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NONLINEAR POTENTIAL THEORY ON METRIC SPACES

JUHA KINNUNEN AND OLLI MARTIO

Abstract. We study nonlinear potential theory on a metric measure

space equipped with a doubling measure and supporting a Poincaré
inequality. Minimizers, superminimizers and the obstacle problem for
the p-Dirichlet integral play an important role in the theory. We prove

lower semicontinuity of superminimizers and continuity of the solution to
the obstacle problem with a continuous obstacle. We also show that the

limit of an increasing sequence of superminimizers is a superminimizer
provided it is bounded above. Moreover, we consider superharmonic
functions and study their relations to superminimizers. Our proofs are
based on the direct methods of the calculus of variations and on De
Giorgi type estimates. In particular, we do not use the Euler-Lagrange
equation and our arguments are based on the variational integral only.

1. Introduction

Let (X, d) be a metric space equipped with a Borel measure µ. In a metric
measure space the concept of an upper gradient serves as a substitute for the
Sobolev gradient. Suppose that 1 ≤ p <∞ and let u be a real-valued function
on X. A non-negative Borel measurable function g on X is said to be a p-weak
upper gradient of u if for p-almost every rectifiable path γ joining two points
x and y in X we have

(1.1) |u(x)− u(y)| ≤
∫
γ

g ds.

This means that (1.1) holds for all paths in X outside a family of paths which
is of p-modulus zero. The Sobolev space on a metric measure space, called the
Newtonian space N1,p(X), can be defined as a collection of equivalence classes
of p-integrable functions with p-integrable upper gradients. Essentially, this
is an extension to metric spaces of the absolute continuity property on almost
all lines of Sobolev functions. For this approach on a metric measure space
see [Sh2]; a slightly different, but equivalent approach is used in [C].
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Newtonian spaces enable us to study variational integrals on a metric mea-
sure space, and nonlinear potential theoretic models can be built on minimiz-
ers of variational integrals

(1.2)
∫
gpu dµ,

where gu denotes the minimal p-weak upper gradient of u. Indeed, in [KS] it
was shown that the minimizers, and even the quasiminimizers, of (1.2) satisfy
the Harnack inequality and the maximum principle, and are locally Hölder
continuous under relatively mild conditions. For recent developments in the
analysis on metric spaces we refer to [B], [BBS], [BMS], [C], [Ha], [HeK], [Sh1],
[Sh2]. A very nice general overview of the theory can be found in [HaK] and
[He].

The objective of this paper is to study nonlinear potential theory on a
metric measure space. Due to the notion of the upper gradient, it is not clear
how to employ partial differential equations in this setting. Our approach is
based only on the variational integrals (1.2), and therefore new arguments are
needed. In contrast to the potential theory of minimizers of the p-Dirichlet
integral in the Euclidean case, which is nonlinear only when p 6= 2, our theory
is nonlinear for all p > 1. The reason for this is that the operation of taking
the upper gradient is not linear. Classical harmonic functions are replaced
by continuous minimizers of (1.2). Superminimizers and the obstacle problem
play an important role in the theory. We prove the lower semicontinuity of
superminimizers and the continuity of the solution to the obstacle problem
with a continuous obstacle. We also show that the limit of an increasing se-
quence of superminimizers is a superminimizer provided it is bounded above.
Our proofs are based on direct methods of the calculus of variations and on
De Giorgi type estimates; see [Gia], [Giu]. Traditionally these estimates have
been used to prove local Hölder continuity and the Harnack inequality for
minimizers of variational integrals. We use them to handle semicontinuity
problems associated with super- and subminimizers. We close the paper by
considering superharmonic functions and studying their relations to super-
minimizers.

In a forthcoming paper the authors study further properties of nonlinear
potential theory on metric measure spaces and show that much of the theory
can be extended to quasiminimizers. Methods like the Poisson modification
and the Perron method seem to be available also in the metric setting, and
they open possibilities to study more refined aspects of nonlinear potential
theory on metric measure spaces.

2. Newtonian spaces

Let X be a metric space and let µ be a Borel measure on X. Throughout
the paper we assume that the measure of every nonempty open set is positive



NONLINEAR POTENTIAL THEORY ON METRIC SPACES 859

and that the measure of every bounded set is finite. Later we will impose
further requirements on the space and on the measure (see 2.14).

2.1. Upper gradients. Let u be a real-valued function on X. A non-
negative Borel measurable function g on X is said to be an upper gradient of
u if for all rectifiable paths γ joining points x and y in X we have

(2.2) |u(x)− u(y)| ≤
∫
γ

g ds.

See [C], [He], [HeK] and [Sh1] for a discussion of upper gradients.
Let 1 ≤ p <∞. The p-modulus of a family of paths Γ in X is the number

inf
ρ

∫
X

ρp dµ,

where the infimum is taken over all non-negative Borel measurable functions
ρ such that for all rectifiable paths γ which belong to Γ we have∫

γ

ρ ds ≥ 1.

It is known that the p-modulus is an outer measure on the collection of all
paths in X.

A property is said to hold for p-almost all paths, if the set of paths for
which the property fails is of zero p-modulus. If (2.2) holds for p-almost all
paths γ, then g is said to be a p-weak upper gradient of u.

2.3. Newtonian spaces. Let 1 ≤ p <∞. We define the space Ñ1,p(X) to
be the collection of all p-integrable functions u on X that have a p-integrable
p-weak upper gradient g on X. This space is equipped with a seminorm

‖u‖Ñ1,p(X) = ‖u‖Lp(X) + inf ‖g‖Lp(X),

where the infimum is taken over all p-weak upper gradients of u.
We define an equivalence relation in Ñ1,p(X) by saying that u ∼ v if

‖u− v‖Ñ1,p(X) = 0.

The Newtonian space N1,p(X) is defined to be the space Ñ1,p(X)/ ∼ with
the norm

‖u‖N1,p(X) = ‖u‖Ñ1,p(X).

For basic properties of the Newtonian spaces we refer to [Sh1]. Cheeger [C]
gives an alternative definition which leads to the same space when 1 < p <∞;
see [Sh1].

For future reference we recall some known facts:
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(i) The functions in Ñ1,p(X) are defined outside a path family of p-
modulus zero. This implies that functions in Ñ1,p(X) cannot be ar-
bitrarily changed on sets of measure zero. However, if u, v ∈ Ñ1,p(X)
such that u = v µ-almost everywhere, then u and v belong to the
same equivalence class in N1,p(X).

(ii) The normed space (N1,p(X), ‖ · ‖N1,p(X)) is complete, i.e., it is a Ba-
nach space.

(iii) If 1 < p < ∞, every function u that has a p-integrable p-weak upper
gradient has a minimal p-integrable p-weak upper gradient in X, de-
noted by gu, in the sense that if g is another p-weak upper gradient
of u, then gu ≤ g µ-almost everywhere in X.

(iv) For every c ∈ R the minimal p-weak upper gradient satisfies gu = 0 µ-
almost everywhere on the set {x ∈ X : u(x) = c}. This implies that if
u, v ∈ N1,p(X), then min(u, v) ∈ N1,p(X) and max(u, v) ∈ N1,p(X).
Moreover, if gu and gv are the minimal p-weak upper gradients of u
and v, respectively, then guχE + gvχX\E , with E = {x ∈ X : u(x) ≥
v(x)}, is a p-weak upper gradient of min(u, v).

(v) If u ∈ N1,p(X) and v is a bounded Lipschitz continuous function,
then uv ∈ N1,p(X) and guv ≤ |u|gv + |v|gu µ-almost everywhere.

(vi) Suppose that ui, i = 1, 2, . . . , is a sequence of functions in N1,p(X),
1 < p <∞, such that

sup
i
‖ui‖N1,p(X) <∞.

Then there is a subsequence uij and a function u ∈ N1,p(X) such that
uij → u weakly in Lp(X) and

‖gu‖Lp(X) ≤ lim inf
j→∞

‖guij ‖Lp(X).

(vii) The functions in N1,p(X) are absolutely continuous on p-almost every
path, i.e., u ◦ γ is absolutely continuous on [0, length(γ)] for p-almost
every rectifiable arc-length parametrized path γ in X.

We emphasize that these properties hold without any additional assumptions
on the measure and on the space. The property (vi) would follow from the re-
flexivity of the Newtonian spaces N1,p(X), 1 < p <∞. However, these spaces
are known to be reflexive only under further assumptions on the measure and
space; see [C]. We stress that reflexivity is not needed in the proof of (vi).

Next we prove an estimate for the p-weak upper gradient of a certain func-
tion which will be used as a test function later. This estimate does not seem
to follow from (v), and hence a more careful analysis is needed.

2.4. Lemma. Suppose that u, v ∈ N1,p(X) and that η is a Lipschitz
continuous function in X with 0 ≤ η ≤ 1 and v ≥ u µ-almost everywhere in
X. Let gu, gv and gη be the p-weak upper gradients of u, v and η, respectively.
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Define w = u+ η(v − u). Then

(2.5) gw ≤ (1− η)gu + ηgv + (v − u)gη

µ-almost everywhere in X.

Proof. Let γ be the arc-length parametrization of a rectifiable path on
which the functions u, v and η are absolutely continuous. Define the function
h : [0, length(γ)]→ [0,∞) by

h(s) = (u ◦ γ)(s) + (η ◦ γ)(s)((v ◦ γ)(s)− (u ◦ γ)(s)).

Then h is absolutely continuous and for almost every s ∈ [0, length(γ)], with
respect to the one-dimensional Lebesgue measure, we have

h′(s) = (u ◦ γ)′(s)(1− (η ◦ γ)(s)) + (η ◦ γ)′(s)((v ◦ γ)(s)− (u ◦ γ)(s))

+ (η ◦ γ)(s)(v ◦ γ)′(s).

Since |(u◦γ)′(s)| ≤ gu(γ(s)), |(v◦γ)′(s)| ≤ gv(γ(s)) and |(η◦γ)′(s)| ≤ gη(γ(s))
for almost every s ∈ [0, length(γ)], we obtain

|h′(s)| ≤ gu(γ(s))(1− η(γ(s))) + gη(γ(s))(v(γ(s))− u(γ(s)))

+ η(γ(s))gv(γ(s))

for almost every s ∈ [0, length(γ)]. This proves (2.5). �

2.6. Capacity. The p-capacity of a set E ⊂ X is defined by

Cp(E) = inf
u
‖u‖pN1,p(X),

where the infimum is taken over all functions u ∈ N1,p(X), whose restriction
to E is bounded below by 1. The discussion in [KM] can easily be adapted to
show that the capacity is an outer measure; see also [Sh1]. A property is said
to hold p-quasieverywhere, if it holds everywhere except on a set of p-capacity
zero. A function is p-quasicontinuous, if there is an open set of arbitrarily
small p-capacity such that the function is continuous when restricted to the
complement of the set.

The p-capacity is the natural measure for exceptional sets of Sobolev func-
tions. Every function in Ñ1,p(X) is defined p-quasieverywhere. Moreover, if
u, v ∈ N1,p(X) and u = v µ-almost everywhere, then u = v p-quasieverywhere.
In particular, this implies that u and v belong to the same equivalence class
in N1,p(X).

Suppose that E ⊂ X. Then ΓE denotes the family of all rectifiable paths
that intersect the set E. It is possible to show that Cp(E) = 0 implies that the
p-modulus of ΓE is zero; see [Sh1]. From this it follows that if u ∈ N1,p(X)
and v is a measurable function on X such that v = u p-quasieverywhere, then
v belongs to the same equivalence class in N1,p(X).
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2.7. Newtonian spaces with zero boundary values. In order to be
able to compare the boundary values of Sobolev functions we need a notion
of Sobolev spaces with zero boundary values in a metric measure space. Let
E be an arbitrary subset of X. Following the method of [KKM], we define
Ñ1,p

0 (E) to be the set of functions u : E → [−∞,∞] for which there exists a
function ũ ∈ Ñ1,p(X) such that ũ = u µ-almost everywhere in E and

Cp({x ∈ X \ E : ũ(x) 6= 0}) = 0.

Next we define an equivalence relation on Ñ1,p
0 (E) by requiring that u ∼ v

if u = v µ-almost everywhere on E. Finally we let N1,p
0 (E) = Ñ1,p

0 (E)/ ∼,
equipped with the norm

‖u‖N1,p
0 (E) = ‖ũ‖Ñ1,p(X),

be the Newtonian space with zero boundary values. By [Sh1], the norm is
unambiguously defined and the space so obtained is a Banach space.

2.8. Local Newtonian spaces. We are mainly interested in the local
properties of minimizers of variational integrals. Hence we introduce the no-
tion of a local Newtonian space as follows. Let Ω be an open subset of X.
We say that a subset A of Ω is compactly contained in Ω, and write A ⊂⊂ Ω,
if the closure of A is a compact subset of Ω.

We say that u belongs to the local Newtonian space N1,p
loc (Ω) if u ∈ N1,p(A)

for every measurable set A ⊂⊂ Ω. If u ∈ N1,p
loc (Ω) with 1 < p <∞, then u has

a minimal p-weak upper gradient gu in Ω in the following sense: If Ω′ ⊂⊂ Ω
is an open set and g is the minimal upper gradient of u in Ω′, then gu = g
µ-almost everywhere in Ω′.

2.9. Doubling property. The measure µ is doubling if there is a constant
cd ≥ 1 so that

µ(B(z, 2r)) ≤ cdµ(B(z, r))

for every open ball B(z, r) in X. The constant cd is called the doubling
constant of µ. Note that by the doubling property, if B(y,R) is a ball in X,
z ∈ B(y,R) and 0 < r ≤ R <∞, then

µ(B(z, r))
µ(B(y,R))

≥ c

(
r

R

)Q
for c = 1/2 and Q = log cd/ log 2.

A metric space X is said to be doubling if there is a constant c < ∞ such
that every ball B(x, r), x ∈ X, r > 0, can be covered by at most c <∞ balls
of radius r/2. If X is equipped with a doubling measure, then X is doubling.
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2.10. Poincaré inequalities. Let 1 ≤ q < ∞. The space X is said
to support a weak (1, q)-Poincaré inequality if there are constants c > 0 and
τ ≥ 1 such that

(2.11)
∫
B(z,r)

|u− uB(z,r)| dµ ≤ cr

(∫
B(z,τr)

gq dµ

)1/q

for all balls B(z, r) in X, all integrable functions u in B(z, τr) and all q-weak
upper gradients g of u. The word weak refers to the possibility that τ > 1. If
τ = 1, the space is said to support a (1, q)-Poincaré inequality. In a doubling
measure space a weak (1, q)-Poincaré inequality implies a weak (t, q)-Poincaré
inequality for some t > q, possibly with a different value of τ ; see [HaK]. More
precisely, there are t > q, c > 0 and τ ′ ≥ 1 such that

(2.12)

(∫
B(z,r)

|u− uB(z,r)|t dµ

)1/t

≤ cr

(∫
B(z,τ ′r)

gq dµ

)1/q

for all balls B(z, r) in X, all integrable functions u in B(z, r) and all p-weak
upper gradients g of u.

In particular, if X supports a weak (1, q)-Poincaré inequality for some q
with 1 < q < p, then by Hölder’s inequality it supports a weak (1, p)-Poincaré
inequality, and hence [HaK] implies that

(2.13)

(∫
B(z,r)

|u− uB(z,r)|p dµ

)1/p

≤ cr

(∫
B(z,τ ′r)

gp dµ

)1/p

for all balls B(z, r) in X, all integrable functions u in B(z, r) and all p-weak
upper gradients g of u.

2.14. General setup. We make the following rather standard assump-
tions:

We assume, without further notice, that the complete metric measure space
X is equipped with a doubling Borel measure for which the measure of ev-
ery nonempty open set is positive and the measure of every bounded set is
finite. Furthermore we assume that the space supports a weak (1, q)-Poincaré
inequality for some q with 1 < q < p.

We recall a few useful properties of Newtonian spaces which hold under
these assumptions.

(i) Closed and bounded sets are compact and µ is a regular Borel mea-
sure.

(ii) The different definitions of Sobolev spaces yield the same space.
(iii) The standard Sobolev embeddings hold in the Newtonian space.
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(iv) Lipschitz continuous functions are dense in N1,p(X) and Lipschitz
continuous functions which vanish in the complement of E are dense
in N1,p

0 (E).
(v) Every function in N1,p(X) is p-quasicontinuous.
(vi) If u ∈ N1,p(X), then

lim
r→0

∫
B(x,r)

u dµ = u∗(x)

exists p-quasieverywhere and defines a p-quasicontinuous function.
See [Sh1] for the properties (i)–(v); for (vi) we refer to [KL]. The assump-
tion on the Poincaré inequality is also needed in the regularity theory for
quasiminimizers of variational integrals on metric spaces; see [KS].

3. The obstacle problem

Let 1 < p <∞. Suppose that Ω ⊂ X is an open set, let ϑ ∈ N1,p(Ω) and
let ψ : Ω → [−∞,∞] be an arbitrary function. We define

Kψ,ϑ(Ω) = {v ∈ N1,p(Ω) : v − ϑ ∈ N1,p
0 (Ω), v ≥ ψ µ-a.e. in Ω}.

A function u ∈ Kψ,ϑ(Ω) is a solution of the Kψ,ϑ(Ω)-obstacle problem with
the obstacle ψ and the boundary values ϑ if

(3.1)
∫
Ω

gpu dµ ≤
∫
Ω

gpv dµ

for every v ∈ Kψ,ϑ(Ω). Here gu and gv are the minimal p-weak upper gradients
of u and v in Ω, respectively. In other words, the solution of the obstacle
problem minimizes the p-Dirichlet energy among all functions which lie above
the obstacle function ψ and have the boundary values ϑ. If ψ = −∞, then
the obstacle does not represent a restriction and a solution of the K−∞,ϑ(Ω)-
obstacle problem is said to be a minimizer with boundary values ϑ in Ω. In
other words, it is a solution of the Dirichlet problem with the boundary values
ϑ in Ω.

Using the direct methods of the calculus of variations it is possible to prove
that under very mild conditions the obstacle problem has a unique solution.

3.2. Theorem. Suppose that Ω ⊂ X is a bounded open set such that
µ(X \ Ω) > 0. If Kψ,ϑ(Ω) 6= ∅, there is a unique solution of the Kψ,ϑ(Ω)-
obstacle problem.

Proof. Set

I = inf
∫
Ω

gpv dµ,

where the infimum is taken over all v ∈ Kψ,ϑ(Ω). Since Kψ,ϑ(Ω) 6= ∅, we
observe that 0 ≤ I < ∞. Let ui ∈ Kψ,ϑ(Ω), i = 1, 2, . . . , be a minimizing
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sequence such that

I = lim
i→∞

∫
Ω

gpui dµ.

In particular, this implies that the sequence gui , i = 1, 2, . . . , is bounded in
Lp(Ω). Since µ(X \ Ω) > 0 and Ω is bounded, a version of the Poincaré
inequality (Lemma 2.1 in [KS]) implies that∫

Ω

|ui − ϑ|p dµ ≤ c
∫
Ω

|gui−ϑ|p dµ ≤ c
∫
Ω

gpui dµ+ c

∫
Ω

gpϑ dµ,

from which it follows that

sup
i
‖ui − ϑ‖N1,p

0 (Ω) <∞.

Since the sequence ui−ϑ, i = 1, 2, . . . , is uniformly bounded in N1,p
0 (Ω), there

is a subsequence uij and a function u ∈ N1,p(Ω) such that u− ϑ ∈ N1,p
0 (Ω),

uij → u weakly in Lp(Ω) and∫
Ω

gpu dµ ≤ lim inf
j→∞

∫
Ω

gpuij
dµ ≤ I;

see 2.3 (vi). Hence u is the desired minimizer.
We next show that u ∈ Kψ,ϑ(Ω). We already know that u− ϑ ∈ N1,p

0 (Ω),
so it is enough to prove that u ≥ ψ µ-almost everywhere in Ω. The Mazur
lemma implies that a sequence vj , j = 1, 2, . . . , of convex combinations of uij
converges strongly to u in Lp(Ω). Passing to a subsequence we may assume
that the sequence vj converges to u µ-almost everywhere in Ω. Since uij ≥ ψ
µ-almost everywhere in Ω, we conclude that vj ≥ ψ µ-almost everywhere in
Ω for every j = 1, 2, . . . , and consequently that u ≥ ψ µ-almost everywhere
in Ω.

To prove the uniqueness, suppose that u1, u2 ∈ Kψ,ϑ(Ω) are solutions. As
in Theorem 7.14 of [C] we conclude that gu1−u2 = 0 µ-almost everywhere in
Ω, and the uniqueness follows from the Poincaré inequality. �

We are mostly interested in local properties of solutions of the obstacle
problem and especially in defining solutions locally without any requirements
on the boundary values. To this end, let Ω ⊂ X be open. A function u ∈
N1,p

loc (Ω) is a minimizer in Ω, if it is a solution of the K−∞,u(Ω′)-obstacle
problem for every open set Ω′ ⊂⊂ Ω. Similarly, a function u ∈ N1,p

loc (Ω) is a
superminimizer in Ω, if it is a solution of the Ku,u(Ω′)-obstacle problem for
every open set Ω′ ⊂⊂ Ω. In the Euclidean case minimizers correspond to
solutions and superminimizers correspond to supersolutions of the p-Laplace
equation. Since we do not have the Euler-Lagrange equation available here,
we have to base our definitions only on the variational integral.



866 JUHA KINNUNEN AND OLLI MARTIO

A solution of the Kψ,ϑ(Ω)-obstacle problem is a superminimizer, but the
converse is not true in general. However, if both u and −u are superminimizers
in Ω, then u is a minimizer in Ω.

We observe that if u is a superminimizer, then αu and u+β are supermin-
imizers whenever α ≥ 0 and β ∈ R. However, the sum of superminimizers is
in general not a superminimizer.

We now prove a useful result for superminimizers, which corresponds to the
classical result that the minimum of two supersolutions is a supersolution.

3.3. Lemma. If u1 and u2 are superminimizers in Ω, then min(u1, u2) is
a superminimizer in Ω.

Proof. Let u = min(u1, u2). Since N1,p
loc (Ω) is a lattice, we have u ∈

N1,p
loc (Ω). Let Ω′ ⊂⊂ Ω be an open set and let v ∈ N1,p(Ω′), such that

u − v ∈ N1,p
0 (Ω′) and v ≥ u µ-almost everywhere in Ω′. Set A = {x ∈ Ω′ :

u1(x) > u2(x)}, B = {x ∈ Ω′ : v(x) ≥ u1(x)} and w = max(min(u1, v), u2).
Then w − u2 ∈ N1,p

0 (Ω′), w ≥ u2 µ-almost everywhere in Ω′ and w = u2

µ-almost everywhere in Ω′ \A. By the superminimizing property of u2 in Ω′

we obtain ∫
A

gpu2
dµ+

∫
Ω′\A

gpu2
dµ =

∫
Ω′
gpu2

dµ ≤
∫
Ω′
gpw dµ

=
∫
A

gpw dµ+
∫
Ω′\A

gpw dµ

=
∫
A

gpw dµ+
∫
Ω′\A

gpu2
dµ.

From this it follows that∫
A

gpu2
dµ ≤

∫
A

gpw dµ ≤
∫
A∩B

gpu1
dµ+

∫
A\B

gpv dµ.

This implies that∫
Ω′
gpu dµ ≤

∫
A

gpu2
dµ+

∫
Ω′\A

gpu1
dµ

≤
∫
A∩B

gpu1
dµ+

∫
A\B

gpv dµ+
∫
Ω′\A

gpu1
dµ

=
∫
B

gpu1
dµ+

∫
A\B

gpv dµ.

Since u1−max(u1, v) ∈ N1,p(Ω′), max(u1, v) ≥ u1 µ-almost everywhere in Ω′,
max(u1, v) = u1 µ-almost everywhere in Ω′ \ B and u1 is a superminimizer,
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we obtain∫
B

gpu1
dµ+

∫
Ω′\B

gpu1
dµ =

∫
Ω′
gpu1

dµ

≤
∫
Ω′
gpmax(u1,v) dµ ≤

∫
B

gpv dµ+
∫
Ω′\B

gpu1
dµ.

This implies that ∫
B

gpu1
dµ ≤

∫
B

gpv dµ.

From this we conclude that∫
Ω′
gpu dµ ≤

∫
B

gpu1
dµ+

∫
A\B

gpv dµ =
∫
Ω′
gpv dµ,

and hence u is a superminimizer in Ω. �

Next we present a preliminary version of the comparison principle.

3.4. Lemma. Suppose that u is the solution of the Kψ,ϑ(Ω)-obstacle prob-
lem and that Ω′ ⊂ Ω is open. If v ∈ N1,p(Ω′) is a minimizer with the bound-
ary values v in Ω′ such that min(u − v, 0) ∈ N1,p

0 (Ω′), then u ≥ v µ-almost
everywhere in Ω′.

Proof. We observe that max(u, v)− u = max(v− u, 0) = −min(u− v, 0) ∈
N1,p

0 (Ω′) and that clearly max(u, v) ≥ u µ-almost everywhere in Ω′. By the
superminimizing property of u, we have∫

Ω′
gpu dµ ≤

∫
Ω′
gpmax(u,v) dµ ≤

∫
A

gpv dµ+
∫
Ω′\A

gpu dµ,

where A = {x ∈ Ω′ : u(x) < v(x)}. This implies that∫
A

gpu dµ ≤
∫
A

gpv dµ.

From this we conclude that∫
Ω′
gpmin(u,v) dµ ≤

∫
A

gpu dµ+
∫
Ω′\A

gpv dµ ≤
∫
Ω′
gpv dµ.

Finally we observe that min(u, v)−v = min(u−v, 0) ∈ N1,p
0 (Ω′) and that v is

the unique minimizer with boundary values v inΩ′. It follows that min(u, v) =
v µ-almost everywhere in Ω′, and hence u ≥ v µ-almost everywhere in Ω′. �

The following lemma shows that the solution of the obstacle problem is
essentially the smallest superminimizer which lies above the obstacle.

3.5. Lemma. Suppose that u is a solution to the Kψ,ϑ(Ω)-obstacle prob-
lem. If v is a superminimizer in Ω such that v ∈ Kψ,u(Ω′) for some open
Ω′ ⊂⊂ Ω, then v ≥ u µ-almost everywhere in Ω′.
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Proof. By Lemma 3.3 the function min(u, v) is a superminimizer in Ω.
Clearly min(u, v) − u ∈ N1,p

0 (Ω′) and u ≥ min(u, v) µ-almost everywhere in
Ω′. By the superminimizing property of min(u, v) in Ω′, we have∫

Ω′
gpmin(u,v) dµ ≤

∫
Ω′
gpu dµ.

Since the solution of the obstacle problem is unique, we have min(u, v) = u
µ-almost everywhere in Ω′ and consequently v ≥ u µ-almost everywhere in
Ω′. �

4. Regularity of superminimizers

We are interested in the regularity of superminimizers. Minimizers satisfy
Harnack’s inequality and are locally Hölder continuous after redefinition on a
set of measure zero; see [KS]. In contrast to minimizers, superminimizers are
in general not continuous. However, it is possible to obtain some regularity
results. Our method is essentially the same as that of [KS]. We begin by
recalling the definition of the De Giorgi class.

Let k0 ∈ R and 0 < ρ < R. A function u ∈ N1,p
loc (Ω) belongs to the

De Giorgi class DGp(Ω, k0), if there is a constant c < ∞ such that for all
k ≥ k0 and all z ∈ Ω such that B(z,R) ⊂⊂ Ω, u satisfies the Caccioppoli
type estimate ∫

Az(k,ρ)

gpu dµ ≤ c(R− ρ)−p
∫
Az(k,R)

(u− k)p dµ,

where Az(k, r) = {x ∈ B(z, r) : u(x) > k} and gu is the minimal p-weak upper
gradient of u in Ω. If this inequality holds for all k ∈ R, then we simply write
u ∈ DGp(Ω).

4.1. Lemma. Suppose that u is a superminimizer in Ω. Then −u belongs
to DGp(Ω).

Proof. Let B(z,R) ⊂⊂ Ω and 0 < ρ < R. We show that there is a constant
c <∞ such that

(4.2)
∫
Aρ

gpu dµ ≤ c(R− ρ)−p
∫
AR

(k − u)p dµ,

where Ar = {x ∈ B(z, r) : u(x) < k}. Let η be a 2/(R − ρ)-Lipschitz cutoff
function such that 0 ≤ η ≤ 1, η = 1 on B(z, ρ) and η = 0 on X \B(z,R). We
define a test function v by

v = u+ ηmax(k − u, 0).

Then u−v ∈ N1,p
0 (B(z,R)), v ≥ u µ-almost everywhere in B(z,R) and v = u

µ-almost everywhere in B(z,R) \ AR. This implies that v ∈ Ku,u(B(z,R))



NONLINEAR POTENTIAL THEORY ON METRIC SPACES 869

and the superminimizing property of u gives∫
Aρ

gpu dµ ≤
∫
AR

gpu dµ ≤
∫
AR

gpv dµ.

On the other hand, we observe that v = (1− η)(u− k) + k on AR, and hence
gv ≤ (k− u)gη + (1− η)gu µ-almost everywhere on AR. Since gη ≤ 2/(R− ρ)
and η = 1 on B(z, ρ), we obtain∫

Aρ

gpu dµ ≤ c
∫
AR

((k − u)pgpη + (1− η)pgpu) dµ

≤ c(R− ρ)−p
∫
AR

(k − u)p dµ+ c

∫
AR\Aρ

gpu dµ.

Adding the term c
∫
Aρ
gpu dµ to both sides we arrive at the inequality∫

Aρ

gpu dµ ≤ θ
∫
AR

gpu dµ+ c(R− ρ)−p
∫
AR

(k − u)p dµ,

where θ = c/(c + 1) < 1. For 0 < ρ < r ≤ R the above inequality can be
rewritten as∫

Aρ

gpu dµ ≤ θ
∫
Ar

gpu dµ+ c(r − ρ)−p
∫
AR

(k − u)p dµ.

Using a simple iteration argument (see Lemma 5.1 in [Gia]), we obtain (4.2)
from the previous inequality. �

4.3. Lemma. Let ψ : Ω → [−∞,∞] be such that k0 = ess supΩ ψ < ∞.
Suppose that u is the solution of the Kψ,ϑ(Ω)-obstacle problem. Then u belongs
to the class DGp(Ω, k0).

Proof. Let B(z,R) ⊂⊂ Ω and 0 < ρ < R. Set

v = u− ηmax(u− k, 0),

where k ≥ k0 and η is a cutoff function as in the proof of Lemma 4.1.
Let x ∈ Ω. If u(x) ≤ k, then v(x) = u(x) ≥ ψ(x). On the other hand, if

u(x) > k, then

v(x) = u(x)− η(x)(u(x)− k)

= (1− η(x))(u(x)− k) + k

≥ k0 = ess sup
Ω

ψ ≥ ψ(x).

From this we conclude that v ≥ ψ µ-almost everywhere in Ω and that v
belongs to the class Kψ,ϑ(Ω). Set Ar = Az(k, r). Since v−u ∈ N1,p

0 (B(z,R))
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and since gv ≤ (u − k)gη + (1 − η)gu µ-almost everywhere in AR, a similar
reasoning as in the proof of Lemma 4.1 gives∫

Aρ

gpu dµ ≤ c(R− ρ)−p
∫
AR

(u− k)p dµ

for every k ≥ k0, as required. �

The solution of an obstacle problem need not be locally bounded above.
However, if the obstacle is bounded above, then the solution is locally bounded
above. We set u+ = max(u, 0).

4.4. Theorem. Suppose that u is the solution of the Kψ,ϑ(Ω)-obstacle
problem. If k0 = ess supΩ ψ and k ≥ k0, then

ess sup
B(z,R/2)

u ≤ k + c

(∫
B(z,R)

(u− k)p+ dµ

)1/p

whenever B(z,R) ⊂⊂ Ω. The constant c depends only on p, the doubling
constant and the constants in (2.11).

The proof is based on Lemma 4.3 and the De Giorgi method. It is a
straightforward adaptation of the argument which proves Theorem 4.2 in [KS],
and we leave the details to the interested reader.

4.5. Remark. It is useful to observe that the claim of Theorem 4.4 holds
for every exponent q > 0. To be more precise, for every q > 0 there is constant
c such that

ess sup
B(z,R/2)

u ≤ k + c

(∫
B(z,R)

(u− k)q+ dµ

)1/q

.

This follows from Remark 4.4 (2) in [KS].

Next we derive a local lower bound for superminimizers. We set u− =
−min(u, 0)

4.6. Theorem. Suppose that u is a superminimizer in Ω. Then

ess inf
B(z,R)

u ≥ −c

(∫
B(z,2R)

up− dµ

)1/p

whenever B(z, 2R) ⊂⊂ Ω. In particular, the function u is bounded from below
on every set Ω′ ⊂⊂ Ω.
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Proof. Lemma 4.1 implies that −u ∈ DGp(Ω), and hence we can apply
Theorem 4.2 in [KS] to conclude that for every k ∈ R we have

− ess inf
B(z,R)

u = ess sup
B(z,R)

(−u) ≤ −k + c

(∫
B(z,2R)

(k − u)p+ dµ

)1/p

.

Choosing k = 0 we arrive at the desired conclusion. �

The next result, called the weak Harnack inequality, follows by Lemma 4.1
immediately from Theorem 7.1 in [KS].

4.7. Lemma. Suppose that u ≥ 0 is a superminimizer in an open set
Ω ⊂ X. Then for every ball B(z,R) with B(z, 5R) ⊂ Ω we have(∫

B(z,R)

uσ dµ

)1/σ

≤ c ess inf
B(z,3R)

u,

where c <∞ and σ > 0 depend on the data in the same way as in Theorem 4.4.

5. Pointwise behaviour of superminimizers

Next we prove that a superminimizer has a lower semicontinuous represen-
tative. We set

ess lim inf
y→x

u(y) = lim
r→0

ess inf
B(x,r)

u.

5.1. Theorem. Suppose that u is a superminimizer in Ω. Then the
function u∗ : Ω → [−∞,∞] defined by

(5.2) u∗(x) = ess lim inf
y→x

u(y)

is a lower semicontinuous function in Ω and belongs to the same equivalence
class in N1,p

loc (Ω) as the function u.

Proof. First we note that the function u∗ defined by (5.2) is automatically
lower semicontinuous as an increasing limit of lower semicontinuous functions.
Hence it suffices to show that u and u∗ belong to the same equivalence class
in N1,p

loc (Ω).
Let Ω′ ⊂⊂ Ω be an open set. Suppose first that M = ess supΩ′ u + 1 <

∞. Fix x ∈ Ω′ and let B(x, 2R) ⊂⊂ Ω′. Set m(r) = ess infB(x,r) u, where
0 < r ≤ 2R. Theorem 4.6 implies that m(R) > −∞. For every 0 < 5r ≤ R
the function u−m(5r) is a superminimizer in Ω and u−m(5r) ≥ 0 µ-almost
everywhere in B(x, 5r). Hence from Lemma 4.7 we obtain for 0 < r < R/5
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that

m(r)−m(5r) ≥ m(3r)−m(5r) ≥ c

(∫
B(x,r)

(u−m(5r))σ dµ

)1/σ

≥ c(M −m(5r))(σ−1)/σ

(∫
B(x,r)

(u−m(5r)) dµ

)1/σ

,

where 0 < σ < 1. This implies that

0 ≤
∫
B(x,r)

u dµ−m(5r) ≤ c(M −m(5r))1−σ(m(r)−m(5r))σ.

Since m(R) > −∞, the right hand side tends to zero as r → 0, and hence

(5.3) ess lim inf
y→x

u(y) = lim
r→0

∫
B(x,r)

u dµ.

On the other hand, it follows from the Lebesgue differentiation theorem for
Sobolev functions in [KL] that

lim
r→0

∫
B(x,r)

u dµ = u(x)

for every x ∈ Ω′ \ A where Cp(A) = 0. This implies that u = u∗ p-
quasieverywhere in Ω′ and that u and u∗ represent the same function in
N1,p(Ω′).

The general case, when u is possibly not bounded above, follows by trunca-
tion. By Lemma 3.3 the function uk = min(u, k) is a superminimizer in Ω for
each k = 1, 2, . . . , and by the previous argument u∗k is a lower semicontinuous
representative of uk in N1,p

loc (Ω). Moreover, we have

u∗(x) = lim
k→∞

u∗k(x)

for every x ∈ Ω. Let Ω′ ⊂⊂ Ω be an open set. Since uk = u∗k in Ω′ \Ak with
Cp(Ak) = 0, we conclude that u∗ = u in Ω′ \A, where A =

⋃∞
k=1Ak and

Cp(A) = Cp

( ∞⋃
k=1

Ak

)
≤
∞∑
k=1

Cp(Ak) = 0.

Thus u∗ = u p-quasieverywhere in Ω′, and hence u and u∗ represent the same
function in N1,p(Ω′) as required. �

5.4. Remark. As a byproduct of the proof of Theorem 5.1, we obtain
the fact that if u∗ is the lower semicontinuous representative defined by (5.2)
of a superminimizer which is locally bounded above, then

u∗(x) = lim
r→0

∫
B(x,r)

u∗ dµ

for every x ∈ Ω.
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Next we prove that the solution of the obstacle problem is continuous pro-
vided the obstacle is continuous.

5.5. Theorem. Suppose that ψ : Ω → [−∞,∞) is continuous. Then
the solution u of the Kψ,ϑ(Ω)-obstacle problem is continuous. Moreover, the
function u is a minimizer in the open set {x ∈ Ω : u(x) > ψ(x)}.

Proof. We recall that the solution of the obstacle problem is a supermini-
mizer. Let u be the lower semicontinuous representative of the solution given
by Theorem 5.1. By (5.2) we observe that it is enough to show that

(5.6) ess lim sup
y→x

u(y) ≤ u(x)

for every x ∈ Ω. To this end, let x ∈ Ω and ε > 0. Then by (5.2) and the
fact that u ∈ Kψ,ϑ(Ω) we have

u(x) = ess lim inf
y→x

u(y) ≥ ess lim inf
y→x

ψ(y) = ψ(x)

for every x ∈ Ω, since ψ is continuous.
We observe that ess supB(x,R) ψ < ∞ for every B(x,R) ⊂⊂ Ω, and from

Theorem 4.4 we conclude that ess supB(x,R) u < ∞ for every B(x,R) ⊂⊂ Ω.
Choose B(x,R) ⊂⊂ Ω such that

sup
B(x,R)

ψ ≤ u(x) + ε and inf
B(x,R)

u > u(x)− ε.

This is possible since u is lower semicontinuous and ψ is continuous. Theorem
4.4 and Remark 4.5 imply that

ess sup
B(x,r/2)

(u− (u(x) + ε)) ≤ c
∫
B(x,r)

(u− (u(x) + ε))+ dµ

= c

∫
B(x,r)

(u−min(u, (u(x) + ε))) dµ

for every 0 < r < R. Obviously

min(u(y), u(x) + ε) ≥ min
(

inf
B(x,r)

u, u(x) + ε

)
≥ u(x)− ε

for every y ∈ B(x, r). Hence∫
B(x,r)

(u−min(u, (u(x) + ε))) dµ

≤
∫
B(x,r)

(u− (u(x)− ε)) dµ =
∫
B(x,r)

u dµ− u(x) + ε.

Since u is locally bounded above, Remark 5.4 implies that

lim
r→0

∫
B(x,r)

u dµ = u(x),
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and the estimates above imply that

ess lim sup
y→x

u(y) ≤ u(x) + cε.

Inequality (5.6) follows by letting ε→ 0.
Next we prove that u is a minimizer in the open set A = {x ∈ Ω : u(x) >

ψ(x)}. Let Ω′ ⊂⊂ A be open and let v ∈ N1,p(Ω′) be such that u − v ∈
N1,p

0 (Ω′). We show that ∫
Ω′
gpu dµ ≤

∫
Ω′
gpv dµ.

We define v(x) = u(x) when x ∈ A \Ω′.
By [Sh2] there is a continuous function ṽ in Ω′ such that u− ṽ ∈ N1,p

0 (Ω′)
and ∫

Ω′
gpṽ dµ ≤

∫
Ω′
gpv dµ+ ε.

In fact, the function u − v can be approximated by a Lipschitz continuous
function with a compact support in Ω′.

Since u, ṽ and ψ are continuous functions on the compact set Ω′ and since
u(x) > ψ(x) for every x ∈ Ω′, there is t, 0 < t < 1, such that

w(x) = u(x) + t(ṽ(x)− u(x)) ≥ ψ(x)

for every x ∈ Ω′. Since w − u = t(ṽ − u) ∈ N1,p
0 (Ω′) and w(x) ≥ ψ(x) for

every x ∈ Ω′, we conclude that w ∈ Ku,ψ(Ω′), and hence by convexity we
have∫

Ω′
gpu dµ ≤

∫
Ω′
gpw dµ =

∫
Ω′
gpu+t(ṽ−u) dµ

≤
∫
Ω′

((1− t)gu + tgṽ)p dµ ≤ (1− t)
∫
Ω′
gpu dµ+ t

∫
Ω′
gpṽ dµ.

This implies that

t

∫
Ω′
gpu dµ ≤ t

∫
Ω′
gpṽ dµ,

and since t > 0 we obtain∫
Ω′
gpu dµ ≤

∫
Ω′
gpṽ dµ ≤

∫
Ω′
gpv dµ+ ε.

The claim follows, since ε > 0 was arbitrary. �

6. A convergence result for superminimizers

We are interested in limits of sequences of superminimizers. We show that
the superminimizing property is preserved under increasing or local uniform
convergence.



NONLINEAR POTENTIAL THEORY ON METRIC SPACES 875

6.1. Theorem. Suppose that ui, i = 1, 2, . . . , is an increasing sequence
of superminimizers in Ω and that u = limi→∞ ui is locally bounded from above
in Ω. Then u is a superminimizer in Ω.

Proof. Lemma 4.1 shows that −ui ∈ DGp(Ω), i = 1, 2, . . . This implies
that for every B(z,R) ⊂⊂ Ω and 0 < ρ < R we have∫

Az(k,ρ)

gpui dµ ≤ c(R− ρ)−p
∫
Az(k,R)

(−ui − k)p dµ,

where Az(k, r) = {x ∈ B(z, r) : −ui(x) > k} and k ∈ R. For a fixed ball
B(z,R) ⊂⊂ Ω, we choose k < − supi ess supB(z,R) ui. Then∫

B(z,ρ)

gpui dµ ≤ c(R− ρ)−p
∫
B(z,R)

(−u1 − k)p dµ,

from which we conclude that the sequence gui is uniformly bounded in Lp(Ω′).
This implies that u ∈ N1,p

loc (Ω). Moreover, we may assume that the functions
gui , i = 1, 2, . . . , converge weakly to a function gu in Lp(Ω′), where gu is an
upper gradient of u.

It remains to show the superminimizing property of u. To this end fix an
open set Ω′ ⊂⊂ Ω and a function v ∈ N1,p(Ω′) such that v ≥ u µ-almost
everywhere in Ω′ and v−u ∈ N1,p

0 (Ω′). We define v = u in X \Ω′. Let ε > 0
and choose an open set Ω′′ such that Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω and

(6.2)
∫
Ω′′\Ω′

gpv dµ < ε.

Let η be a Lipschitz cutoff function such that 0 ≤ η ≤ 1, η = 0 in Ω \Ω′′ and
η = 1 in Ω′. For each i = 1, 2, . . . set

wi = ui + η(v − ui).

Then wi ≥ ui µ-almost everywhere in Ω′′, wi−ui ∈ N1,p
0 (Ω′′), and by Lemma

2.4 we have

(6.3) gwi ≤ (1− η)gui + ηgv + (v − ui)gη
µ-almost everywhere in Ω′′.

The superminimizing property of ui implies that(∫
Ω′′
gpui dµ

)1/p

≤

(∫
Ω′′

gpwi dµ

)1/p

(6.4)

≤

(∫
Ω′′

((1− η)gui + ηgv)p dµ

)1/p

+

(∫
Ω′′

(v − ui)pgpη dµ

)1/p

= αi + βi.
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We now use the following elementary inequality: If α, β ≥ 0, then

(α+ β)p ≤ αp + pβ(α+ β)p−1.

Together with (6.4) this yields∫
Ω′′

gpui dµ ≤
∫
Ω′′

((1− η)gui + ηgv)p dµ+ pβi(αi + βi)p−1

≤
∫
Ω′′

(1− η)gpui dµ+
∫
Ω′′

ηgpv dµ+ pβi(αi + βi)p−1,

where we also used the convexity of the function t 7→ tp. This implies that∫
Ω′
gpui dµ ≤

∫
Ω′′

ηgpui dµ ≤
∫
Ω′′

ηgpv dµ+ pβi(αi + βi)p−1(6.5)

≤
∫
Ω′
gpv dµ+ ε+ pβi(αi + βi)p−1,

where we used (6.2) in the last inequality.
Since gui → gu weakly in Lp(Ω′), the lower semicontinuity of the Lp-norm

implies that

(6.6)
∫
Ω′
gpu dµ ≤ lim inf

i→∞

∫
Ω′
gpui dµ.

Recall that gηi = 0 µ-almost everywhere in Ω′ and v = u in Ω \ Ω′. Since
ui → u in Lploc(Ω), we conclude that

βi =

(∫
Ω′′\Ω′

(u− ui)pgpη dµ

)1/p

→ 0

as i → ∞. Since the sequence αi, i = 1, 2, . . . , is bounded, letting i → ∞ in
(6.5) and using (6.6), we obtain∫

Ω′
gpu dµ ≤

∫
Ω′
gpv dµ+ ε.

Now u = v µ-almost everywhere on ∂Ω′ and hence gu = gv µ-almost every-
where on ∂Ω′. Hence the above inequality holds on Ω′ as well, and since ε > 0
was arbitrary, this proves the required minimizing property of u. �

6.7. Remarks. (1) Suppose that ui, i = 1, 2, . . . , are as in the statement
of Theorem 6.1 and that instead of requiring that the sequence is bounded
from above we assume that the limit function u is in N1,p

loc (Ω). Then u is a
superminimizer. This follows easily from Theorem 6.1 and from the fact that
u ∈ N1,p

loc (Ω) is a superminimizer if and only if min(u, k) is a superminimizer
for every k ∈ R.

(2) It is easy to modify the previous proof to yield the following result: If
the sequence ui of minimizers or superminimizers converges locally uniformly
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inΩ, then the limit function u = limi→∞ ui is a minimizer or a superminimizer
in Ω, respectively.

7. Superharmonic functions

In this section we define superharmonic functions and study their basic
properties.

Let Ω be an open subset of X. A function v : Ω → R is p-harmonic, or
simply harmonic, in Ω if it is a continuous minimizer in Ω. By [KS], every
minimizer is locally Hölder continuous after redefinition on a set of measure
zero.

Suppose that Ω′ ⊂⊂ Ω is open and v ∈ N1,p(Ω′). Let hΩ′(v) = h(v) be
the unique harmonic function in Ω′ with v − h(v) ∈ N1,p

0 (Ω′). Observe that
h(v) exists by Theorem 3.2 and by the results of [KS].

A function u : Ω → (−∞,∞] is called p-superharmonic, or simply super-
harmonic, in Ω, if it satisfies the following properties:

(i) u is lower semicontinuous in Ω;
(ii) u is not identically ∞ in any component of Ω;
(iii) for every open Ω′ ⊂⊂ Ω the following comparison principle holds: if

v ∈ C(Ω′) ∩N1,p(Ω′) and v ≤ u on ∂Ω′, then h(v) ≤ u in Ω′.

A function u is subharmonic in Ω, if −u is superharmonic in Ω.
We begin with some elementary observations. If u is superharmonic, then

αu and u + β are superharmonic when α ≥ 0 and β ∈ R. Moreover, the
minimum of two superharmonic functions is superharmonic. However, the
sum of two superharmonic function is in general not superharmonic.

We next observe that the class of superharmonic functions is closed under
increasing or local uniform convergence.

7.1. Lemma. Suppose that ui, i = 1, 2, . . . , is a sequence of superhar-
monic functions in Ω. If the sequence ui is either increasing or converges
locally uniformly, then the limit function u = limi→∞ ui is superharmonic
unless u is identically ∞ in any component of Ω.

Proof. We consider only the case when the sequence is increasing; the other
case is easier. It suffices to check the comparison principle (iii) in the defi-
nition. Fix an open set Ω′ ⊂⊂ Ω and let v ∈ C(Ω′) ∩ N1,p(Ω′) with v ≤ u
on ∂Ω′. Let ε > 0. Since ui, i = 1, 2, . . . , are lower semicontinuous and v is
continuous, the sets

Ai = {x ∈ ∂Ω′ : v(x) < ui(x) + ε},

i = 1, 2, . . . , are open in ∂Ω′ and A1 ⊂ A2 ⊂ · · · . Since ∂Ω′ ⊂
⋃∞
i=1Ai

and ∂Ω′ is compact, there is i0 such that ∂Ω′ ⊂ Ai for i ≥ i0. Since ui + ε,
i = 1, 2, . . . , are superharmonic, by the comparison principle we have h(v) ≤
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ui + ε, i ≥ i0, in Ω′, and consequently h(v) ≤ u+ ε in Ω′. This implies that
h(v) ≤ u in Ω′ as required. �

The following version of the comparison principle is very useful in nonlinear
potential theory.

7.2. Theorem. Suppose that u is superharmonic and that v is subhar-
monic in Ω. If

(7.3) lim sup
y→x

v(y) ≤ lim inf
y→x

u(y)

for every x ∈ ∂Ω, and if both sides of (7.3) are not simultaneously ∞ or −∞,
then v ≤ u in Ω.

Proof. Let ε > 0. Let Ω′ be an open set such that Ω′ ⊂⊂ Ω and v <
u + ε on ∂Ω′. Since v is upper semicontinuous in Ω, there is a decreasing
sequence ϕi, i = 1, 2, . . . , of Lipschitz continuous functions in Ω′ such that
v = limi→∞ ϕi everywhere in Ω′. Since ∂Ω′ is compact and u + ε is lower
semicontinuous, there is i0 such that ϕi ≤ u + ε on ∂Ω′ when i ≥ i0. Since
ϕi ∈ C(Ω′) ∩ N1,p(Ω′), i = 1, 2, . . . , and u + ε is superharmonic, by the
comparison principle we conclude that h(ϕi) ≤ u+ ε in Ω′ for i ≥ i0. On the
other hand, ϕi ≥ v on ∂Ω′, and since v is subharmonic we have h(ϕi) ≥ v in
Ω′. This implies that v ≤ h(ϕi) ≤ u + ε in Ω′ when i ≥ i0, and by letting
ε → 0 we obtain v ≤ u in Ω′. The claim follows from this, since Ω can be
exhausted by sets Ω′ ⊂⊂ Ω with the required properties. �

Next we study the connection between superminimizers and superharmonic
functions.

7.4. Proposition. If u is a superminimizer in Ω such that

(7.5) u(x) = ess lim inf
y→x

u(y)

for every x ∈ Ω, then u is superharmonic.

Proof. The function u is lower semicontinuous by (7.5). Since u is lower
semicontinuous, it is bounded from below on every set Ω′ ⊂⊂ Ω. Since u is in
N1,p

loc (Ω), it is finite µ-almost everywhere on Ω and hence cannot be identically
∞ in any component of Ω.

Let Ω′ be an open set such that Ω′ ⊂⊂ Ω and suppose that v ∈ C(Ω′) ∩
N1,p(Ω′) with v ≤ u on ∂Ω′. Then min(u − v, 0) ∈ N1,p

0 (Ω′), and hence we
have min(u − h(v), 0) ∈ N1,p

0 (Ω′). Since h(v) is a minimizer in Ω′, Lemma
3.4 implies that u ≥ h(v) µ-almost everywhere in Ω′, and finally (7.5) implies
that u ≥ h(v) everywhere in Ω′. �
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The following corollary is an immediate consequence of Proposition 7.4 and
the fact that every superminimizer has a lower semicontinuous representative;
see Theorem 5.1.

7.6. Corollary. For every superminimizer u in Ω there is a super-
harmonic function v such that u = v µ-almost everywhere in Ω.

Suppose that ui, i = 1, 2, . . . , is an increasing sequence of lower semi-
continuous superminimizers in Ω given by Theorem 5.1. By Proposition 7.4
every ui is superharmonic and Lemma 7.1 implies that the limit function
u = limi→∞ ui is superharmonic unless it is identically infinity in some com-
ponent of Ω. We now show that, conversely, every superharmonic function can
be locally approximated from below by superminimizers. It is important for
us that the approximating superminimizers can be chosen to be continuous.

7.7. Theorem. Suppose that u is a superharmonic function in Ω and let
Ω′ be an open set such that Ω′ ⊂⊂ Ω. Then there is an increasing sequence of
continuous superminimizers ui, i = 1, 2, . . . , in Ω′ such that u = limi→∞ ui
everywhere in Ω′.

Proof. Let Ω′ be an open set such that Ω′ ⊂⊂ Ω. Since u is lower semi-
continuous in Ω, there is an increasing sequence ϕi, i = 1, 2, . . . , of Lipschitz
continuous functions in Ω′ such that u = limi→∞ ϕi everywhere in Ω′. Let ui,
i = 1, 2, . . . , be the solution to the Kϕi,ϕi(Ω′)-obstacle problem in Ω′. Each
ui is a superminimizer and we will show that ui, i = 1, 2, . . . , is the required
sequence. By Theorem 5.5 the functions ui, i = 1, 2, . . . , are continuous in Ω′

and the sets Ai = {x ∈ A : ui(x) > ϕi(x)}, i = 1, 2, . . . , are open. Moreover,
ui − ϕi ∈ N1,p

0 (Ai) and by Theorem 5.5 the functions ui, i = 1, 2, . . . , are
minimizers in Ai with boundary values ϕi, and hence ui = h(ϕi), i = 1, 2, . . . ,
in Ai. Since ϕi is continuous in Ai and ϕi ≤ ui on ∂Ai, the comparison
principle yields ui = h(ϕi) ≤ u in Ai. Since ui ≤ ϕi ≤ u in Ω′ \Ai, it follows
that ui ≤ u in Ω′. By continuity, ui ≥ ϕi in Ω′ and we obtain

u = lim
i→∞

ϕi ≤ lim
i→∞

ui ≤ u

in Ω′.
Since min(ui, ui+1) ∈ Kϕi,ui(Ω′) and min(ui, ui+1) is a superminimizer in

Ω′, by Lemma 3.5 we conclude that ui+1 ≥ ui µ-almost everywhere in Ω′ and
by continuity everywhere in Ω′. This shows that the sequence ui, i = 1, 2, . . . ,
is increasing and the proof is complete. �

7.8. Corollary. If u is superharmonic in Ω and, in addition, u is
locally bounded above, then u ∈ N1,p

loc (Ω) and u is a superminimizer.
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Proof. By Theorem 6.1 the limit of a locally bounded and increasing se-
quence of superminimizers is a superminimizer. Thus the claim follows from
Theorem 7.7. �

A superminimizer belongs to N1,p
loc (Ω) by definition. Corollary 7.6 shows

that every superminimizer has a superharmonic representative. We now show
that, conversely, if u is a superharmonic function which belongs to N1,p

loc (Ω),
then it is a superminimizer.

7.9. Corollary. If u is superharmonic and, in addition, u ∈ N1,p
loc (Ω),

then u is a superminimizer.

Proof. Since u is superharmonic, by Theorem 7.7 it is locally a limit of
an increasing sequence of superminimizers. If the limit function u belongs to
N1,p

loc (Ω), then it is a superminimizer by Remark 6.7 (1). �

Proposition 7.4 implies, in particular, that harmonic functions are both
super- and subharmonic. The following lemma provides a converse to this
result.

7.10. Corollary. A function is harmonic in Ω if and only if it is both
superharmonic and subharmonic in Ω.

Proof. Assume that u is both super- and subharmonic in Ω. Then u is
continuous in Ω and hence locally bounded in Ω. Corollary 7.8 implies that
u is both a superminimizer and a subminimizer in Ω, and consequently it is
a minimizer in Ω. �

Observe that there is no assumption on the integrability of a superharmonic
function. The following lemma shows that a superharmonic function is locally
integrable to a small power.

7.11. Lemma. Suppose that u ≥ 0 is superharmonic in Ω. Then for
every ball B(z,R) with B(z, 5R) ⊂ Ω we have

(7.12)

(∫
B(z,R)

uσ dµ

)1/σ

≤ c inf
B(z,3R)

u,

where c <∞ and σ > 0 depend on the data in the same way as in Lemma 4.7.

7.13. Remark. Since lower semicontinuous functions are locally bounded
from below, and superharmonic functions are not identically infinity, by adding
a constant to the function it follows from (7.12) that every superharmonic
function is locally integrable to a small power σ > 0 and, in particular, every
superharmonic function is finite µ-almost everywhere.
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Proof of Lemma 7.11. Let z ∈ Ω be such that u(z) <∞, and let Ω′ ⊂⊂ Ω
be such that B(z, 5R) ⊂⊂ Ω′. Let ui, i = 1, 2, . . . , be an increasing sequence
of continuous superminimizers in Ω′ such that u = limi→∞ ui in Ω′. Then
infB(z,R) u < ∞ whenever R > 0 is such that B(z,R) ⊂ Ω′. By Lemma 4.7
we have for every ball B(z,R) with B(z, 5R) ⊂ Ω′(∫

B(z,R)

uσi dµ

)1/σ

≤ c inf
B(z,3R)

ui ≤ c inf
B(z,3R)

u,

where c < ∞ and σ > 0 are as in Lemma 4.7. In particular, c and σ are
independent of i. Letting i→∞ we conclude that(∫

B(z,R)

uσ dµ

)1/σ

≤ c inf
B(z,3R)

u. �

Next we show that if u is a superminimizer in Ω, then u is a superharmonic
in Ω if and only if u(x) = ess lim infy→x u(y) for every x ∈ Ω.

7.14. Theorem. If u is superharmonic in Ω, then

u(x) = ess lim inf
y→x

u(y)

for every x ∈ Ω.

As a corollary we obtain the following uniqueness result.

7.15. Corollary. If u and v are superharmonic functions in Ω and
u = v µ-almost everywhere in Ω, then u = v everywhere in Ω.

The proof of Theorem 7.14 is based on the following lemma.

7.16. Lemma. Suppose that u is a superharmonic function in Ω such
that u = 0 µ-almost everywhere in Ω. Then u = 0 everywhere in Ω.

Proof. Since u is lower semicontinuous, we conclude that

u(x) ≤ lim inf
y→x

u(y) ≤ 0

for every x ∈ Ω. On the other hand, v = min(u, 0) is a superharmonic function
which is bounded from above. By Corollary 7.8 it is a superminimizer and by
Theorem 4.6 we have

inf
B(z,R)

v ≥ −c

(∫
B(z,2R)

vp− dµ

)1/p

whenever B(z, 2R) ⊂⊂ Ω. Since u(x) = 0 for µ-almost every x ∈ Ω, we
conclude that infB(z,R) v ≥ 0 and hence u(x) ≥ 0 for every x ∈ B(z,R). �
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Proof of Theorem 7.14. Let x ∈ Ω. Since u is lower semicontinuous, we
have

u(x) ≤ lim inf
y→x

u(y) ≤ ess lim inf
y→x

u(y).

Hence it is enough to show that

λ = ess lim inf
y→x

u(y) ≤ u(x).

For every ε > 0 there is r > 0 such that u(y) > λ− ε for µ-almost every y ∈
B(x, r), where B(x, r) ⊂ Ω. Then v = min(u, λ−ε)−(λ−ε) is superharmonic
in Ω and v = 0 µ-almost everywhere in B(x, r). By Lemma 7.16 we conclude
that u(y) ≥ λ − ε for every y ∈ B(x, r). In particular, u(x) ≥ λ − ε. Since
ε > 0 was arbitrary, we have established that λ ≤ u(x). �
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