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ON THE RADIUS OF CONVERGENCE OF THE
LOGARITHMIC SIGNATURE

TERRY J. LYONS AND NADIA SIDOROVA

Abstract. It has recently been proved that a continuous path of boun-
ded variation in Rd can be characterised in terms of its transform into

a sequence of iterated integrals called the signature of the path. The

signature takes its values in an algebra and always has a logarithm. In
this paper we study the radius of convergence of the series correspond-
ing to this logarithmic signature for the path. This convergence can be
interpreted in control theory (in particular, the series can be used for ef-

fective computation of time invariant vector fields whose exponentiation
yields the same diffeomorphism as a time inhomogeneous flow) and can
provide efficient numerical approximations to solutions of SDEs. We
give a simple lower bound for the radius of convergence of this series in
terms of the length of the path. However, the main result of the paper

is that the radius of convergence of the full log signature is finite for two
wide classes of paths (and we conjecture that this holds for all paths
different from straight lines).

1. Overview

Consider a controlled differential equation of the form

(1.1) dyt =
∑
i

ai(yt)dγit = A(yt)dγt,

where the ai are vector fields, γt ∈ V represents some controlling multi-
dimensional signal, and yt ∈W represents the response of the system. These
differential equations arise in stochastic analysis as well as in many determin-
istic problems from pure and applied mathematics. In many of these settings
it is not natural to assume that the control γ is differentiable on normal
timescales.

Over the last few years a general theory of Rough Paths has been developed
to give meaning to differential equations without assuming differentiability of
γ and which allows one to integrate them (see [8] and [9] for references). In
particular, it provides a new pathwise foundation for Itô stochastic differential
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equations, and extends the possible stochastic “driving noise” or controls to
include those like Fractional Brownian motion, that are not semi-martingales
and so are outside the Itô framework ([1], [4]).

One of the key techniques in the Rough Path Theory comes from the de-
scription of the control γ through its iterated integrals. Collectively, these
integrals (which are polynomials on path space) capture the time ordered
nature of the control process. For example, in the case where y is finite di-
mensional and A is linear in y, the solution of (1.1) can be represented as a
series

(1.2) yt =
∞∑
n=0

A∗n(y0)
∫
· · ·
∫

0<u1<···<un<t

dγu1 · · · dγun

of iterated integrals of γ where

A∗n(y)dγu1 · · · dγun := A(A(. . . A(y0)dγun . . . )dγu2)dγu1

is the natural multi-linear extension of A : V → HomR (W,W ) to a map A∗n

from the n-th tensor power of the space V . The representation (1.2) goes back
to Chen ([2]) and will be described in more precision later in the introduction.
The representation makes it clear that the solution to any linear differential
equation at time T can be determined by examining the series of iterated
integrals  ∫

· · ·
∫

0<u1<···<un<T

dγu1 · · · dγun

∞
n=1

(1.3)

for γ.
This transformation of a path γ into a sequence of algebraic coefficients

which together characterise the response of any linear system to γ already
seems interesting. But it is deterministic and this perspective offers new in-
sights in the stochastic setting as well. For example, for random γ one may
consider the random variable (1.3). Its expectation can completely charac-
terise the process γ even in cases where it is not Markovian and is a sort
of fully non-commutative Laplace transform. In [5] Fawcett proves, under
slight restrictions, that the law of the signature of Brownian Motion on [0, 1]
is characterised by its expectation.

We are interested in understanding the behaviour of the iterated integrals
of general rough paths. However, in this paper, we will focus on the case
where the driving signal is of bounded variation. Following [6] we interpret
the whole collection of iterated integrals as a single algebraic object, known as
the signature, living in the algebra of formal tensor series. This representation
exposes the natural algebraic structure on the signatures of paths induced by
the analytic structure as rough paths.



ON THE RADIUS OF CONVERGENCE OF THE LOGARITHMIC SIGNATURE 765

The logarithm (in the sense of the tensor algebra) of the signature (see (2.1),
(2.2) for definition) is in some sense the optimal object to describe the control
γ, and its convergence or divergence is essential for the existence or non-
existence of the logarithm of the flow for equation (1.1) and seems worth of
study in its own right.

2. Introduction

Let V be a real Banach space. Let ‖ · ‖ be cross-norms on the algebraic
tensor products V ⊗n, which means that ‖x ⊗ y‖ = ‖x‖ ‖y‖ for all x ∈ V ⊗k,
y ∈ V ⊗m for all k,m and in the case n = 1 the norm coincides with the
specified Banach norm on V . Of course, such norms are not uniquely defined
by the norm on V but do exist. For example, if V = R

d with the p-norm

‖x‖p =

(
d∑
i=1

|xi|p
)1/p

with respect to a basis (ei) then the p-norms

‖u‖p =

 ∑
1≤i1,...,in≤d

|xi1···in |p
1/p

on the tensor products (Rd)⊗n with respect to the bases (ei1 ⊗ · · · ⊗ ein) are
cross-norms. The same is true for the ∞-norms.

Denote by V ⊗̂n the completions of the spaces V ⊗n under the cross-norms
‖ · ‖. Further, denote by T the tensor algebra generated by V and the cross-
norms, i.e.,

T = R⊕ V ⊕ V ⊗̂2 ⊕ · · · ⊕ V ⊗̂n ⊕ · · ·

and by T̂ its completion with respect to the augmentation ideal (i.e., the set
of formal infinite sums).

Let γ : [0, θ]→ V be a continuous path of bounded variation. Following [8],
we define the n-th iterated integral

S(n)(γ) =
∫
· · ·
∫

0<u1<···<un<θ
dγ(u1)⊗̂ · · · ⊗̂dγ(un) ∈ V ⊗̂n

and we call

S(γ) = 1 + S(1)(γ) + · · ·+ S(n)(γ) + · · · ∈ T̂
the signature of γ.

Recent work [6] shows that, up to tree-like paths, a path is fully described
as a control by its signature in a similar way to a function on a circle being
determined, up to Lebesgue null-sets, by its Fourier coefficients. However,
there are many algebraic dependencies between different iterated integrals
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and so one has a lot of redundancy in the whole sequence S(γ). This can
already be seen when V = R

2 with the Euclidean norm. Denote by γ1 and
γ2 the coordinates of γ with respect to the standard basis (e1, e2) and assume
for simplicity that γ is continuously differentiable and starts at zero. As the
first iterated integral is just the increment of the path, we have

S(1)
i = γi(θ), i = 1, 2.

Further, integrating by parts we obtain

S(2)
ii =

1
2
γi(θ)2 =

1
2

(S(1)
i )2, i = 1, 2, and

S(2)
12 + S(2)

21 = γ1(θ)γ2(θ) = S(1)
1 S

(1)
2 .

Thus, the only new information about the path contained in the second it-
erated integral (compared with the information available from the first one)
is the difference S(2)

12 − S
(2)
21 , which is the coordinate of the tensor S(2) in the

direction [e1, e2] = e1 ⊗ e2 − e2 ⊗ e1. Hence it is only one-dimensional while
the dimension of V ⊗ V is equal to four.

The latter observation and the appearance of Lie brackets motivate the
consideration of the tensor Lie algebra. As T̂ is an associative algebra we can
define the Lie bracket [u, v] = u⊗ v − v ⊗ u of u, v ∈ T̂ and consider the Lie
subalgebra

L = V ⊕ [V, V ]⊕ · · · ⊕ [V, . . . [V, V ] . . . ]⊕ · · · ⊂ T

generated by V as well as its augmentation L̂. In fact, the superfluity of
information contained in S(γ) can be avoided by injecting the signatures of
paths into L̂. A natural mapping is log : T̂ → T̂ defined (on a subset of T̂ )
by the corresponding power series

log(1 + u) =
∞∑
n=1

(−1)n+1

n
u⊗̂n(2.1)

whenever u ∈ V ⊕ V ⊗̂2 ⊕ · · · . It is injective, and the inverse is given by exp:

expu =
∞∑
n=0

1
n!
u⊗̂n.

These two functions are intimately connected with the signatures of paths.
In fact, the signature of a path is always the exponential of an element in L
(which must be unique because of the existence of log as an inverse function).
Noting that our paths γ take their values in a vector space and that the
signature S(γ) is invariant under reparametrisation of paths it is natural to
consider the operation of concatenation ∪. S is a homomorphism from paths
with ∪ to T̂ with ⊗. It is an easy exercise to show that the range of the map
is a group and so the logs of signatures can be regarded as some sort of formal
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Lie algebra for this group. Moreover, concatenations of paths correspond to
the Campbell-Baker-Hausdorff formula.

The logarithm of the signature

LS(γ) = logS(γ) ∈ L̂(2.2)

is called the logarithmic signature of γ.
It follows from the classical Rashevski-Chow Theorem (see [3] and [11]) that

there are no algebraic dependencies between the coefficients of LS(γ) and so,
in contrast to the usual signature, there is no redundancy in the logarithmic
signature.

It is also natural to scale a path in V and consider the map fγ : λ→ S(λγ).
Notice that

S(n)(λγ) = λnS(n)(γ)

and so

fγ(λ) =
∞∑
n=0

λnS(n)(γ).

It is an easy exercise for γ with bounded variation, that

‖S(n)(γ)‖ ≤ l(γ)n

n!
,

where l(γ) is the length of γ in our chosen norm, and a factorial estimate
holds for any rough path ([8]). In particular, fγ(λ) is not only a formal power
series, and extends to an entire analytic function of exponential type.

In fact, it is interesting to know that our path γ defines a family of entire
functions over several and indeed infinitely many complex variables. Suppose
the path γ is defined on [0, θ], P = {0 = t0 < t1 < · · · < tn = θ} is a partition,
γi = γ|[ti,ti+1] denotes the restriction of γ to [ti, ti+1], and λ1, . . . , λn are
positive real numbers and consider the concatenation of the paths λiγi. Its
signature is given by fγ1(λ1)⊗· · ·⊗fγn(λn). One can regard this operation as
a primitive integral and observe that in general, if τ is a smooth HomR(V, V )-
valued function defined on [0, θ] then τ → S

(∫ ·
0
τdγ

)
extends to an analytic

function mapping complex paths τ to the tensor algebra.
We leave further discussion of the several complex variable setting.
In this paper, the main question we will be discussing is the radius of

convergence of the series LS(γ) defined by

R(γ) = lim sup
n→∞

‖LS(n)(γ)‖−1/n,

where ·(n) is the natural projection of T̂ onto V ⊗̂n. We will see that the map
fγ(λ) already gives a great deal of information (as λ→ +∞).

Definition 2.1. R(γ) is called the radius of convergence of the logarith-
mic signature of γ.
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One of the examples showing the importance and the origin of this problem
is the construction of the logarithm of a flow. Consider a differential equation

dy = A(y)dγ,(2.3)

where A is a linear map from V to a space of linear vector fields and suppose
the fields form a Lie algebra. There is a flow corresponding to this equation
and the goal is to find a fixed vector field which, if we flow along it for unit
time, gives the same homeomorphism as solving the inhomogeneous differen-
tial equation over the whole time interval [0, θ]. Integrating the equation (2.3)
one obtains the classical expansion of the solution y

yθ = y0 +
∫ θ

0

dyu1 = y0 +
∫ θ

0

A(yu1)dγu1(2.4)

= y0 +A(y0)
∫

0<u1<θ

dγu1 +
∫∫

0<u1<u2<θ

A(A(yu2)dγu2)dγu1 = . . .

=
[
I +A S(1)(γ) +AA S(2)(γ) + · · ·

]
(y0)

into a series of iterated integrals of γ. Because of the universal property of
the tensor Lie algebra L the map A extends to a unique Lie map A∞, that
is, a Lie-homomorphism from L into the Lie algebra of vector fields, and the
logarithm of the flow should now be given by A∞(logS(γ)) = A∞(LS(γ)).
However, this formula only makes sense if the series A∞(LS(γ)) converges,
which depends on the relationship between R(γ) and the norm of A. Namely,
the series converges if ‖A‖ ≤ R(γ). In Section 7 we will give an example of a
flow on the circle which has no logarithm.

It is easy to see that if γ is a segment of a straight line, i.e., γ(t) = tv
for some v ∈ V , then S(γ) = exp(θv) and so LS(γ) = θv. This means that
‖LS(n)(γ)‖ = 0 for all n ≥ 2 and therefore R(γ) = ∞. We conjecture that
this is the only case when LS(γ) is an entire function.

In this paper we show R(γ) < ∞ for two wide classes of paths: for 1-
monotone paths (i.e., for paths which are monotone at least in one direction)
but different from a straight line and for non-double piecewise linear paths
(in the sense of the definitions below).

Definition 2.2. A continuous path of bounded variation γ is said to
be 1-monotone (or monotone in one direction) if there is a bounded linear
functional f ∈ V ∗ such that f ◦ γ is strictly monotone.

Example 2.3. Let γ0 be a straight line parametrised at unit speed and
γ be a differentiable path in Rd with the Euclidean norm. If 〈γ̇(t), γ̇0(t)〉 > 0
for all t or, in particular, if supt ‖γ̇(t) − γ̇0(t)‖ < 1 then γ is 1-monotone. In
particular, the statement that R(γ) < ∞ for 1-monotone paths implies that
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R has an isolated singularity whenever the path is a segment of a straight
line, with respect to the gradient norm on the space of paths.

Definition 2.4. A piecewise linear path is called generic if its adjacent
pieces are not co-linear and the last piece is not co-linear with the first one.

generic paths non-generic paths
A generic path is called paired if one can divide the set of its pieces into pairs
such that the pieces from the same pair are either equal to each other or their
sum is equal to zero. Otherwise it is called unpaired.

unpaired paths paired paths
Two piecewise linear paths are said to be equivalent if one can be transformed
into the other by cyclic permutation of the linear pieces, by adding or removing
equal pieces traversed in opposite directions and following each other, and by
joining up co-linear pieces.

~ ~

equivalent paths
Finally, a piecewise linear path in V is non-double if there are two bounded
linear functionals f, g ∈ V ∗ such that the path (f ◦γ, g ◦γ) in R2 is equivalent
to an unpaired path.

Example 2.5. Any unpaired path in V (and any path equivalent to it) is
a non-double path. In particular, any generic path in V consisting of an odd
number of linear pieces (and any path equivalent to it) is a non-double path.

The strategy of the proof of R(γ) <∞ in both classes of paths is based on
finding a flow driven by the path γ that has no logarithm (which would be
impossible if LS(γ) was an entire function).

More precisely, the idea is to find a matrix Lie algebra L0 and a bounded
linear mapping F : V → L0 such that the Cartan development Y F,γ of the
image XF,γ = F ◦ γ of the path γ into the corresponding Lie group G0 would
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not lie in exp(L0) at the terminal time θ. The development Y F,γ is defined
using the right-invariant vector field corresponding to XF,γ as the solution of
the equation

dY F,γ = Y F,γdXF,γ , Y F,γ(0) = I.(2.5)

It turns out that both for 1-monotone paths and for non-double piecewise
linear paths it is worthwhile to take

L0 = sl(2,R) = {A ∈M2×2(R) : trA = 0} and

G0 = SL(2,R) = {A ∈M2×2(R) : detA = 1}

since SL(2,R)\exp(sl(2,R)) is large enough to enable us to find an appropriate
linear operator F .

In Section 3, we construct a suitable mapping F for 1-monotone paths,
using the family of mappings Fh such that F0 is easy to construct and brings
the development to the boundary ∂(exp(sl(2,R))) at the terminal time θ. By
varying the small parameter h one can bring the endpoint of the development
outside exp(sl(2,R)).

In Section 4, we find an appropriate F for non-double piecewise linear
paths. The key point of the construction is to use different scalings in the
direction of the edge which occurs an odd number of times and in another
direction, and to let the latter go to infinity.

Among all sequences of cross-norms on V ⊗n generated by the norm on
V there are two special ones called the injective and projective cross-norms
(see [13]). The injective norms ε(·) are the smallest and the projective norms
π(·) are the greatest cross-norms, i.e.,

ε(x) ≤ ‖x‖ ≤ π(x)

for all x ∈ V ⊗n for all n. For example, the p-norms on the tensor products
(Rd)⊗n are the injective cross-norms corresponding to the space Rd with the
p-norm.

In order to prove the finiteness of R(γ) we will look for lower bounds on
the norms of the coefficients of LS(γ), which leads us to consider the injective
norms. Denote by Rε(γ) the radius of convergence of the logarithmic signature
of γ with respect to ε(·). Obviously,

Rε(γ) ≥ R(γ)(2.6)

and so it will be sufficient to show that Rε(γ) <∞.
In Section 5 we prove the main results of the paper (Theorems 5.5 and 5.6).

We give the precise definition of the injective norms and prove that the exis-
tence of the mapping F implies Rε(γ) < ∞ and so R(γ) < ∞. Namely, the
assumption that LS(γ) is an entire function leads to the convergence of the
series F∞(LS(γ)), where F∞ denotes the natural extension of F to the tensor
algebra Tε corresponding to the injective norms. This means that the value
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of the development of F ◦ γ at the terminal time is given by exp(F (LS(γ))),
which would lead to a contradiction.

In Section 6, we find a lower bound for the radius of convergence (Theo-
rem 6.1). Using mainly the factorial decay of the iterated integrals, we show
that for any continuous path of bounded variation, R(γ) ≥ l(γ)−1p, where
l(γ) is the length of the path and p is such that log p = −p.

Finally, in Section 7 we illustrate with an example the effect of the finiteness
of the radius of convergence. If R(γ) = ∞ then the diffeomorphism (taken
at terminal time) corresponding to the equation dy = A(y)dγ always has a
logarithm. We give an example of a diffeomorphism which, though produced
by such an equation, has no logarithm. This is a direct consequence of R(γ) <
∞ as that can only happen if ‖A‖ ≥ R(γ). Further, we show explicitly how
to change this diffeomorphism (and the operator A) in such a way that ‖A‖
becomes less than R(γ) and the new diffeomorphism has a logarithm.

3. The map V → sl(2,R) for 1-monotone paths

In this section we construct the operator F : V → sl(2,R) for 1-monotone
paths which are not a concatenation of two equal pieces. First, we easily find
a family of linear operators F k,λ0 such that whilst the Cartan developments
of the images F k,λ0 ◦ γ at the terminal time still have a logarithm, they lie
on the boundary of exp(sl(2,R)) for all k and λ. Then, introducing a small
parameter h we construct a small perturbation F k,λh of F k,λ0 which brings
the development outside exp(sl(2,R)) unless a very strong condition on γ is
satisfied. In the case of 1-monotone paths this condition turns out to be
equivalent to the condition of being a concatenation of two equal pieces.

Proposition 3.1. Let γ : [0, θ] → V be a 1-monotone path. Suppose it
starts at zero and is not a concatenation of two equal pieces. Then there is
a bounded linear operator F from the Banach space V into the Lie algebra
sl(2,R) such that the Cartan development of the image F ◦γ has no logarithm
at the terminal time θ, i.e., Y F,γ(θ) /∈ exp(sl(2,R)).

Proof. According to [12], C ∈ SL(2,R) is not an element of exp(sl(2,R)) if
and only if

trC ≤ −2 and C 6= −I.

Let us fix two matrices A,B ∈ sl(2,R) such that exp(πA) = −I, A2 = −I,
B2 = I, and AB = −BA, for example

A =
(

0 1
−1 0

)
and B =

(
1 0
0 −1

)
The intuition is presented in the picture below. Namely, SL(2,R) is a 3-

dimensional hyperboloid and we can think of it as a 2-dimensional hyperboloid
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with a circle attached to each point (as shown at the point p). The condition
trC = −2 corresponds to the vertical hyperplane, and the complement of
exp(sl(2,R)) consists of the points which are situated to the left of the hyper-
plane (including the hyperplane itself but excluding the single point −I). Our
goal is to start at I and reach the compliment of exp(sl(2,R)) moving along a
geodesic. We can begin to see from the picture that we can only do this if we
move along the middle circle and come to the point −I (which corresponds to
the tangent matrix A satisfying the conditions below). Otherwise we would
slide up or down faster than to the left and never cross the hyperplane (like
the dotted line). Once we know how to reach −I, we will introduce a small
perturbation generated by the motion in the direction B and we will be able
to get slightly further left than −I.

−I I

p

A

1

SL(2,R) =
{(

a b
c d

)
: ad− bc = 1

}
Change of
coordinates:

{
x = a+ d, u = b+ c,
y = a− d, v = b− c.

SL(2,R) corresponds to the hyperboloid
x2 − y2 − u2 + v2 = 4.

Denote w2 = y2 + u2 to get the 2-dimensi-
onal hyperboloid x2 − w2 + v2 = 4 in R3.

exp(sl(2,R)) = {x > −2} ∪ {(−2, 0, 0, 0)}.

Let us now be precise. By definition of a 1-monotone path there exists
f ∈ V ∗ such that ξ1 = f ◦ γ is strictly monotone. Multiplying f by a real
number, if necessary, we can assume ξ1 to be strictly increasing and ξ1(θ) = 1.
Further, let g ∈ V ∗ be not co-linear with f and such that ξ2 = g ◦ γ is not
identically zero (such a g exists as γ is not a concatenation of two equal pieces
and so not a segment of a straight line). Moreover, we assume that ξ2(θ) = 0,
which can be achieved by replacing g with g+af with a suitable real number
a.

Consider the family of bounded linear operators F k,λh : V → sl(2,R) given
by

F k,λh = [(2k + 1)πf + λg]A+ hgB,

where λ ∈ R and k ∈ N are arbitrary and h is a small real parameter.
Denote

ηk,λ1 = (2k + 1)πξ1 + λξ2 and ηk,λ2 = ξ2.
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Then the image path Xk,λ
h = F k,λh ◦ γ in sl(2,R) is given by

Xk,λ
h = ηk,λ1 A+ hηk,λ2 B.

Denote by Y k,λh the development of Xk,λ
h into the Lie group SL(2,R). Then,

skipping the indices k and λ until the very end of the proof by abuse of
notation, we can write down the equation for the development

dYh = Yh(Adη1 + hBdη2), Yh(0) = I.(3.1)

Let us represent the solution Yh as a power series in h

Yh = Z0 + hZ1 + h2Z2 + · · · .(3.2)

Substituting this into (3.1) and comparing the coefficients at hn for all n we
obtain

dZ0 = Z0Adη1 , Z0(0) = I,(3.3)

dZn = ZnAdη1 + Zn−1Bdη2 Zn(0) = 0, for n ≥ 1.

Let us look for solutions of these equations in the form Zn = Cn exp(η1A).
Obviously, C0 = I. Further, substituting Zn into (3.3) we get

dCn exp(η1A) = Cn−1 exp(η1A)Bdη2, Cn(0) = 0

and by Lemma 3.2 below this is equivalent to

dCn = Cn−1 exp(2η1A)Bdη2, Cn(0) = 0.

Using B2 = I we obtain

C1(t) =
∫ t

0

exp(2η1(s)A)Bdη2(s),

C2(t) =
∫ t

0

∫ s

0

exp(2η1(u)A)B exp(2η1(s)A)Bdη2(u)dη2(s)

=
∫ t

0

∫ s

0

exp(2(η1(u)− η1(s)A)dη2(u)dη2(s).
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It follows again from Lemma 3.2 that

trC1(t) =
∫ t

0

tr(exp(2η1(s)A)B)dη2(s) = 0,

trC2(t) =
∫ t

0

∫ s

0

tr exp(2(η1(u)− η1(s)A))dη2(u)dη2(s)

= 2
∫ t

0

∫ s

0

cos(2(η1(u)− η1(s)))dη2(u)dη2(s)

= 2
∫ t

0

∫ s

0

(cos(2η1(u)) cos(2η1(s))

+ sin(2η1(u)) sin(2η1(s)))dη2(u)dη2(s)

= 2
(∫ t

0

cos(2η1(s))dη2(s)
)2

+ 2
(∫ t

0

cos(2η1(s))dη2(s)
)2

= 2
∣∣∣∣∫ t

0

e2iη1(s)dη2(s)
∣∣∣∣2 = 2a(k, λ)2,

where a(k, λ) is defined by the last equality. This implies

trZ0(θ) = tr exp(η1(θ)A) = tr exp((2k + 1)πA) = − tr I = −2,

trZ1(θ) = tr(C1(θ) exp(η1(θ)A))

= tr(C1(θ) exp((2k + 1)πA)) = − trC1(θ) = 0,

trZ2(θ) = tr(C2(θ) exp(η1(θ)A))

= tr(C2(θ) exp((2k + 1)πA)) = − trC2(θ) = −2a(k, λ)2.

By Lemma 3.3 below there exist k and λ such that c(k, λ) 6= 0. It follows
from the decomposition (3.2) that for such k and λ

trY k,λh (θ) = trZ0 + h trZ1 + h2 trZ2 + o(h2) = −2− 2a(k, λ)2h2 + o(h2),

and therefore there exists h such that

trY k,λh (θ) < −2

and hence Y k,λh (θ) /∈ exp(sl(2,R)).
Finally, we define F = F k,λh with k, λ, and h chosen above, which completes

the proof. �

The next lemma describes certain features of the structure of sl(2,R) which
we have used in the proof of Proposition 3.1.

Lemma 3.2. Let A,B ∈ sl(2,R) be such that AB = −BA. Then
(1) exp(A)B = B exp(−A),
(2) tr(exp(A)B) = 0,
(3) tr(exp(A)) = 2 cos

√
detA.
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Proof. (1) This can be easily seen by

exp(A)B =
∞∑
n=0

AnB

n!
=
∞∑
n=0

BAn(−1)n

n!
= B exp(−A).

(2) It follows from the cyclic invariance of the trace that

tr(AB) = tr(BA) = − tr(AB)

and so tr(AB) = 0. Since trA = 0 we have A2 = −(detA)I and hence

tr(exp(A)B) =
∞∑
n=0

1
n!

tr(AnB)

=
∞∑
k=0

[
(−detA)k

(2k)!
tr(B) +

(−detA)k

(2k + 1)!
tr(AB)

]
= 0.

(3) The eigenvalues of A are equal to ±
√
−detA as A ∈ sl(2,R). Hence

tr(exp(A)) = exp(
√
−detA) + exp(−

√
−detA)

= 2 cosh(
√
−detA) = 2 cos

√
detA,

which completes the proof. �

The following lemma shows, using the Fourier series, that the only case
when a(k, λ) = 0 for all k and λ is if the path γ was a concatenation of two
equal pieces.

Lemma 3.3. There exist k and λ such that a(k, λ) 6= 0.

Proof. Assume the statement is false. Since ξ1 is strictly monotone and
hence invertible we obtain

0 =
∫ θ

0

e2iηk,λ1 (s)dηk,λ2 (s) =
∫ θ

0

e2i(2k+1)πξ1(s)+2iλξ2(s)dξ2(s)

= (2iλ)−1

∫ θ

0

e2i(2k+1)πξ1(s)de2iλξ2(s)

= −(2iλ)−1

∫ θ

0

e2iλξ2(s)de2i(2k+1)πξ1(s)

= −(2iλ)−1

∫ 1

0

e2iλ(ξ2◦ξ−1
1 )(t)de2i(2k+1)πt

for all k and λ. By the property of the Fourier transform this means that∫ 1

0

(f ◦ ξ2 ◦ ξ−1
1 )(t)de2i(2k+1)πt = 0

for any continuous function f and all k.
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Since the system of functions (e2inπt) is complete on [0, 1] we obtain

(f ◦ ξ2 ◦ ξ−1
1 )(s) =

∞∑
k=0

cke
4ikπt,

which implies

(f ◦ ξ2 ◦ ξ−1
1 )(1/2 + t) = (f ◦ ξ2 ◦ ξ−1

1 )(t)

and therefore

(ξ2 ◦ ξ−1
1 )(1/2 + t) = (ξ2 ◦ ξ−1

1 )(t).

This is equivalent to the condition that ξ and hence γ must be a concatenation
of the same two pieces, which leads to a contradiction. �

Remark 3.4. Notice that we used the monotonicity of ξ1 only for prov-
ing Lemma 3.3. However, the statement of the lemma remains true for a
much broader class of paths, and in Proposition 3.1 we can replace the con-
dition on the path to be 1-monotone by the condition that there exists a
two-dimensional projection of γ such that the corresponding a(k, λ) is non-
zero for some k and λ. The latter condition is much more general but much
less clear.

4. The map V → sl(2,R) for non-double paths

In this section we first study unpaired paths in R2 and then generalise the
results to non-double paths in V .

Let η be an unpaired path in R2. Denote by P0, . . . , Pn the corner points
of η and by ui = Pi − Pi−1 the edges. Let us reparametrise η by t ∈ [0, n] in
such a way that η(i) = Pi and η̇(t) = ui on (i− 1, i) for all i.

Let G : R2 → sl(2,R) be a linear mapping. Denote by X = G◦η the image
of η in the Lie algebra sl(2,R). For each λ, let us scale η and, correspondingly,
X by λ and denote the development of the scaled path λX into the Lie group
SL(2,R) by Yλ (although both λX and Yλ depend on G we will not write it
explicitly by abuse of notation). Hence Yλ solves the equation

dYλ = λYλdX, Yλ(0) = I,

and the endpoint Y ∗λ = Yλ(n) of the development is given by

Y ∗λ = exp(λU1) · · · exp(λUn),(4.1)

where Ui = G(ui).
Our aim is to vary G and λ in such a way that Y ∗λ /∈ exp(sl(2,R)). The

following example shows that this is not possible for some piecewise linear
paths and explains where the condition to be an unpaired path comes from.

Example 4.1. Let η be the concatenation of two identical paths η̃. Then,
for all G and all λ, Y ∗λ ∈ exp(sl(2,R)).
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Proof. For any choice of G and λ we have Y ∗λ = (Ỹ ∗λ )2 = B2. As B ∈
SL(2,R) its characteristic polynomial is given by t2 − t trB + 1 and so B2 =
B trB − I. Hence

trY ∗λ = trB2 = tr(B trB − I) = (trB)2 − 2.

If trB = 0 then B2 = −I. If trB 6= 0 then the previous formula implies
trY ∗λ > −2. In both cases we get Y ∗λ ∈ exp(sl(2,R)) by [12]. �

The next proposition is an analogue of Proposition 3.1 for piecewise lin-
ear paths in R2. Also in this case we will construct a linear operator λG :
R

2 → sl(2,R) such that Y ∗λ has no logarithm. But in contrast to the proof of
Proposition 3.1, where we used small perturbations in order to get trY ∗λ just
less than −2, we will use large perturbations in order to obtain trY ∗λ ≈ −∞.

Proposition 4.2. If η is an unpaired piecewise linear path in R2 then
there exist a linear operator G from R

2 to the Lie algebra sl(2,R) and a scaling
λ such that the Cartan development of the image λG ◦ γ has no logarithm at
the terminal time θ, i.e., trY ∗λ < −2 and so Y ∗λ /∈ exp(sl(2,R)).

Proof. Consider

sl(2,R) =
{(

a b
c −a

)
: a, b, c ∈ R

}
(in the sequel we will make no distinction between sl(2,R) and R3). For
every A ∈ sl(2,R) its characteristic polynomial is given by t2 + detA = 0.
This means that A has two real eigenvalues if detA = −a2 − bc < 0 and has
two purely imaginary eigenvalues if detA = −a2 − bc > 0. The condition
detA = 0 defines a cone C0 in R3 and the matrices with real (respectively,
purely imaginary) eigenvalues correspond to its exterior Cext (respectively,
interior Cint).

Let v ∈ R2 be a non-zero vector such that there exists an odd number of
edges uj of η such that uj = ±v (the existence of v follows from η being an
unpaired path). Denote by K the set of indices of all the edges uk which are
co-linear with v. Further, fix any ṽ ∈ R2 that is not co-linear with v.

The idea is to map R2 into sl(2,R) in such a way that only uk, k ∈ K,
are mapped into the interior of the cone and the images of all the other ui lie
outside the cone. Moreover, the map should be sufficiently close to a map for
which one could easily compute Y ∗λ .

Choose A,B,C ∈ sl(2,R) in such a way that A ∈ C0, B lies on the axis of
C0 and has an acute angle with A, and C is orthogonal to B and lies in the
tangent plane to C0 at the point A, i.e.,

A =
(
a b
c −a

)
, B =

(
0 1
−1 0

)
, C =

(
−(b+ c) 2a

2a b+ c

)
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where a2 + bc = 0 and b > c. Moreover, it will be convenient for the further
computation if we choose them in such a way that b− c = 1.

C0 = {a2 + bc = 0}

CCext

Cint

A

B

Fix ρ > 1 and consider the family Gs of linear maps from R
2 to sl(2,R)

(indexed by s ∈ R) such that

Gs(v) = A+ s2ρB and Gs(ṽ) = sC.

As (v, ṽ) is a basis for R2 one has

uk = xkv + ykṽ

with some coefficients xk, yk. As above, denote Uk(s) = Gs(uk) = xkA +
xks

2ρB + yksC and compute

detUk(s) = det
(

xka− yks(b+ c) xkb+ xks
2ρ + 2ayks

xkc− xks2ρ + 2ayks −xka+ yks(b+ c)

)
(4.2)

= −y2
ks

2 + x2
ks

2ρ + x2
ks

4ρ.

This means that for small s one has Uk(s) ∈ Cint for k ∈ K and Uk(s) ∈ Cext

for k /∈ K. Indeed, for k /∈ K we have yk 6= 0 and the leading term in (4.2)
is −y2

ks
2 < 0. On the other hand, for k ∈ K yk = 0 and so the leading term

x2
ks

2ρ > 0.
Further, according to [12] we know how to compute exp of any element of

sl(2,R), which gives

exp(λU) = cos(λ
√

detU)

(
I +

tan(λ
√

detU)√
detU

U

)
for any U ∈ sl(2,R) and any real λ. Let us take

λ(s) = λ0s
−ρ,

where λ0 will be chosen later, and compute the asymptotic of exp(λ(s)Uk(s))
with respect to s separately for the cases k /∈ K and k ∈ K.



ON THE RADIUS OF CONVERGENCE OF THE LOGARITHMIC SIGNATURE 779

First, consider k /∈ K. We have

√
detUk(s) = iyks(1 + o(1))

and so

tan
(
λ(s)

√
detUk(s)

)
= i tanh

(
λ0s

1−ρyk(1 + o(1))
)

= i+ o(1).

Denote

hk(s) = cos
(
λ(s)

√
detUk(s)

)
= cosh

(
λ0s

1−ρyk(1 + o(1))
)

(4.3)

and notice that hk(s)→∞ faster than any power of s. This implies

exp(λ(s)Uk(s)) = hk(s)
[
I +

1 + o(1)
yks

(xk(A+ s2ρB) + yksC)
]

=
hk(s)
s

[
xk
yk
A+ (C + I)s+

xk
yk
Bs2ρ

]
(1 + o(1)).

Consider now k ∈ K. We have

√
detUk(s) = (x2

ks
4ρ + x2

ks
2ρ)1/2 = xks

ρ

(
1 +

s2ρ

2
+ o(s2ρ)

)

and so

cos
(
λ(s)

√
detUk(s)

)
= cos(λ0xk) cos

(
λ0xks

2ρ

2
+ o(s2ρ)

)
− sin(λ0xk) sin

(
λ0xks

2ρ

2
+ o(s2ρ)

)
= cos(λ0xk)− sin(λ0xk)λ0xk

2
s2ρ + o(s2ρ),

sin
(
λ(s)

√
detUk(s)

)
= sin(λ0xk) cos

(
λ0xks

2ρ

2
+ o(s2ρ)

)
+ cos(λ0xk) sin

(
λ0xks

2ρ

2
+ o(s2ρ)

)
= sin(λ0xk) +

cos(λ0xk)λ0xk
2

s2ρ + o(s2ρ).
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Now we obtain

exp(λ(s)Uk(s)) =
[
cos(λ0xk)− sin(λ0xk)λ0xk

2
s2ρ + o(s2ρ)

]
I

+
[
sin(λ0xk) +

cos(λ0xk)λ0xk
2

s2ρ + o(s2ρ)
]

(A+ s2ρB)

× s−ρ

xk

[
1− s2ρ

2q2
+ o(s2ρ)

]
xk

= s−ρ [A sin(λ0xk) + I cos(λ0xk)sρ

+B sin(λ0xk)s2ρ
]

(1 + o(1)).

Denote

Mk(s) =

{
zkA+ (C + I)s+ zkBs

2ρ, k /∈ K,
A sin(λ0xk) + I cos(λ0xk)sρ +B sin(λ0xk)s2ρ, k ∈ K,

where zk = xk/yk. Taking into account the relations

A2 = 0, B2 = −I, C2 = I,
AC = −CA, BC = −CB, AB +BA = I,

(4.4)

we will show using Lemma 4.3 that the leading term of tr(M1(s) · · ·Mn(s)) is
of order r = ρ|K|+ |Kc|.

Indeed, the product M1(s) · · ·Mn(s) is a sum of monomials of A, (C + I),
and B, which are picked from the matrices Mk(s). By part (3) of Lemma 4.3,
if we have picked A m times we have to pick B at least m times. If 2m > |K|
then the order of such a monomial will be at least 2ρm + n − m which is
greater then ρ|K|+ |Kc| as

(2ρm+ n−m)− (ρ|K|+ |Kc|) = ρ(2m− |K|) + |K| −m
> 2m− |K|+ |K| −m = m > 0.

If 2m ≤ |K| and we have picked at least one A or B from Mk(s) with k /∈ K
then the order will be at least 2ρm + ρ + n − 2m − 1 > 2ρm + n − |K| = r.
This implies that A and B may only be picked from Mk(s) with k ∈ K. But
in this case condition (4) of Lemma 4.3 is fulfilled since our path was generic
and so any two matrices Mi(s) and Mj(s) with i, j ∈ K are separated by a
matrix Mk(s) with k /∈ K, and so the trace of such a monomial is equal to
zero. This means that we are not allowed to pick A from any of Mi(s) in
order to get the leading term. Hence

tr(M1(s) · · ·Mn(s)) = sr
∏
k∈K

cos(λ0xk) tr(C + I)|K
c| + o(sr)

and combining everything together we obtain

tr(Y ∗λ ) = 2|K
c|
∏
k∈K

cos(λ0xk)
∏
k/∈K

hk(s) + o(1).(4.5)



ON THE RADIUS OF CONVERGENCE OF THE LOGARITHMIC SIGNATURE 781

Since η is not an unpaired path and by our choice of the direction v there
is a nonempty subset K ′ ⊂ K such that

sign
∏
k∈K

cos(λ0xk) = sign
∏
k∈K′

cos(λ0|xk|)

and all |xk| are different. Hence there exists λ0 such that∏
k∈K

cos(λ0xk) < 0.(4.6)

One can take any λ0 ∈ (π/2x′, π/2x′′), where

x′ = max{|xi|, i ∈ K ′} and x′′ =

{
max{|xi| 6= x′, i ∈ K ′} if |K ′| > 1,
x′′ = x′/2 if |K ′| = 1.

Finally, combining (4.3), (4.5) and (4.6) together and letting s go to zero
we obtain tr(Y ∗λ ) → −∞ as a function of s. Taking s sufficiently small we
obtain the linear map Gs and the scaling λ(s) such that tr(Y ∗λ ) < −2 and so
Y ∗λ /∈ exp(sl(2,R)). �

The next lemma describes the features of the structure of sl(2,R) which
we have used in the proof of Proposition 4.2.

Lemma 4.3. Suppose A,B,C ∈ sl(2,R) satisfy the relations (4.4). Then
the following hold.

(1) tr(AC) = tr(CA) = 0.
(2) (I ± C)k = 2k−1(I ± C), (I − C)i(I + C)j = 0, and tr(I ± C)k = 2k

for all i, j, k > 0.
(3) If D is a monomial in A,B,C such that A appears in D m times and

B appears in D less than m times then trD = 0.
(4) If D is a monomial in A,B,C + I such that there are no A and B

which are neighbours of each other (in the cyclic sense, i.e., the first
and the last element are regarded as neighbours) and A appears at
least once, then trD = 0.

Proof. (1) Obviously follows from AC = −CA as tr(AC) = tr(CA) =
− tr(AC).

(2) Notice that (I ± C)2 = I ± 2C + C2 = 2(I ± C) and by induction we
get the first and the last formula. Further,

(I − C)i(I + C)j = 2i+j−2(I − C)(I + C) = 2i+j−2(I − C2) = 0.

(3) SinceA appears inD more often thanB we have eitherD = D1AC
kAD2

or D = CiAD3AC
j , where D1, D2, D3 are monomials in A,B,C. Using

AC = −CA and A2 = 0 we get

trD = tr(D1AC
kAD2) = (−1)k tr(D1C

kA2D2) = 0
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or

trD = tr(CiAD3AC
j) = tr(ACi+jAD3) = (−1)i+j tr(A2Ci+jD3) = 0.

(4) If B does not appear in D then the statement follows from (4). If
there is at least one B then either D = D1(C + I)iA(C + I)kB(C + I)jD2

or D = D2(C + I)iB(C + I)kA(C + I)jD2, where D1, D2 are monomials in
A,B, (C + I), k > 0, and i + j 6= 0. Without loss of generality consider the
first case and i > 0. Using (2) we obtain

trD = tr(D1(C + I)iA(C + I)kB(C + I)jD2)

= tr(D1A(I − C)i(C + I)kB(C + I)jD2) = 0.

The remaining cases are analogous. �

Now we can pass on to non-double paths in V .

Proposition 4.4. Let γ : [0, θ] → V be a piecewise linear non-double
path starting at zero. Then there exists a bounded linear operator F from the
Banach space V to the Lie algebra sl(2,R) such that the Cartan development
of the image F ◦ γ has no logarithm at the terminal time θ, i.e., Y F,γ(θ) /∈
exp(sl(2,R)).

Proof. By the definition of a non-double path there are two bounded linear
functionals f, g ∈ V ∗ such that ν = (f ◦ γ, g ◦ γ) is equivalent to an unpaired
path η. By Proposition 4.2 there is a linear mapping G : R2 → sl(2,R) and
λ ∈ R such that

trY λG,η(θ) < −2.

Hence the same is true for ν as the trace of the endpoint of the devel-
opment is invariant under cyclic permutations of the linear pieces, adding
and removing equal pieces traversed in opposite directions, and joining up
co-linear pieces. This means that Y λG,ν(θ) /∈ exp(sl(2,R)).

Finally, we define F as a composition of the two-dimensional projection
(f, g) : V → R

2 and λG : R2 → sl(2,R). Obviously,

Y F,γ(θ) = Y λG,ν(θ) /∈ exp(sl(2,R)),

and the statement is proved. �

5. Finiteness of the radius of convergence

In this section we prove the finiteness of the injective radius Rε(γ) which
will immediately imply the finiteness of R(γ).
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Following [13], we define the injective norm ε(·) on the algebraic tensor
product U ⊗W of two Banach spaces U and W by

ε(u) = sup

{∣∣∣∣∣
n∑
i=1

ϕ(xi)ψ(yi)

∣∣∣∣∣ : ϕ ∈ BU∗ , ψ ∈ BW∗
}
,

where
∑
xi ⊗ yi is any representation of u and BU∗ , BW∗ denote the unit

balls in the dual spaces U∗ and W ∗, respectively. We denote by U ⊗εW the
tensor product U ⊗W with the injective norm and by U⊗̂εW its completion.

Let us introduce a norm on M2×2 given by

‖G‖ = max
1≤i,j≤2

|gij |, where G = (gij).

Let A : U → M2×2 and B : W → M2×2 be two bounded linear operators.
We define the operator A ∗B : U ⊗W →M2×2 by

(A ∗B)(u) =
∑

A(xi)B(yi),

which is obviously independent of the particular representation
∑
xi ⊗ yi

chosen for u.

Lemma 5.1. A∗B is a bounded linear operator from U⊗̂εW to M2×2 and
‖A ∗B‖ ≤ 2‖A‖ ‖B‖.

Proof. Denote by aij , bij , and cij the linear functionals on U , W , and U⊗W
representing the operators A, B, and A ∗B respectively. Obviously, they are
bounded and ‖aij‖ ≤ ‖A‖ and ‖bij‖ ≤ ‖B‖ for all i, j. By Proposition 3.1
from [13] aij ⊗ bkl is a bounded linear functional on U⊗̂εW and ‖aij ⊗ bkl‖ =
‖aij‖ ‖bkl‖. Now we have

cij =
2∑
k=1

aik ⊗ bkj

and so they are bounded linear functionals on U⊗̂εW with the norm satisfying
‖cij‖ ≤ 2‖A‖ ‖B‖. Now the statement follows from the definition of the norm
on M2×2. �

Now, using our specified Banach space V , we can construct the sequence
of Banach spaces V ⊗̂εn with the injective cross-norms ε(·). The associativity
of this construction has been proved in [7]. We denote by Tε (respectively,
Lε) the tensor algebra (respectively, the tensor Lie algebra) corresponding to
the injective tensor products and by T̂ε (respectively, L̂ε) its completion with
respect to the augmentation ideal.

Analogously, for a bounded linear operator A : V → M2×2 we obtain the
sequence of bounded operators A∗n : V ⊗̂εn →M2×2 with ‖A∗n‖ ≤ 2n−1‖A‖n.
For convenience we denote A∗0 = I and A∗1 = A.
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Let us extend A to a linear operator A∞ on the linear subspace TA of T̂
defined by

TA =

{
u =

∞∑
n=0

un : un ∈ V ⊗̂εn for all n and
∞∑
n=0

‖A∗n(un)‖ <∞

}
(5.1)

by taking the limit

A∞(u) =
∞∑
n=0

A∗n(un).(5.2)

Lemma 5.2. For any bounded linear mapping A one has S(γ) ∈ TA.

Proof. This follows from the factorial decay of the iterated integrals and
the geometric growth of the norms of A∗n. In fact, denote by l : [0, θ] → R

the function such that l(t) is the length of the path γ up to time t. Since ε(·)
is a cross-norm we have

ε(S(n)(γ)) ≤
∫
· · ·
∫

0<u1<···<un<θ
ε(dγ(u1)) · · · ε(dγ(un))

=
∫
· · ·
∫

0<u1<···<un<θ
‖dγ(u1)‖ · · · ‖dγ(un)‖

=
∫
· · ·
∫

0<u1<···<un<θ
dl(u1) · · · dl(un) =

l(γ)n

n!
.

Hence

‖A∗n(S(n)(γ))‖ ≤ ‖A∗n‖ε(S(n)(γ)) ≤ (2‖A‖l(γ))n

2n!
and so the series in (5.1) converges. �

Lemma 5.3. Let A : V → sl(2,R) ⊂ M2×2 be a bounded linear operator
and γ be such that Rε(γ) is infinite. Then LS(γ) ∈ TA and A∞(LS(γ)) ∈
sl(2,R).

Proof. As LS(γ) is an entire function with respect to ε(·), for any ρ > 0
one has eventually ε(LS(n)(γ)) < ρn. For ρ < 1/(3‖A‖) one eventually has

‖A∗n(LS(n)(γ))‖ ≤ ‖A∗n‖ε(LS(n)(γ)) ≤ 2n−1‖A‖nρn < (2/3)n

and therefore the series in (5.1) converges and so LS(γ) ∈ TA.
To prove the second statement notice that A∗n maps the n-th component

of the tensor Lie algebra Lε to the n-th commutator of sl(2,R), which lies in
sl(2,R) as it is a Lie algebra. Therefore the limit is in sl(2,R) as well. �

Lemma 5.4. If u ∈ TA and exp(u) ∈ TA then (exp ◦A∞)(u) = (A∞ ◦
exp)(u), for any bounded linear mapping A.
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Proof. This follows from the absolute convergence of the series (5.2). �

Now, let γ be a continuous path of bounded variation and assume that
there is a linear mapping F : V → sl(2,R) such that Y F,γ(θ) /∈ exp(sl(2,R)).

It is well known that the solution of the equation (2.5) can be written as a
convergent series of iterated integrals of the driving path

Y F,γ(θ) = I +
∫

0<u1<θ

dXF,γ(u1) +
∫∫

0<u1<u2<θ

dXF,γ(u1)dXF,γ(u2) + · · ·

= I +
∫

0<u1<θ

F (dγ(u1)) +
∫∫

0<u1<u2<θ

F (dγ(u1))F (dγ(u2)) + · · ·

= F ∗0 + F ∗1
∫

0<u1<θ

dγ(u1) + F ∗2
∫∫

0<u1<u2<θ

dγ(u1)dγ(u2) + · · ·

= F∞(S(γ)).

Using the last three lemmata and the relation exp(LS(γ)) = S(γ) we obtain
that the assumption Rε(γ) =∞ implies

Y F,γ(θ) = F∞(S(γ)) = (F∞ ◦ exp)(LS(γ))

= exp(F∞(LS(γ))) ∈ exp(sl(2,R)).

This contradiction is crucial for proving our two main theorems.

5.1. The main results.

Theorem 5.5. Let γ be a 1-monotone path that is not a segment of a
straight line. Then the radius of convergence R(γ) of the logarithmic signature
of γ is finite and so LS(γ) is not an entire function.

Proof. If γ is not a segment of a straight line then there exists k ≥ 1 and
a 1-monotone path γ0 (different from a segment of a straight line) such that
γ is a concatenation of k copies of γ0, and γ0 is not a concatenation of two
equal paths.

Using the observation that for any two paths α and β one has S(α ∪
β) = S(α)⊗̂εS(β) (see [2]), we obtain S(γ) = S(γ0)⊗̂εk and hence LS(γ) =
kLS(γ0). This means that Rε(γ) = Rε(γ0). Further, S(γ) = S(γ − x) for
every x ∈ V and therefore Rε(γ) = Rε(γ − γ(0)). Hence it is sufficient to
show the finiteness of Rε(γ) for a 1-monotone path γ that starts at zero and
is not a concatenation of the same two pieces.

Such a γ satisfies the conditions of Proposition 3.1 and so there is a bounded
linear operator F : V → sl(2,R) such that Y F,γ(θ) /∈ exp(sl(2,R)). As we
have seen above this implies Rε(γ) < ∞ and the inequality (2.6) completes
the proof. �
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Theorem 5.6. Let γ be a non-double piecewise linear path in V . Then
the radius of convergence R(γ) of the logarithmic signature of γ is finite and
so LS(γ) is not an entire function.

Proof. As in the previous theorem, we can assume that γ starts at zero.
By Proposition 4.4 there is a linear mapping F : V → sl(2,R) such that
Y F,γ(θ) /∈ exp(sl(2,R)). As above, this implies the finiteness of R(γ). �

6. Lower bound for the radius of convergence

In this section we find a lower bound for the radius of convergence of the
logarithmic signature for any continuous path of bounded variation in V .

By definition of the log we have

LS(n)(γ) = log(n)(S(γ))

=
n∑
k=1

(−1)k

k

∑
i1+···+ik=n
1≤i1,...,ik≤n

S(i1)(γ)⊗̂ · · · ⊗̂S(ik)(γ).

Recall that in Lemma 5.2 we proved the factorial decay of the iterated integrals
with respect to the injective norm. However, we only used the fact that it is
a cross-norm corresponding to the original norm on V and so the same is true
for the cross-norms ‖ · ‖. Thus,

‖S(m)(γ)‖ ≤ l(γ)m

m!
,

where l(γ) is the length of γ, and we obtain

‖LS(n)(γ)‖ ≤
n∑
k=1

1
k

∑
j1+···+jk=n−k
1≤j1,...,jk≤n−1

l(γ)n

(j1 + 1)! · · · (jk + 1)!

≤
n∑
k=1

∑
j1+···+jk=n−k
1≤j1,...,jk≤n−k

l(γ)n

j1! · · · jk!
= l(γ)n

n∑
k=1

kn−k

(n− k)!
.

This implies

R(γ)−1 ≤ l(γ) lim sup
n→∞

(
n∑
k=1

kn−k

(n− k)!

)1/n

(6.1)

= l(γ) lim sup
n→∞

max
1≤k≤n

(
kn−k

(n− k)!

)1/n

= l(γ) lim sup
n→∞

(
k(n)n−k(n)

(n− k(n))!

)1/n

,
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where k(n) is an index where the maximum is attained. Any subsequence of
(n−k(n)) contains a subsubsequence such that it is either bounded or goes to
infinity. Thus, it is sufficient to find an upper bound for (6.1) assuming first
that the n− k(n) are bounded by a number M and then that n− k(n)→∞.

If n− k(n) ≤M then

R(γ)−1 ≤ l(γ) lim
n→∞

k(n)M/n = 1.(6.2)

Consider now the case n − k(n) → ∞. Denote q(n) = k(n)/n. By the
Stirling formula we obtain

lim sup
n→∞

(
k(n)n−k(n)

(n− k(n))!

)1/n

= lim sup
n→∞

(ek)1−k(n)/n

(n− k(n))1−k(n)/n

(6.3)

= lim sup
n→∞

e1−q(n)

(1/q(n)− 1)1−q(n)

= lim sup
n→∞

exp ((1− q(n))(1− log(1/q(n)− 1)))

Consider the real function

f(q) = (1− q)(1− log(1/q − 1))

defined on (0, 1). It attains its maximum at the point q0 such that

1− 1/q0 = log(1/q0 − 1).(6.4)

Let p0 = (1/q0 − 1)−1. Then p0 is the solution of p0 log p0 = 1. Using (6.4)
we obtain

exp f(q) ≤ exp f(q0) = exp(1/q0 − 1) = (1/q0 − 1)−1 = p0

and using (6.1) and (6.3) we get R−1 ≤ l(γ)p0. Combining this with (6.2) we
finally obtain

R(γ) ≥ l(γ)−1p−1
0 = l(γ)−1p,

where p is such that log p = −p.
We have proved the following theorem.

Theorem 6.1. Let γ be a continuous path of bounded variation in V .
Then there is a lower bound for the radius of convergence of the logarithmic
signature of γ

R(γ) ≥ l(γ)−1p,

where l(γ) is the length of the path and p is such that log p = −p.



788 TERRY J. LYONS AND NADIA SIDOROVA

7. Non-exponential diffeomorphisms

In this section we illustrate the importance of the above results discussing
examples of diffeomorphisms which do or do not have logarithms depending
on the radius of convergence of their driving control.

Let R2 be our target space. Consider a linear controlled system

dyt = A(yt)dγt = A1(yt)dγ1
t +A2(yt)dγ2

t ,(7.1)

where A1 and A2 are two linear vector fields on R2 given by

A1(y) =
(

(ln 2)/π 0
0 0

)
y and A2(y) =

(
0 1
−1 0

)
y,

and γ is a two-dimensional piecewise linear path containing two linear pieces

γ1
t =

{
t, t ∈ [0, π],
π, t ∈ (π, 2π]

and γ2
t =

{
0, t ∈ [0, π],
t− π, t ∈ (π, 2π].

The controlled system (7.1) generates a flow of diffeomorphisms of R2, and
we are particularly interested in the diffeomorphism ϕ which is the value of the
flow after time 2π. Since the control γ is piecewise linear, ϕ can be computed
as the composition of the flows along its two linear pieces, which are obviously
exponents of the corresponding vector fields

ϕ(y) = exp(πA2) exp(πA1)y = −I
(

2 0
0 1

)
y =

(
−2 0

0 −1

)
y = Φy,

(7.2)

where Φ is defined by the left hand side of the equality. Thus, ϕ is a linear
operator on R2, and the crucial fact is that Φ cannot be expressed as the
exponent of a 2× 2 matrix.

We will show that, although ϕ is produced by a linear differential system,
it has no logarithm, that is, there is no vector field B on R2 such that ϕ(x) =
y(τ, x) for all x, where

dy

dt
(t, x) = B(y(t, x)) for all (x, t) ∈ R2 × [0, τ ](7.3)

with the initial conditions y(0, x) = x.
First of all, it is obvious that ϕ has no linear logarithm. Indeed, if B is a

linear operator on R2 then y(T, x) = exp(τB)x and so it cannot be equal to
ϕ(x) as Φ has no logarithm.

But it turns out that ϕ does not even have a nonlinear logarithm and
cannot be produced by any flow on R2. In order to show this assume that
such a vector field B exists. Let us choose a point (a, 0) on the x-axis such
that |a| > 1. Using the fact that we know the behavior of the flow for the
time increments equal to τ , we obtain that the integral curve starting at a
will pass through −2a at time τ and cross the y-axis at some point b at time
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θ < τ . Hence the integral curve will pass through b at times θ + 2nτ and
through −b at times θ + (2n+ 1)τ , and through the points (−2)na1 at times
nτ . But this is obviously impossible as the integral curve cannot be closed
and approach infinity at the same time.

This is a good illustration of what happens if ‖A‖ > R(γ) because otherwise
A∞(LS(γ)) would converge and give a linear logarithm for the flow generated
by (7.1). Let us now decrease the norm of A in some obvious way so that it
would lie inside the circle of convergence of the logarithmic signature and see
that in that case the logarithm will exist.

Consider δA for some δ < 1 instead of A and denote by ϕδ the diffeomor-
phism produced by the system

dyt = δA(yt)dγt

at time 2π. Similarly to (7.2), we obtain

ϕδ(y) = exp(πδA2) exp(πδA1)y =
(

2δ cos(πδ) sin(πδ)
−2δ sin(πδ) cos(πδ)

)
y = Φδy.

It is easy to see that for δ < 1/2 the matrix Φδ has a logarithm as its eigen-
values are positive. So, any δA with δ < 1/2 would have a linear logarithm.
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