi2
...
vis

 .

As in the proof of (1), we see that the above matrix is invertible, and the
above system equations therefore has a unique solution. Thus vi1 , . . . , vis
can be expressed as K-combinations of f, h1f, . . . , h

s−1
1 f . Hence vij ∈ N, j =

1, . . . , s, contradicting the fact that vj 6∈ N for all j. Hence V is an irreducible
DA1-module. This completes the proof.

After these preliminaries, we can now state the classification announced in
the Introduction.

3.6 Theorem. Let K be an algebraically closed field with characteristic
p > 0, and let V be any irreducible left DA1(K)-module. Then either V is
isomorphic to V , or there exist λ, µ ∈ K,µ 6= 0, such that V is isomorphic to
V (λ, µ).

Proof. By Theorem 3.1, V must be a finite dimensional K-vector space.
Since h1V ⊆ V and K is algebraically closed, by the eigenvalue theory of
linear operators there exist λ ∈ K and 0 6= u1 ∈ V such that h1u1 = λu1.

We now show that
∑
i≥0Kx

i
1u1 +

∑
j≥0K∂

j
1u1 is a nonzero submodule of

V . Indeed, for i ≥ 1 we have, by Lemma 2.4 and the relation h1u1 = λu1,

x1 · ∂i1u1 =
(
∂i1x1 − i∂i−1

1

)
u1

= ∂i−1
1 h1u1 − i∂i−1

1 u1

= (λ− i)∂i−1
1 u1 ∈ K∂i−1

1 u1.
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If j ≥ 2, then

∂1 · xj1u1 =
(
∂1x

j−1
1

)
x1u1

= xj−1
1 h1u1 + (j − 1)xj−1

1 u1

= (λ+ j − 1)xj−1
1 u1 ∈ Kxj−1

1 u1,

while for j = 1 we have

∂1 · x1u1 = h1u1 = λu1 ∈ Ku1.

Thus
∑
i≥0Kx

i
1u1 +

∑
j≥0K∂

j
1u1 is a nonzero submodule of V , and since V

is irreducible, we have

V =
∑
i≥0

Kxi1u1 +
∑
j≥0

K∂j1u1.

Let
Vλ+i = {v ∈ V : h1v = (λ+ i)v} .

Then Vλ+i is a K-subspace of V , and for i ≥ 1 we have

h1 · xi1u1 = ∂1x1x
i
1u1

= xi1h1u1 + ixi1u1

= (λ+ i)xi1u1,

h1 · ∂i1u1 = ∂1(x1∂
i
1)u1

= ∂i1h1u1 − i∂i1u1

= (λ− i)∂i1u1.

Thus xi1u1 ∈ Vλ+i and ∂i1u1 ∈ Vλ−i = Vλ+p−i. Notice that u1 ∈ Vλ. Therefore
V ⊆

∑
i∈Λ Vλ+i, and V =

∑
i∈Λ Vλ+i. We now show that

∑
i∈Λ Vλ+i is, in

fact, a direct sum, i.e.,

(3.3)
∑
i∈Λ

Vλ+i =
⊕
i∈Λ

Vλ+i.

To prove this, let vi ∈ Vλ+i, i = 0, 1, . . . , p−1, and suppose there exist ai ∈ K,
such that

a0v0 + a1v1 + · · ·+ ap−1vp−1 = 0.

By considering the action of h0
1(= 1), h1

1, . . . , h
p−1
1 on the above equation and

using the relation h1vi = (λ+ i)vi, we obtain the system
1 1 . . . 1
λ (λ+ 1) . . . (λ+ p− 1)
...

...
...

...
λp−1 (λ+ 1)p−1 . . . (λ+ p− 1)p−1



a0v0

a1v1

...
ap−1vp−1

 = 0.
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Since the above matrix is a Vandermonde matrix and the numbers λ, λ+1, . . . ,
λ + p − 1 are pairwise distinct, this matrix is invertible. Hence the above
homogeneous system has only the trivial solution, i.e., we have

a0v0 = a1v1 = · · · = ap−1vp−1 = 0.

It follows that for any i with 0 ≤ i ≤ p − 1 we have ai = 0 whenever vi 6= 0.
Hence

∑
i∈Λ Vλ+i is a direct sum, proving (3.3).

We now distinguish between two cases, λ 6∈ Λ and λ ∈ Λ.

Case 1. λ 6∈ Λ.
If there exists i ∈ Λ and a nonzero element v ∈ Vλ+i such that x1v = 0,

then h1v = ∂1x1v = 0, and λ + i = 0, λ = −i = p − i, contradicting the
assumption λ 6∈ Λ. Thus, for any i ∈ Λ, there is no nonzero element v ∈ Vλ+i

such that x1v = 0. Therefore the action of x1 on Vλ+i is faithful.
Given v ∈ Vλ, it is easy to see that h1x

p
1v = λxp1v. Thus xp1v ∈ Vλ, and xp1

may be viewed as a K-linear endomorphism of Vλ. Therefore there exists an
eigenvalue µ ∈ K and a nonzero eigenvector v0 ∈ Vλ, such that xp1v0 = µv0.
We now show that µ 6= 0.

Suppose µ = 0. Then xp1v0 = 0. Since the action of x1 on Vλ is faithful,
there exists i, 1 ≤ i ≤ p− 1, such that xi1v0 6= 0, xi+1

1 v0 = 0. But

h1x
i
1v0 = ∂1x

i
1x1v0

= xi1h1v0 + ixi1v0

= (λ+ i)xi1v0,

so xi1v0 ∈ Vλ+i. Since x1 · xi1v0 = xi+1
1 v0 = 0, this contradicts the fact that

x1 is faithful on Vλ+i. Hence we have µ 6= 0.
Next, we show that

∑
i∈ΛKx

i
1v0 is a submodule of V . Indeed, if i = 2,

3, . . . , p− 1, then

∂1 · xi1v0 = ∂1x
i−1
1 · x1v0(3.4)

= xi−1
1 h1v0 + (i− 1)xi−1

1 v0

= (λ+ i− 1)xi−1
1 v0 ∈ Kxi−1

1 v0.

If i = 0, then

∂1 · v0 = ∂1

(
1
µ
xp1v0

)
(3.5)

=
1
µ
∂1x

p−1
1 x1v0

=
1
µ
xp−1

1 h1v0 +
p− 1
µ

xp−1
1 v0

=
λ+ p− 1

µ
xp−1

1 v0 ∈ Kxp−1
1 v0,
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and if i = 1, then

∂1 · x1v0 = h1v0 = λv0 ∈ Kv0.(3.6)

Moreover, if j = 0, 1, . . . , p− 2, then

x1 · xj1v0 = xj+1
1 v0 ∈ Kxj+1

1 v0,

and for j = p− 1 we have

x1 · xp−1
1 v0 = xp1v0 = µv0 ∈ Kv0.

Thus
∑
i∈ΛKx

i
1v0 is a nonzero submodule of V .

Similarly to (3.4), (3.5), and (3.6), we see that

h1x
i
1v0 = ∂1x

i+1
1 v0 = (λ+ i)xi1v0, i = 0, 1, . . . , p− 1.

Hence xi1v0 ∈ Vλ+i. By (3.3),
∑
i∈ΛKx

i
1v0 is a direct sum, i.e.,∑

i∈Λ

Kxi1v0 =
⊕
i∈Λ

Kxi1v0.

Since V is an irreducible left DA1-module, we have V =
⊕

i∈ΛKx
i
1v0. Let

vi = xi1v0, i = 1, . . . , p− 1, vp = v0, v−1 = vp−1. Then

x1vi = vi+1, i = 0, 1, . . . , p− 2,

x1vp−1 = xp1v0 = µv0,

∂1v0 =
λ+ p− 1

µ
xp−1

1 v0 =
λ− 1
µ

vp−1 (by (3.5)),

∂1vj = (λ+ j − 1)vj−1, j = 1, . . . , p− 1 (by (3.4) and (3.6)).

Thus we have V ∼= V (λ, µ) when µ 6= 0.

Case 2. λ ∈ Λ.
In this case it is easy to see that V =

⊕
i∈Λ Vi. We now distinguish two

subcases.

Subcase 2.1. There exist s ∈ Λ and nonzero element u ∈ Vs, such that
x1u = 0.

In this case, we have

su = h1u = ∂1x1u = ∂10 = 0,

and thus s = 0 and u ∈ V0. Let U =
∑
i∈ΛK∂

i
1u. Then for 1 ≤ i ≤ p− 1 we

have
x1 · ∂i1u =

(
∂i1x1 − i∂i−1

1

)
u = −i∂i−1

1 u ∈ U.
Since ∂p1 = 0, we also have

∂1 · ∂p−1
1 u = 0 ∈ U,

∂1 · ∂j1u = ∂j+1
1 u ∈ U, j = 0, 1, . . . , p− 2.
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Hence U is a nonzero submodule of V , and since V is irreducible, we have
U = V .

For 1 ≤ i ≤ p − 1 we have h1∂
i
1u = −i∂iu, and h1u = 0. Thus ∂j1u ∈ V−j

for j = 0, 1, . . . , p− 1, Combined with (3.3), this shows that
∑
i∈ΛK∂

i
1u is a

direct sum, i.e., ∑
i∈Λ

K∂i1u =
⊕
i∈Λ

K∂i1u.

Hence V =
⊕

i∈ΛK∂
i
1u.

Let v0 = u, vi = ∂i1v0, i = 1, . . . , p− 1. Then

x1v0 = 0,

x1vi = x1∂
i
1v0

(
∂i1x1 − i∂i−1

1

)
v0

= −i∂i−1
1 v0 = −ivi−1, i = 1, . . . , p− 1,

∂1vj = vj+1, j = 0, 1, . . . , p− 2,

∂1vp−1 = ∂p1v0 = 0.

Thus V ∼= V .

Subcase 2.2. For any s ∈ Λ, there is no nonzero element u ∈ Vs such that
x1u = 0.

In this case, for any s ∈ Λ, the action of x1 on Vs is faithful. It is easy to
see that h1x

p
1v = xp1h1v +pxp1v = 0 for any v ∈ V0. Thus xp1v ∈ V0, that is,

xp1 maps V0 to V0. Therefore there exist nonzero elements v0 ∈ V0 and µ ∈ K
such that xp1v0 = µv0. When i = 1, . . . , p− 1, we have

h1v0 = 0,

h1x
i
1v0 = ixi1v0.

Thus xj1v0 ∈ Vj for j = 0, 1, . . . , p− 1.
If µ = 0, then xp1v0 = 0. By the faithfulness of x1 on Vs, there exists i,

1 ≤ i ≤ p− 1, such that xi1v0 6= 0, xi+1
1 v0 = 0, and thus x1 · (xi1v0) = 0. Since

xi1v0 ∈ Vi, this contradicts the fact that x1 is faithful on Vi. Hence µ 6= 0.
Let U =

∑
i∈ΛKx

i
1v0. Then for i = 0, 1, . . . , p− 2,

x1 · xi1v0 = xi+1
1 v0 ∈ U,

and for i = p− 1,
x1 · xp−1

1 v0 = xp1v0 = µv0 ∈ U.
For j = 2, . . . , p− 1,

∂1 · xj1v0 = ∂1x
j−1
1 x1v0

= xj−1
1 h1v0 + (j − 1)xj−1

1 v0

= (j − 1)xj−1
1 v0 ∈ U,
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and for j = 0, 1,

∂1 · x1v0 = h1v0 = 0 ∈ U,

∂1 · v0 = ∂1

(
1
µ
· xp1v0

)
=

1
µ
·
(
xp−1

1 h1v0 + (p− 1)xp−1
1 v0

)
=
p− 1
µ

xp−1
1 v0 ∈ U.

Hence U is a nonzero submodule of V , and by the irreducibility of V it follows
that U = V .

Since xi1v0 ∈ Vi, i = 0, 1, . . . , p− 1, it follows from (3.3) that
∑
i∈ΛKx

i
1v0

is a direct sum, and

V =
∑
i∈Λ

Kxi1v0 =
⊕
i∈Λ

Kxi1v0.

Let vi = xi1v0, i = 1, . . . , p− 1. Then it is easy to see that V =
⊕

i∈ΛKvi,
and

x1vi = vi+1, i = 0, 1, . . . , p− 2,
x1vp−1 = µv0,

∂1vj = (j − 1)vj−1, j = 1, . . . , p− 1,

∂1v0 =
p− 1
µ

vp−1.

Hence V ∼= V (0, µ). This completes the proof of the theorem. �

By the structure of V (λ, µ) and V , we have dimK V (λ, µ) ≤ p, and dimK V
≤ p. Thus Theorem 3.6 has the following corollary.

3.7 Corollary. If V is any finite dimensional DA1-module and dimK V
> p, then V is not a simple module.

Theorems 3.5 and 3.6 give a complete classification of irreducible DA1-
modules in the case the field K is algebraically closed with characteristic
p > 0. In the next section, we give an algorithm to determine, in finitely
many steps, whether DA1/L is a simple module. Corollary 3.7 above may
reduce the complexity of the algorithm.

4. Algorithmic recognition of irreducible DA1-modules

In this section we use the computing theory of DAn to give an algorithm
which can determine, in finitely many steps, whether DA1/L is simple, where
L is any left ideal of DA1. In fact, the proof of Theorem 3.6 yields such an
algorithm, and we have the following theorem.
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4.1 Theorem. Let K be an algebraically closed field with characteristic
p > 0. Then, given any left ideal L = 〈f1, . . . , fs〉 of DA1(K), there exists
an algorithm that determines in finitely many steps whether DA1/L is an
irreducible DA1-module. If DA1/L is simple, this algorithm also gives the
structure of DA1/L as a Harish-Chandra module; i.e., the algorithm generates
the parameters λ and µ, and the vector v0, represented in terms of a basis of
DA1/L, in the representation of DA1/L as a Harish-Chandra module V or
V (λ, µ).

Proof. By Theorem 3.1 and Corollary 3.7, we only need to determine the
modules for the case when dimK DA1/L ≤ p. By the last part of Section 2,
L′ = 〈f ′1, . . . , f ′s, y

p
1〉 is the left ideal of the Weyl algebra A1 corresponding

to L, and we have DA1/L ∼= A1/L
′. Thus dimK DA1/L = dimK A1/L

′ if
dimK DA1/L < +∞.

Since the first Weyl algebra A1 is a solvable polynomial algebra (see [7]),
L′ has a Groebner basis, say, G = {g1, . . . , gt}. Let

B = {xi1y
j
1 ∈ SM(A1) : xi1y

j
1 is not divisible by LT(gk), k = 1, . . . , t},

where LT(g) denotes the leading term of g in the graded lexicographic order.
Let [xi1y

j
1] be the coset of xi1y

j
1 modulo L′. Then

B′ = {[xi1y
j
1] : xi1y

j
1 ∈ B}

is a K-basis of A1/L
′, and A1/L

′ is finite dimensional if and only if there exist
gk1 , gk2 ∈ G such that LT(gk1) is a power of x1 and LT(gk2) is a power of y1

(see [7]). Since DA1/L ∼= A1/L
′ and B′ is a K basis of A1/L

′, the set

B′′ =
{

[xi1∂
j
1] : i, j satisfies [xi1y

j
1] ∈ B′

}
is a K-basis of DA1/L. If the sets B′ and B′′ are finite, denote by |B′| and
|B′′| their respective cardinalities. Then |B′| = |B′′|.

From the above analysis and the proof of Theorem 3.6, we have the follow-
ing algorithm:

Define a boolean variable T so that T=true if DA1/L is a simple module,
and T=false if DA1/L is not simple.

(1) Compute the Groebner basis G = {g1, . . . , gt} of L′ = {f ′1, . . . , f ′s, y
p
1},

and construct B, B′, and B′′ as above. If no element in the set LT(G) =
{LT(g1), . . . ,LT(gt)} is a power of x1 or a power of y1, or if |B′| > p, let
T=false, and stop the algorithm. Otherwise go to Step (2).

(2) Let |B′′| = m. Then dimK DA1/L = |B′′| = m. Using the multi-
plication in DA1, compute the action of the operator h1 on the elements of
B′′, and represent this operator by an m ×m matrix H using the basis B′′.
Clearly, H ∈ Mm(K), where Mm(K) is the matrix ring over K. Determine
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an eigenvalue λ of matrix H, and compute a basis of the eigenvector space Vλ
corresponding to λ. Here the basis of Vλ is represented by vectors in Km.

(3) If λ ∈ Λ = {0, 1, . . . , p − 1}, then compute a basis of KerH = {a ∈
Km : Ha = 0} using the matrix H. It is obvious that KerH is just V0 = {v ∈
DA1/L : h1v = 0}. Using the multiplication in DA1, compute the action of
the operators x1 and ∂1 on the basis B′′, and represent x1 and ∂1 by two m×m
matrices X and P . If x1u = 0 has nonzero solutions in V0, i.e., if the linear
system Xa = 0 has nonzero solutions in KerH, then take any such nonzero
solution v0. If the set of vectors {v0, Pv0, P

2v0, . . . , P
p−1v0} has rank m, then

set T=true, output B′′, v0, V ∼= V , and stop the algorithm. Otherwise (i.e.,
if the above rank is not m), set T=false, and stop the algorithm.

(4) If λ 6∈ Λ = {0, 1, . . . , p − 1}, or if λ ∈ Λ and the equation Xa = 0 has
no nonzero solution in KerH, then compute the action of the operator xp1 on
the elements of the basis B′′ using the multiplication of DA1, and represent
xp1 by an m × m matrix W . Compute a nonzero eigenvalue µ of W and a
corresponding eigenvector v0 6= 0, such that µ and v0 satisfy the following
conditions:

• If λ 6∈ Λ, then v0 ∈ Vλ.
• If λ ∈ Λ, then v0 ∈ V0 = KerH.

By the proof of Theorem 3.6, such nonzero values of µ and v0 do exist. If the
set of vectors {v0, Xv0, X

2v0, . . . , X
p−1v0} has rank m, then V ∼= V (λ, µ). In

this case set T=true, output B′′, λ, µ, v0, V ∼= V (λ, µ), and stop the algorithm.
Otherwise set T=false, and stop the algorithm.

From the proof of Theorem 3.6 and the above analysis it is easy to see that
this algorithm satisfies the requirement of the theorem. This completes the
proof. �

We conclude this paper with two examples which illustrate the above al-
gorithm. In these examples, K is an algebraically closed field.

4.2 Example. Let p = ch(K) = 5, f1 = x1∂
2
1 , and let L = 〈f1〉 be a left

ideal of DA1(K). We now determine whether DA1/L is a simple module.
It is obvious that

L′ = 〈f ′1, y5
1〉 = 〈x1y

2
1 , y

5
1〉,

and the Groebner basis of L′ is G = {y2
1} (see [7]). Now there is no term in

LT(G) which is a power of x1. Hence, by Step (1) of the above algorithm,
DA1/L is not simple.

4.3 Example. Let p = ch(K) = 3, f1 = x1, and let L = 〈f1〉 be a left
ideal of DA1. We now determine whether DA1/L is simple.

It is obvious that L′ = 〈x1, y
3
1〉 is the left ideal of A1 corresponding to L,

and its Groebner basis is G = {x1, y
3
1}. By the above algorithm, A1/L

′ is
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finite dimensional, and its basis is

B′ =
{

[1], [y1], [y2
1 ]
}
.

Thus DA1/L is also finite dimensional, and its basis is

B′′ = {u1, u2, u3},

where u1 = [1], u2 = [∂1], u3 = [∂2
1 ]. Since dimK DA1/L = |B′′| = 3 = p, we

move on to Step (2) of the algorithm.
It is obvious that the action of h1 = ∂1x1 on the basis {u1, u2, u3} is given

by

h1u1 = [∂1x1] = 0,

h1u2 = [∂1x1∂1] = −u2,

h1u3 =
[
∂1x1∂

2
1

]
=
[
∂3

1x1

]
−
[
2∂2

1

]
= u3.

Hence h1 can be represented by the following matrix with respect to the basis
{u1, u2, u3}:

H =

0 0 0
0 −1 0
0 0 1

 .

The matrix H has eigenvalues 0, 1,−1. Take the eigenvalue λ = 0. The
eigenvector space V0 corresponding to λ = 0 is

V0 = KerH =

k
 1

0
0

 : k ∈ K

 .

The action of the operator x1 on {u1, u2, u3} is given by

x1u1 = [x1] = 0,

x1u2 = [x1∂1] = [∂1x1 − 1] = [−1] = −u1,

x1u3 =
[
x1∂

2
1

]
=
[
∂2

1x1 − 2∂1

]
= [−2∂1] = −2u2 = u2.

Thus x1 can be represented by the following matrix with respect to the basis
{u1, u2, u3}:

X =

0 −1 0
0 0 1
0 0 0

 .

Let v0 = (1, 0, 0)T . Then v0 ∈ V0, and Xv0 = 0, so x1 is not faithful on V0.
The action of ∂1 on {u1, u2, u3} is given by

∂1u1 = [∂1] = u2,

∂1u2 = [∂2
1 ] = u3,

∂1u3 = [∂3
1 ] = 0.
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Hence ∂1 can be represented by the following matrix with respect to the basis
{u1,u2,u3}:

P =

0 0 0
1 0 0
0 1 0

 .

Since

Pv0 =

0
1
0

 , P 2v0 =

0
0
1

 ,

the set of vectors {v0, Pv0, P
2v0} has rank 3. Since dimDA1/L = 3, it follows

that DA1/L is a simple module, and DA1/L ∼= V , where

V =
⊕

i∈{0,1,2}

Kvi, v1 = ∂1v0, v2 = ∂2
1v0.
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