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INTERPOLATING SEQUENCES FOR HOLOMORPHIC
FUNCTIONS OF RESTRICTED GROWTH

ANDREAS HARTMANN AND XAVIER MASSANEDA

Abstract. We show that the interpolating sequences for the algebra
of holomorphic functions in the unit disk of order at most α > 0 are

characterized by a hyperbolic density condition. We also give conditions
along the same lines for the analogous problem in the unit ball of Cn.

1. Introduction

In 1956 A.G. Naftalevič defined the interpolating sequences for the Nevan-
linna class

N = {f ∈ H(D) : sup
r<1

∫ 2π

0

log+ |f(reiθ)| dθ <∞}

in the unit disk D of C as those sequences {ak}k ⊂ D such that for every
sequence of values {vk}k with

(1) sup
k∈N

(1− |ak|) log+ |vk| <∞

there exists f ∈ N such that f(ak) = vk for all k ∈ N. With this definition,
interpolating sequences for N are characterized by the following conditions.

Theorem A (Naftalevič [Na56]). A sequence {ak}k is interpolating for
the Nevanlinna class N if and only if:

(a) {ak}k is a Blaschke sequence, i.e.,
∑
k(1− |ak|) <∞.

(b) {ak}k lies inside a polygon inscribed in the closed unit disk.
(c)

∏
j 6=k

∣∣∣ aj−ak1−ākaj

∣∣∣ ≥ δ exp
(
− c

1−|ak|

)
for some c, δ > 0 and all k ∈ N.
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The geometric condition (b) is somewhat unnatural. In particular, it im-
plies that there exist interpolating sequences for H∞ (the space of bounded
holomorphic functions) which are not interpolating for N (just take any {ak}k
with infk

∏
j 6=k

∣∣∣ aj−ak1−ākaj

∣∣∣ > 0 not inscribed in any polygon). An explanation
for the presence of (b) in Theorem A is that the maximal growth of Nevan-
linna functions reflected in (1) (if f ∈ N then sup

D
(1− |z|) log+ |f(z)| <∞)

can only be attained in a finite number of Stolz angles ([Na56, Lemma 1]).
In our opinion (1) is the natural compatibility condition for interpolation by

a different class of functions. Given α > 0, consider the algebra of holomorphic
functions of order at most α > 0:

Aα = {f ∈ H(D) : sup
z∈D

(1− |z|)α log+ |f(z)| <∞}.

Definition 1. A sequence {ak}k ⊂ D is Aα-interpolating (denoted by
{ak}k ∈ IntAα) if for all sequences of values {vk}k with

(2) sup
k∈N

(1− |ak|)α log+ |vk| <∞

there exists f ∈ Aα such that f(ak) = vk for all k ∈ N.

For z, ζ ∈ D consider the hyperbolic pseudodistance d(z, ζ) = |φz(ζ)|,
where φz(ζ) = (z − ζ)/(1− z̄ζ) is the automorphism of D exchanging z and
0. Also, given {ak}k ⊂ D and δ ∈ (0, 1), define the pseudodisk K(z, δ) = {ζ ∈
D : d(z, ζ) < δ}, and the counting functions

n(z, δ) = # {ak}k ∩ K(z, δ),

N(z, δ) =
∫ δ

0

n(z, t)− n(z, 0)
t

dt+ n(z, 0) log δ.

Our main result is the following.

Theorem 1. A sequence {ak}k ⊂ D is Aα-interpolating if and only if

(3) sup
k∈N

N(ak, 1/2)
(1− |ak|)−α

<∞.

The necessity of this condition is an immediate consequence of Jensen’s
formula, while the sufficiency is proved by an L2-estimate for the solution to
a ∂̄-equation, as in [BeOr]. The constant 1/2 can be replaced by any other
value δ ∈ (0, 1), as will be clear from the proof.

Henceforth we write A � B when A ≤ cB for some c > 0, and A ' B when
A � B and B � A.

Remarks. (a) When {ak}k is a Blaschke sequence and α = 1, condition
(3) and condition (c) in Naftalevič’s theorem are equivalent. Since log 1/x '
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1− x for x ' 1 and 1− |φz(a)|2 = (1− |z|2)(1− |a|2)/|1− z̄a|2, we have∑
j:|φak (aj)|>1/2

log
1

|φak(aj)|
�

∑
j:|φak (aj)|>1/2

(1− |ak|2)(1− |aj |2)
|1− ākaj |2

�
∑
j 1− |aj |
1− |ak|

.

Hence (c) in Naftalevič’s theorem is equivalent to∑
j:0<|φak (aj)|≤1/2

log
1

|φak(aj)|
� (1− |ak|)−1,

and therefore to (3) with α = 1, since

N(ak, 1/2) =
∑

j:0<|φak (aj)|≤1/2

log
1/2

|φak(aj)|
+ log

1
2
.

One could then conjecture that with an appropriate definition of an N -
interpolating sequence, conditions (a) and (c) in Naftalevič theorem should
be sufficient. This is not the case, as long as we accept that with any such
definition one should be able to interpolate bounded sequences of values, or
just 1’s and 0’s (see the Appendix for more details).

(b) Set Φα(z) = (1−|z|2)−α. A direct calculation (see also (8)) shows that
(3) can also be viewed as the following hyperbolic density with respect to the
metric ∆Φα:

sup
k∈N

N(ak, 1/2)∫
K(ak,1/2)

∆Φα
<∞.

The problem of interpolation by functions in Aα can also be considered in
higher dimensions. Let Bn denote the unit ball in Cn.

The analogous L2-estimate for the ∂̄-equation provides a sufficient condi-
tion which is formally identical to that in the disk.

Theorem 2. Let {ak}k ⊂ Bn. If (3) holds then {ak}k is Aα-interpolating.

This cannot be improved, in the following sense: no condition of type

sup
k∈N

N(ak, 1/2)
Λ(|ak|)

<∞,

where Λ : [0, 1) −→ R+ is an increasing function with limr→1 Λ(r)(1− r)α =
+∞, can be sufficient. This is an easy consequence of Theorem 1 and the
obvious fact that for sequences {ak}k ⊂ Bn with ak = (αk, 0) ∈ D × {0}n−1

one has {ak}k ∈ IntAα(Bn) if and only if {αk}k ∈ IntAα(D).
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To conclude, and for the sake of completeness, we state a necessary density
condition which is an adaptation to the ball of a result by Li and Taylor [LiTa]
for some spaces of entire functions. Let Φα(z) = (1− |z|2)−α be as above.

Theorem 3. Let {ak}k ⊂ Bn be Aα-interpolating. Then:

(a) {ak}k is weakly separated, that is, there exist ε, p > 0 such that

d(ak, aj) ≥ 2εmax[e−pΦα(ak), e−pΦα(aj)].

(b) There exists C > 0 such that

n(z, r) ≤ C

(1− r)n
[Φα(r) Φα(z)]n for all r ∈ (0, 1) and z ∈ Bn.

In particular,

sup
z∈Bn

n(z, 1/2)
Φnα(z)

<∞.

This can be rewritten as a density with respect to the Monge-Ampère mass
associated to Φα. Consider

(4) i∂∂̄Φα(z) =
α Φα(z)

(1− |z|2)2

[
(α+ 1)i∂|z|2 ∧ ∂̄|z|2 + (1− |z|2)i∂∂̄|z|2

]
and the fundamental form of the Bergman metric in Bn:

Ψ(z) := i∂∂̄ log
(

1
1− |z|2

)
=

(1− |z|2)i∂∂̄|z|2 + i∂|z|2 ∧ ∂̄|z|2

(1− |z|2)2
.

Then αΦα ·Ψ ≤ i∂∂̄Φα ≤ (α+ 1)Φα ·Ψ, and
∫
K(z,1/2)

(i∂∂̄Φα)n is comparable
to (Φα(z))n. This shows that Theorem 3(b) is equivalent to

n(z, r)∫
K(z,r)

(i∂∂̄Φα)n
≤ C (Φα(r))n for all r ∈ (0, 1) and z ∈ Bn.

See [Ln] for more precise Monge-Ampère density conditions for interpolation
and sampling in some spaces of entire functions.

The paper is organized as follows. In Section 2 we prove Theorem 1. Sec-
tions 3 and 4 contain the proofs of Theorems 2 and 3, respectively, while
in Section 5 we state analogous theorems for slightly more general versions
of the weight Φα. Finally, in an appendix we collect some remarks on the
interpolation problem for the Nevanlinna class.

A final word about notation: C will always denote a positive constant and
its actual value may change from one occurrence to the next.
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2. Proof of Theorem 1

The topological structure of the algebra Aα plays an important role in the
proof of Theorem 1. It is clear from the definition that Aα =

⋃
p>0A

−p
α ,

where

A−pα =
{
f ∈ H(D) : ‖f‖A−pα := sup

D

|f | e−pΦα <∞
}
.

Aα is the inductive limit of the Banach spaces A−pα , and it enjoys the structure
of a Fréchet (LF)-space.

Similarly, given S = {ak}k, we consider the Fréchet (LF)-space Aα(S) =⋃
p>0A

−p
α (S), where

A−pα (S) =
{
{vk}k : sup

k∈N
|vk| e−pΦα(ak) <∞

}
.

In these terms, S is Aα-interpolating if and only if the restriction operator

RS : Aα −→ Aα(S)
f → {f(ak)}k

is onto. An application of the open mapping theorem to RS yields the follow-
ing result.

Lemma 1 ([Gro, Theorem 2, p. 148]). If S is Aα-interpolating, then for
every q ≥ 0 there exist p, C > 0 such that for all k ∈ N there is gk ∈ A−pα with
gk(aj) = δjke

qΦα(ak) and ‖gk‖A−pα ≤ C.

Proof of the necessity. Take the functions gk given by Lemma 1 and define
fk := gk ◦ φak . Since

Φα(φak(z)) ≤ CαΦα(z)Φα(ak),(5)

we have log |fk(z)| � Φα(z)Φα(ak), and an application of Jensen’s formula
yields∫ r

0

n(ak, t)− 1
t

dt ≤ 1
2π

∫ 2π

0

log |fk(reiθ)| dθ ≤ Cα Φα(r) Φα(ak)

for all r < 1. In particular, N(ak, r) ≤ Cα Φα(r) Φα(ak).

Proof of the sufficiency. Given {vk}k satisfying (2), we will show first that
it is possible to construct a smooth interpolating function having the charac-
teristic growth of Aα. Then, by solving a ∂̄ equation with estimates, we will
see that the interpolating function can be taken to be holomorphic. For this
purpose it will be convenient to express Aα as a union of weighted Bergman
spaces:

Aα =
⋃
p>0

Bα,p,
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where

Bα,p =
{
f ∈ H(D) : ‖f‖2Bα,p :=

∫
D

|f |2e−pΦαdm <∞
}

and dm denotes the Lebesgue measure.
Condition (3) implies that {ak}k is weakly separated, i.e., for some ε, q > 0,

and δk = εe−qΦα(ak), the hyperbolic pseudoballs Kk := K(ak, δk) are pairwise
disjoint.

Let X be a smooth cut-off function of one real variable, with derivative X ′
uniformly bounded, X (t) ≡ 1 for t < 1/2 and X (t) ≡ 0 for t > 1. Define the
smooth interpolating function

F (z) =
∞∑
k=1

vk X

(
|φz(ak)|2

δ2
k

)
.

The support of F is contained in ∪kKk, and for z ∈ Kk
|F (z)| ≤ |vk|,∣∣∂̄F (z)

∣∣ � |vk| 1
1− |ak|

1
δk
.

Using the estimate (1 − |ak|)−1 � eΦα(ak) and (2) we see that there exist a
constant C independent of k and s big enough so that

|F (z)|2 e−sΦα ≤ C and |∂̄F (z)|2 e−sΦα ≤ C.

Because of the weak separation, there existsM > 0 such that
∑
k e
−MΦα(ak) <

∞. Hence, taking again s big enough, we have

(6)
∫
D

|F |2 e−sΦα <∞ and
∫
D

|∂̄F |2 e−sΦα <∞.

Now, when looking for a holomorphic interpolating function of the form
f := F − u we are led to the ∂̄-problem

∂̄u = ∂̄F,

which we solve by Hörmander’s theorem [Hör, Theorem 4.2.1]: Given a sub-
harmonic function ψ in D, there exists a solution u to the above equation such
that

2
∫
D

|u|2 e−ψ

(1 + |z|2)2
≤
∫
D

|∂̄F |2 e−ψ.

We apply this estimate to the weight

ψβ(z) = β Φα(z) + v(z),

where β > 0 will be chosen later and

v(z) =
∞∑
k=1

[
log |φz(ak)|2 − 1

π/82

∫
D(0,1/8)

log |φφz(ak)(ζ)|2dm(ζ)

]
.
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Changing to polar coordinates and using the identity

1
2π

∫ 2π

0

log |ζ − reiθ|2 dθ = max(log |ζ|2, log r2)

we see that

v(z) =
∑

k:|φz(ak)|≤1/8

log
∣∣∣∣φz(ak)

1/8

∣∣∣∣2 + 1−
∣∣∣∣φz(ak)

1/8

∣∣∣∣2 .(7)

Lemma 2. If (3) holds, there exists C > 0 such that

∆v(z) ≥ −C(1− |z|2)−2Φα(z).

Proof. From (7) we have

∆v(z) ≥ −
∑

k:|φz(ak)|≤1/8

∆
∣∣∣∣φz(ak)

1/8

∣∣∣∣2 = −82
∑

k:|φz(ak)|≤1/8

(1− |ak|2)2

|1− ākz|4

� −82 n(z, 1/8)
(1− |z|2)2

.

In order to see that n(z, 1/8) is controlled by Φα(z) take any ak ∈ K(z, 1/8)
(if n(z, 1/8) = 0 there is nothing to prove) and notice that (3) implies

n(ak, 1/4)− 1 �
∫ 1/2

1/4

n(ak, t)− 1
t

dt � N(ak, 1/2) � Φα(ak).

Since K(z, 1/8) ⊂ K(ak, 1/4), by (5) we have then

n(z, 1/8) ≤ n(ak, 1/4) � Φα(ak) � Φα(z). �

A straightforward calculation gives

∆Φα(z) =
α(1 + α|z|2)
(1− |z|2)2

Φα(z).(8)

Thus taking β big enough and applying Lemma 2 we see that ψβ is subhar-
monic and ∆ψβ is bounded below:

∆ψβ = β∆Φα + ∆v ≥ Φα
(1− |z|2)2

.

Since v is negative (by definition) and (1 + |z|2)2 is comparable to a constant,
the L2-estimate for the ∂̄ solution yields∫

D

|u|2e−βΦα � 2
∫
D

|u|2 e−ψβ

(1 + |z|2)2
≤
∫
D

|∂̄F |2e−βΦαe−v.
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If z is in the support of ∂̄F , it belongs to one of the annuli Ak = {z : δk/2 <
|φz(ak)| < δk}. Then, by (7),

−v(z) ≤
∑

j:|φz(aj)|≤1/8

log
1/82

|φz(aj)|2

� log
1

|φz(ak)|
+

∑
|φz(aj)|≤1/8

j 6=k

log
1/8
|φz(aj)|

� log
1
δk

+
∫ 1/8

2δk

n(z, t)− 1
t

dt.

The first term is dominated by Φα(ak), by definition of δk. In order to
estimate the integral we use the inclusion K(z, t) ⊂ K(ak, t+δk1+tδk

) and perform
the change of variable s = t+δk

1+tδk
. Since {δk} ↘ 0, we obtain∫ 1/8

2δk

n(z, t)− 1
t

dt ≤
∫ 1/8+δk

1+δk/8

3δk
1+2δ2

k

n(ak, s)− 1
s− δk

1− δ2
k

(1− δks)2
ds

�
∫ 1/8+δk

1+δk/8

3δk
1+2δ2

k

n(ak, s)− 1
s− δk

ds.

We can assume δk sufficiently small so that 1/8+δk
1+δk/8

≤ 1
2 . Since s − δk > s/2

when s > 3δk
1+2δ2

k
, we have

−v(z) � Φα(ak) +
∫ 1/2

0

n(ak, s)− 1
s/2

ds � Φα(ak) � Φα(z).

Thus e−v � ec Φα for some c > 0, and∫
D

|u|2e−βΦα �
∫
D

|∂̄F |2e−(β−c)Φα .

This and (6) show that if β ≥ c + s then f = F − u ∈ Aα. Moreover
e−ψβ ' |φz(ak)|−2 around each ak. Hence

∫
|u|2e−ψβ <∞ implies u(ak) = 0

for all k ∈ N and f(ak) = vk, as required. �

3. Proof of Theorem 2

The proof in higher dimension goes along the same lines. We only indicate
the minor changes required to adapt the proof given above to the ball.

As before, given {vk}k verifying (2) we can find a smooth interpolating
function F satisfying (6). Then we solve the corresponding ∂̄ equation by
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Hörmander’s theorem [Hör, Theorem 4.2.6]: Given a plurisubharmonic func-
tion ψ in Bn, there exists a solution u to ∂̄u = ∂̄F such that

2
∫
Bn

|u|2 e−ψ

(1 + |z|2)2
≤
∫
Bn

|∂̄F |2 e−ψ.

Consider the C1 function

ω(z) =
{

log |z|2 + 1− |z|2 if |z| ≤ 1,
0 if |z| > 1,

and the weight

v(z) = n
∞∑
k=1

ω

(
φz(ak)

1/8

)
,

which is formally the same as in (7). Define ψβ = βΦα + v.
Let Ψ denote the fundamental form of the Bergman metric in Bn, as in the

introduction. We use the notations

N(φz(ak)) =
i∂∂̄|φz(ak)|2

1− |φz(ak)|2
,

T (φz(ak)) =
i∂|φz(ak)|2 ∧ ∂̄|φz(ak)|2

(1− |φz(ak)|2)2
.

As a consequence of the invariance by automorphisms of Ψ (or by a direct
calculation) we have

N(φz(ak)) + T (φz(ak)) = Ψ(z),

and, since T (φz(ak)) is a positive form,

i∂∂̄v(z) ≥ −
∑

k:|φz(ak)|≤1/8

i∂∂̄

∣∣∣∣φz(ak)
1/8

∣∣∣∣2
� −

∑
k:|φz(ak)|≤1/8

N(φz(ak))(1− |φz(ak)|2)

� −n(z, 1/8)Ψ(z).

On the other hand, (4) shows that i∂∂̄Φα(z) ≥ α Φα(z)Ψ(z), and therefore

i∂∂̄ψβ ≥ [βα Φα(z)− n(z, 1/8)] Ψ(z).

As in the proof of Lemma 2, the hypothesis implies n(z, 1/8) � Φα(z). Hence
for β big enough ψβ is plurisubharmonic. Therefore∫

Bn

|u|2e−βΦα � 2
∫
Bn

|u|2 e−ψβ

(1 + |z|2)2
≤
∫
Bn

|∂̄F |2e−βΦαe−v.

From here we finish as in the proof of Theorem 1.
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4. Proof of Theorem 3

Part (a) is an easy consequence of Lemma 1 and a gradient estimate; it can
be proved in the same way as Theorem 2 in [Ma97].

The proof of (b) is just an adaptation to the ball of the proof of Theorem
3.6 in [LiTa]. We include a sketch for the sake of completeness.

First we see that {ak}k can be included in the zero set of a suitable map.
Let DuF denote the derivative of F in the unitary direction u.

Theorem 4. A sequence {ak}k is Aα-interpolating if and only if there
exists a map F = (F1, . . . , Fn) : Bn −→ C

n, Fj ∈ Aα, and constants δ, p > 0
such that F (ak) = 0 for all k ∈ N and

n∑
j=1

|DuFj(ak)| ≥ δe−pΦα(ak) ∀k ∈ N ∀u unitary.

This can be proved in the same way as the Main Theorem in [Ma98]. We
give the proof of the necessity part, which is the one we will use.

Proof of the necesity. Because of (a), there is M > 0 with
∑
k e
−MΦα(ak) <

∞. By Lemma 1, there exist p,K > 0 and functions gk ∈ A−pα such that
‖gk‖A−pα ≤ K, gk(aj) = δjke

MΦα(ak). Define

Fj(z) =
∞∑
k=1

e−2MΦα(ak)g2
k(z)(zj − ajk), j = 1, . . . , n,

where zj denotes the jth coordinate of z. Then F vanishes on {ak}k, F ∈
A−2p
α , and

∂Fj
∂zl

(ak) = δjl gk(ak)e−MΦα(ak) = δjl. �

Theorem 3 will then be a consequence of the following proposition and
the invariance by automorphisms of interpolating sequences. Given a map
F = (F1, . . . , Fn), let ‖F‖A−pα =

∑
j ‖Fj‖A−pα .

Proposition 1. Let {ak}k ⊂ Bn. Assume γ0 > 0 and F = (F1, . . . , Fn) :
Bn −→ C

n, Fj ∈ A−pα , are such that F (ak) = 0 for all k ∈ N and
n∑
j=1

|DuFj(ak)| ≥ γ0 ∀k ∈ N ∀u unitary.

Then there exists C = C(n, p) > 0 such that

n(0, r) ≤ C

(1− r)n

[
log ‖F‖A−pα + log

1
γ0

+ Φα(r)
]n
.
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The following lemma is crucial to the proof of Proposition 1. Given a map
F = (F1, . . . , Fn) let nF (z, r) = #F−1(0) ∩ K(z, r). For τ = (τ1, . . . , τn),
τj > 0, and ϕ = (ϕ1, . . . , ϕn) ∈ Tn denote τeiϕ = (τ1eiϕ1 , . . . , τne

iϕn).

Lemma 3 ([Gr, Theorem 2.9]). Let F = (F1, . . . , Fn) : Bn −→ C
n be

nondegenerate and let M(Fj , t) = sup|z|=t |Fj(z)|. For τ = (τ1, . . . , τn), τj >
0, and ϕ ∈ Tn let Fτ,ϕ = F − τeiϕ. Then, for any r ∈ (0, 1) and β > 1 such
that βnr < 1∫

T
n

nFτ,ϕ(0, r) dϕ ≤ σ(βnr)
(β2 − 1)nr2n

n∏
j=1

(
log+M(Fj , βn−j+1r) + log− τj

)
,

where dϕ is the product measure in Tn and σ(βnr) the volume of the ball
B(0, βnr).

Proof of Proposition 1. Let F the map given by Theorem 4 and fix ak with
|ak| ≤ r. Because of the estimate on DuF (ak), there exist constants ci, Ai > 0,
i = 1, 2, depending only on n, p and ‖F‖A−pα such that

d(ak, F−1(0) \ {ak}) > dr := γ0 c1e
−A1Φα(r)

and

(9) |F (w)| > δr := γ0 c2e
−A2Φα(r) for w ∈ ∂K(ak, dr).

This is proved using the analog for the ball of Lemma 3.9 in [LiTa].
By Sard’s lemma there exists τ ∈ Rn with

(10)
δr

4
√
n
< τj <

δr
2
√
n
, j = 1, . . . , n,

and a zero measure set E ⊂ Tn such that for all ϕ ∈ Tn \E the value τeiϕ is
regular for F . Hence F−1(τeiϕ) is a discrete variety in Cn.

By (9) we have on ∂K(ak, dr)

|F − Fτ,ϕ|2 =
n∑
j=1

|τj |2 < n
δ2
r

4n
< |F |2.

From the above and Rouché’s lemma [BGVY, Theorem 2.12] one deduces that
nF (K(ak, dr)) = nFτ,ϕ(K(ak, dr)) (where nF (U) is the number of zeros of a
map F in U , counted with multiplicities). Hence

n(0, r) ≤ nFτ,ϕ(B(0, r)) for all ϕ ∈ Tn \ E.
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Now take β > 1 such that βnr = (1 + r)/2 and apply Lemma 3. If R > 1/2,
then

n(0, r) ≤ 1
(2π)n

∫
T
n

nFϕ(B(0, r)) dϕ

≤ cn
(β2 − 1)n

n∏
j=1

[
log+M(Fj , βnr) + log

4
√
n

δr

]

≤ cn
(β − 1)n

[
log ‖F‖A−pα + Φα(βnr) + log(4

√
nc−1

2 )

+A2Φα(r) + 3 log
1
γ0

]n
.

Since β−1 > (1−r)/(2n) and 1−βnr = (1−r)/2, there exists C > 0 depending
on n, p and α such that Φα(βnr) ≤ CΦα(r), and the proof is finished. �

Proof of Theorem 3. Let F be the map provided by Lemma 4 and take
p > 0 such that F ∈ A−pα .

Fix z ∈ Bn. Define Sz = {φz(ak)}k and F z = F ◦φz. Then F z ∈ A−pα and,
because of (5),

log |F z(ζ)| ≤ log ‖F‖A−pα + p CαΦα(z)Φα(ζ).

Also F z|Sz ≡ 0, and letting bk = φz(ak), we have

n∑
j=1

|DuF
z
j (bk)| ≥

n∑
j=1

|DuFj(ak)|‖J φz(φz(ak)) · J φz(ak)‖ ≥ (1− |z|2)2(n+1)

√
n

.

Then we get the desired result as an application of Proposition 1. �

5. Generalizations

The results above can be immediately generalized in two different direc-
tions: the spaces of functions and the multiplicity of the interpolation.

Definition 2. A radial increasing subharmonic function Φ : D −→ R
+

is called a weight if for some C,D > 0:
(i) Φ(φa(z)) ≤ C Φ(a)Φ(z) for all z, a ∈ D.
(ii) (1− |z|2)−2Φ(z) � ∆Φ(z) for all z ∈ D.

Associated with these weights we consider the spaces

AΦ :=
{
f ∈ H(D) : sup

z∈D
Φ−1(z) log+ |f(z)| <∞

}
.

Notice that assuming Φ ∈ C2 is no restriction. Otherwise we can replace Φ
by the average Φ̃(z) := 1

m(K(z,1/2))

∫
K(z,1/2)

Φ dm and observe that AΦ = AΦ̃.
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Examples of such weights are

Φ(z) = (1− |z|2)−α logβ
(

1
1− |z|2

)
, α, β > 0,

Φ(z) = (1− |z|2)−α
n︷ ︸︸ ︷

log · · · log
(

1
1− |z|2

)
, α > 0, n ∈ N.

Also, given m ∈ N, we consider the variety X = {(ak,m)}k, in which with
each ak there is associated a fixed multiplicity m.

Definition 3. A variety X = {(ak,m)}k is AΦ-interpolating if for every
sequence of values {vlk}k,l, k ∈ N, l = 0, . . . ,m− 1, with

sup
k∈N

Φ−1(ak) log+

(
m−1∑
l=0

|vlk|

)
<∞

there exists f ∈ AΦ with

f (l)(ak)
l!

= vlk, k ∈ N, l = 0, . . . ,m− 1.

With these definitions the following result follows by a straightforward
modification of the proof of Theorem 1.

Theorem. Let Φ be a weight and let X = {(ak,m)} be a variety in D.
Then X is AΦ-interpolating if and only if

sup
k∈N

N(ak, 1/2)
Φ(ak)

<∞.

A similar generalization of Theorem 2 can be obtained (see Section 5 of
[HaMa] for the case of entire functions). As for Theorem 3, there is no diffi-
culty in generalizing this result to the weights defined above, but the higher
multiplicity case is more delicate (see [LiVi] for a treatment of this problem
in the case Φ(z) = − log(1− |z|2)).

6. Appendix. Some remarks on free interpolation in N

It is not clear what growth condition one should impose on the values {vk}k
in order to obtain an appropriate definition of interpolating sequences for N .
We can, however, give the following definition.

We say that a sequence space l is ideal if for every sequence {vk}k ∈ l and
every sequence {uk}k with |uk| ≤ |vk|, k ∈ N, we also have {uk}k ∈ l. This
can also be expressed in terms of multipliers. Indeed, a sequence space l is
ideal if it is stable under `∞ multiplication: `∞l ⊂ l, i.e., if {µkvk}k ∈ l for
all {µk}k ∈ `∞ and {vk}k ∈ l.

We can now introduce free interpolation sequences in the following way (we
refer the reader to [Nik] for more information on free interpolation).
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Definition 4. Given a space X of holomorphic functions on D, a se-
quence S ⊂ D is of free interpolation for X if X|S is ideal. We denote this
by S ∈ Int`∞ X (to distinguish it from the notion of interpolating sequences
defined earlier).

Proposition. Let S = {ak}k ⊂ D.
(i) If S ∈ Int`∞ N then conditions (a) and (c) in Theorem A hold.
(ii) There exist sequences S ∈ Int`∞ N that are not N -interpolating in the

sense of Naftalevič.
(iii) Conditions (a) and (c) in Theorem A are not sufficient for free in-

terpolation in N (and hence they are not sufficient for being N -
interpolating in the sense of Naftalevič).

An example of (ii) has already been given in the introduction. Any se-
quence {ak}k not inscribed in any polygon and with infk

∏
j 6=k

∣∣∣ aj−ak1−ākaj

∣∣∣ > 0
is obviously not interpolating in the sense of Naftalevič, but it is interpolating
for the space H∞(D) of bounded holomorphic functions, and therefore it is
of free interpolation for N . In particular, this suggests that the trace cho-
sen in Naftalelevič’s result is somewhat unnatural, in the sense that it is not
compatible with free interpolation.

Part (i) of the proposition could be proved similarly to the necessity part of
Theorem 1. We prove it instead by showing that free interpolation sequences
for N are also interpolating for A1. This is an immediate consequence of the
following lemma, which also indicates that the above definition is reasonable.

Lemma 4. Let S ⊂ D and α > 0. Then S ∈ IntAα if and only if S ∈
Int`∞ Aα.

Observe that if X is an algebra containing the constants (or just a function
with trace 1 on S), then the definition of free interpolation is in fact equivalent
to `∞ ⊂ X|S. The spaces under consideration here (Aα or N ) are algebras
containing the constants, so this lemma actually shows that a sequence is
Aα-interpolating (in the sense of Definition 1) if and only if Aα|S contains
`∞.

Proof. It is clear from Definition 1 that if S is Aα-interpolating, then the
trace space Aα|S is ideal.

For the converse, assume that Aα|S is ideal. It will be enough to show that
in this situation the conclusion of Lemma 1 holds, since then we can proceed
as in the proof of Theorem 1 and obtain (3).

We will use a standard argument based on Baire’s theorem (see, for exam-
ple, [BeLi, Lemma 3.3]). Define for n ∈ N

`∞n =
{
µ ∈ `∞ : ∃ f ∈ A−nα with |f(z)| ≤ nenΦα(z), z ∈ D, and f |S = µ

}
.
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Clearly `∞n 6= ∅. Also `∞n ⊂ `∞, and hence
⋃
n∈N `

∞
n ⊂ `∞. To obtain the

inverse inclusion, assume that µ ∈ `∞. By the interpolation condition there
exists f ∈ Aα, and so f ∈ A−nα for some n ∈ N, such that f |S = µ. Moreover,
for some m ≥ n, we will get |f(z)| ≤ cenΦα(z) ≤ memΦα(z) so that µ ∈ `∞m .
Hence we also have `∞ ⊂

⋃
n∈N `

∞
n and `∞ =

⋃
n∈N `

∞
n .

Let us show that `∞n is closed. Let {µ(k)}k be a sequence in `∞n converging
in `∞ to µ. By definition there exist fk ∈ A−nα such that fk|S = µ(k) and
|fk(z)| ≤ nenΦα(z), z ∈ D. In particular, the sequence {fk}k is uniformly
bounded on every compact set, and by a normal family argument we can
extract a subsequence {fkj}j converging uniformly on every compact set to
some function f ∈ H(D). Clearly |f(z)| ≤ ne−nΦα(z) for every z ∈ D, and
since µl = limk→∞ µ

(k)
l = limj→∞ µ

(kj)
l = limj→∞ fkj (al) = f(al), we also

have f |S = µ.
By Baire’s theorem we can now conclude that at least one `∞n contains a

ball of `∞: B`∞(0, ε) ⊂ `∞n for some ε > 0 and some n ∈ N. In particular,
((ε/2)δkj)j ∈ `∞n . Hence there exist functions gk with gk(aj) = (ε/2)δkj
and |gk(z)| ≤ ne−nΦα(z) for all z ∈ D, i.e., ‖gk‖A−nα ≤ n, k ∈ N. So, the
conclusion of Lemma 1 is still valid under the a priori weaker condition of
free interpolation. As mentioned above, we can proceed as in the proof of
Theorem 1 to get the result. �

Proof of the Proposition. (i) That {ak} must be a Blaschke sequence is
immediate: Define w1 = 1 and wk = 0 for all k > 1. Since {wk}k ∈ `∞N|S ⊂
N|S (observe that 1 ∈ N ), there exists f ∈ N with f(ak) = 0 for all k > 1,
and so (z − ak)f ∈ N vanishes on S. It is well known that zero sequences of
Nevanlinna functions satisfy the Blaschke condition.

Let us now prove condition (c) of Naftalevič. Since N ⊂ A1, it is clear that
if N|S is ideal then `∞ ⊂ N|S. Hence `∞ ⊂ A1|S, and by the remark made
after Lemma 4 we know that S is A1-interpolating. The result follows now
from Lemma 4 and the fact that (3) together with the Blaschke condition are
equivalent to condition (c) of Naftalevič (see Remark (a) in the Introduction).

It only remains to prove (iii). To do this, we give an example of a sequence
satisfying (a) and (c) of Naftalevič’ theorem, which is not of free interpolation
for N .

For a given Blaschke sequence S = {bk}k, denote its associated Blaschke
product by

BS(z) =
∞∏
k=1

z − bk
1− b̄kz

and let BSk = BS/ z−bk
1−b̄kz

.
Take σ = {σk} to be a Carleson sequence (i.e., infk |Bσk (σk)| > 0) approach-

ing the unit circle tangentially at some point. Take also σ′ = {σ′k} such that
d(σk, σ′k) = exp(− 1

1−|σk| ) and define S = σ ∪ σ′. Since σ and σ′ are Carleson,
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we have for any ak ∈ S

|BSk (ak)| ' exp
(
− 1

1− |ak|

)
.

Hence conditions (a) and (c) in Naftalevič’ result are satisfied.
Assuming that {ak}k is of free interpolation for N there exists f ∈ N such

that

f(ak) =
{

1 if ak ∈ σ,
0 if ak ∈ σ′,

and so f can be factorized into f = Bσ
′
g, with g ∈ N . Since

exp
(
− 1

1− |σk|

)
' |BSk (σk)| ≤ |Bσ

′
(σk)| ≤ 1

δ
|BSk (σk)| ' exp

(
− 1

1− |σk|

)
,

we get

(11) |g(σk)| ' exp
(

1
1− |σk|

)
∀k ∈ N,

which contradicts the fact that Nevanlinna functions can only attain such a
growth within a finite union of Stolz angles (see [Na56, Lemma 1]).

�

Remark. Notice that part (iii) of the Proposition will be true with any
other possible definition of N -interpolating sequence, as long as such a defi-
nition permits interpolation of bounded sequences of values (or just 0’s and
1’s).
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