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THE PROBABILITY OF ESCAPING INTERFERENCE

F. B. KNIGHT AND J. L. STEICHEN

The tradition of the University of Illinois Weekly Proba-
bility Luncheon began in the late 1950s under the auspices

of Joe Doob. This meeting has continued to bring together
probabilists and others for informal conversation. We

(the authors) started working together at one of these

probability luncheons. We think that Joe Doob, as a main-
stay of the Urbana-Champaign Saturday hike, might have

been interested in an application of this paper—finding
the probability of hiking across a one-lane bridge without
meeting anyone trying to cross in the opposite direction.

Abstract. Consider two independent sequences of travelers arriving at

opposite ends of a one-lane shared pathway. Each traveler attempts to
traverse the entire pathway to the opposite end. An attempt fails if the

traveler collides with an opposing traveler. In a collision, both oppos-

ing travelers are annihilated. We study the probability that a traveler
manages to traverse the entire length of the one-lane shared pathway

unobstructed. The dynamics of the travelers include the possibility of
acting as bodyguards and “running interference” for a more recent ar-

rival traveling in the same direction.

This model was developed to address some questions in the theory
of crystal growth. It may have possible applications in Particle Physics

as well as to traffic at a one-lane bridge. This paper develops some
properties of the model while focusing on the probability that a traveler

crosses the entire pathway without interference.

1. Introduction

The model that we developed for crystal growth [7] can be described intu-
itively in terms of a one-lane bridge. Vehicles arrive at the ends of the bridge
according to two independent Poisson processes, then travel across the bridge
with constant speed. If a vehicle collides with one traveling in the opposite
direction, then both vehicles annihilate each other and vanish from the bridge.
We consider the probability that a vehicle makes it across the entire length
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of the one-lane bridge without colliding with a vehicle traveling the opposite
direction.

This model was developed [7] to describe crystal growth dynamics observed
at the Center for Atmospheric Research [6]. Crystal layers form on an existing
crystal seed and have a greater tendency to initiate at the borders of this seed.
We simplified our model to the case of a one-dimensional crystal seed with
crystal layers initiating only at the ends. The travelers in the shared pathway
model represent the “wave fronts” of forming crystal layers. A collision of
two travelers represents the completion of a crystal layer by the joining of two
opposing crystal wave fronts. Crystal layers can also complete by a crystal
wave front crossing the length of the crystal seed without meeting an opposing
crystal wave front.

Unlike the classical Johnson-Mehl-Kolmogorov model [8], [5], our crystal
growth model considers initiation of new crystal layers only on boundaries of
a seed crystal as opposed to initiation from random points in a given region.
Our results differ from the limiting results for this classical model [9], [11],
[1], [2], [4] in that we do not study behavior as the region in which the crystal
forms becomes sufficiently large. The main result of our previous paper is
the derivation of a closed form expression for equilibrium growth rate of the
crystal in terms of the initiation rates. This derivation involves an ergodic
theorem for an embedded Markov process.

In Section 2, we recast the crystal growth model of our previous paper
in a more general model. Properties of this model are developed in Sec-
tion 3. These properties include the positive-recurrence property of the model,
a bound on the time until the process is arbitrarily close to equilibrium, and
a discrete-time version of the process. We use the discrete-time version of
the shared-pathway process to define and derive some of the probabilities of
escaping interference.

The probabilities of escaping interference are considered according to the
initial distribution of the model. The fixed-initial-point probabilities are ex-
plored in Section 4 and the equilibrium ones are in Section 5. In both sections,
we consider both unilateral and bilateral probabilities. A unilateral event de-
pends only on arrivals at a given endpoint of the interval, irrespective of the
arrivals at the other end of the interval. A bilateral event ignores right-left
distinctions and only depends on the first arrival regardless of the side of
the arrival. A probability of a unilateral (respectively bilateral) event will be
referred to as a unilateral (respectively bilateral) probability.

The potential of new applications in particle physics colliders and in traf-
fic at a one-lane bridge inspired us to generalize our crystal growth model.
The generalization is rather intuitively easy to understand, yet the indirect
effects of travelers moving in the same directions make this model non-trivial.
Discussion on our results and areas for future research are in Section 6.
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2. The shared-pathway model

In this section, we describe the one-lane shared-pathway model. We first
give a general description and later become more specific. We define a shared-
pathway process precisely from an initial distribution and two Poisson pro-
cesses. These two processes represent arrivals to the ends of the shared path-
way. The state space of the shared-pathway process is derived from the Pois-
son processes. This shared pathway process is finally defined, taking values
in the derived state space.

We represent the shared pathway by the unit interval [0, 1]. Arrivals at
the endpoints (at 0 and 1) of the shared pathway occur according to two
independent Poisson processes with rate λ on the left and rate µ on the
right. A new arrival attempts to traverse the shared pathway by traveling the
pathway at unit speed. This “traveler” eventually either completely traverses
the shared pathway or collides with an opposing “traveler”. In the case of
a collision, the two opposing travelers annihilate each other and vanish from
the state of the shared-pathway process. Thus, the shared-pathway process
keeps track of travelers that are still actively trying to traverse the shared
pathway but ignores those that have already either completely traversed the
shared pathway or that have collided with an opposing traveler.

Let Aλ and Aµ be two independent Poisson processes with rates λ and µ,
respectively. These two processes represent arrivals to either side of the shared
pathway: Aλ represents the arrivals to the left-side of the pathway, and Aµ
represents the travelers arriving to the right-side of the shared pathway. We
construct the shared-pathway process S from Aλ and Aµ as follows.

Let (Lk)k≥1 and (Rk)k≥1 be the sequence of jump times of Aλ and Aµ,
respectively. The four sets {

∑∞
k=1 Lk < ∞}, {

∑∞
k=1Rk < ∞}, {

∑i
k=1 Lk =

1 +
∑j
k=1Rk for some i, j}, and {1 +

∑i
k=1 Lk =

∑j
k=1Rk for some i, j} have

probability zero. Without loss of generality, we discard these sets from the
product probability space of (Aλ, Aµ). The consequence of this discard is that
for all t ≥ 0, both Aλ(t) and Aµ(t) are finite and that no arrival occurs at
exactly the same time as an opposite-side traveler crosses the shared pathway.
These consequences are convenient for the construction of S.

The state of the shared-pathway process S at any particular time is rep-
resented by a pair of finite sequences. These pairs will be elements of some
set Em,n = {((x1, . . . , xm), (yn, . . . , y1)) with m,n ≥ 0, 0 ≤ x1 < · · · < xm <
yn < · · · < y1 ≤ 1}. If either m = 0 or n = 0 or both, then the corresponding
finite sequence is written as the empty set. More precisely, these special cases
of Em,n can be written as

E0,0 = {(∅, ∅)}
E0,n 6=0 = {(∅, (yn, . . . , y1)) with 0 ≤ yn < · · · < y1 ≤ 1}
Em6=0,0 = {((x1, . . . , xm), ∅) with 0 ≤ x1 < · · · < xm ≤ 1}
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Any element of the set Em,n is a shared-pathway state with m travelers
at positions x1, . . . , xm moving towards the right and n travelers at positions
yn, . . . y1 moving towards the left. A new arrival on the left is indicated
by x1 = 0; a new arrival on the right by y1 = 1. Define E as the union⋃
m,n≥0Em,n. Let H be the σ-field generated by the Borel subsets of each

Em,n as a subset of [0, 1]m+n. The space (E,H) will be the state space of the
shared-pathway process.

We define the shared-pathway process S from the processes Aλ and Aµ
on the time interval [0,∞) with state space (E,H) in the following manner.
Starting at any initial state S(0) ∈ E, the path of S is completely deterministic
until the first arrival time: the xi increase at unit speed and the yj decrease at
unit speed until an arrival, a collision, or a traversing occurs. Each collision
(xm = yn) or traversing (xm = 1 or yn = 0) causes a jump in the state of
S. If there is a collision, then the values xm and yn vanish from the state of
S(t) and m and n both decrease by 1. If there is a traversing to the right,
then xm vanishes from S(t), m decreases by 1 and n remains at 0. If there is
a traversing to the left, then yn = 0 vanishes from S(t), n decreases by 1 and
m remains at 0. The remaining xi continue to increase at unit speed and the
remaining yj continue to decrease at unit speed until an arrival, a traversing,
or a collision occurs.

We sometimes refer to an arrival to the left side (respectively, right side)
of the shared pathway as a left-arrival (respectively, right-arrival). At the
time of a left-arrival the state changes from (x1, . . . , xm) to (0, x1, . . . , xm)
and m increases to m + 1. At the time of a right-arrival, the state changes
from (yn, . . . , y1) to (yn, . . . , y1, 1) and n increases to n + 1. The paths of S
are completely deterministic between arrivals: the xi increase at unit speed
and the yj decrease at unit speed until an arrival, a traversing, or a collision
occurs.

This defines the shared-pathway process S for the time interval [0,∞) with
state space (E,H). This process is completely determined by its initial value
S(0) and the two Poisson processes Aλ and Aµ.

3. Properties of the shared-pathway process

In this section, we develop properties of the shared-pathway process. We
establish the positive-recurrence property of the model, prove the existence
of a unique equilibrium distribution, and bound the difference between the
distribution of S and its equilibrium. We wish that we knew more about the
equilibrium probability distribution of the shared-pathway process.

Two discrete-time embedded processes give insight into the continuous-time
shared-pathway process. The first embedded process S∗ is the sequence of
states of S observed at arrival times. The discrete-time S∗ has a unique equi-
librium measure and converges to this equilibrium with an exponential bound.
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The second embedded process X is the exit-position process: it records the
position in the interval [0, 1] at which the exits (collisions or crossings) take
place. This discrete-time process is developed in detail in [7]. Some of the
results for the exit-position process are stated here. Of particular interest is
the explicit equilibrium measure for X. These two embedded processes will
be used to state and derive the probabilities in Section 5.

Lemma 1. The process S is time-homogeneous, strong Markov, and uni-
formly positive recurrent.

Proof. See [7, Theorem 2.1]. �

Thus, S must have a unique equilibrium distribution which we call η. With
any initial distribution ζ, the distribution of the shared-pathway process ap-
proaches η as t → ∞. In fact, there is a bound on the speed on this conver-
gence.

Theorem 2 (The Speed of Reaching Equilibrium). Fix an initial distri-
bution ζ on E. Let Sζ be a copy of S starting with initial distribution ζ. There
exists a copy Sη of S that starts with initial distribution η such that for any
t ≥ 0,

‖Sζ(t)− Sη(t)‖tot ≤ 2(1− e−(λ+µ))t−1

where ‖·‖tot is the total variation norm.

Proof. Define Sη as a copy of S that starts with initial distribution η and
has the same arrivals as Sζ . Define T ζ as the first time that the two processes
Sζ and Sη meet: T ζ = inft>0{Sη(t) = Sζ(t)}. If T ζ is infinite, then Sη and
Sζ are never equal. If T ζ is finite, then Sη and Sζ are the same after time
T ζ .

If f is any bounded measurable function on E, then for all t ≥ 0,

E[f(Sη(t))− f(Sζ(t))] = E[1{t≤T ζ}(f(Sη(t))− f(Sζ(t)))]

+ E[1{t>T ζ}(f(Sη(t))− f(Sζ(t)))]

≤ 2‖f‖supP (t ≤ T ζ).

Thus, ‖Sζ(t)− Sη(t)‖tot ≤ 2P (t ≤ T ζ).
Let A be the process of arrival times of Sζ and Sη. Whenever A has its

first inter-arrival time greater than one, the processes Sζ and Sη meet in the
set E0,0. Let W be the number of inter-arrival intervals of A of duration
less than one before the first such interval of duration greater than or equal
to one. Since these durations are independent and exponentially distributed
with parameter λ+ µ, it follows that for k ≥ 0, P (W ≥ k) = (1− e−(λ+µ))k.
By the definition of W , T ζ < 1 + W . Thus, P (t < T ζ) ≤ P (t < 1 + W ).
Therefore,

‖Sζ(t)− Sη(t)‖tot ≤ 2P (t < 1 +W ) ≤ (1− e−(λ+µ))t−1. �



694 F. B. KNIGHT AND J. L. STEICHEN

Notice that the rate of convergence is independent of ζ and depends only
on the sum λ + µ. In spite of its elementary character, and the fact that we
largely ignored the possibility of Sζ meeting Sη at any point other than the
element of E0,0, Theorem 2 gives some access to Sη. If λ+ µ = 1 and t = 60,
then 2(1 − e−(λ+µ))t−1 ≈ 3.25 · 10−4. Thus, if time is measured in minutes,
it should not be necessary to wait more than an hour to develop practical
equilibrium, no matter the initial distribution (possibly unknown).

It seems difficult to derive analytical properties of the equilibrium distribu-
tion η of the shared-pathway process S. The only explicit result on the value
of η that we have obtained is the value (see [7])

η(E0,0) =

{
e−λ(1 + λ)(1 + 2λ)−1 if λ = µ,

e−µ(λeλ−µ − µ)(λe2(λ−µ) − µ)−1 if λ 6= µ.

We next turn our attention to an embedded process S∗ of S. The S∗ is the
sequence of states of S observed at arrival times. Let (tk)k≥1 be the ordered
sequence of event times of Aλ + Aµ. We define S∗ as S∗ = (S∗k)k≥1 where
S∗k = S(tk) for k ≥ 1. The state space of S∗ is the set E∗ which is the subset
of E including only the states with x1 = 0 or y1 = 1.

Lemma 3. The discrete-time process S∗ is uniformly positive recurrent.

Proof. Since S is strong Markov and the increasing sequence (tk)k≥1 is a
sequence of stopping times of S, the embedded discrete-time S∗ is a time-
homogeneous Markov process. For any sample path of S, the set {t ≥ 0 :
S(t) ∈ E0,0} is a disjoint union of intervals. Call these 0-intervals. The 0-
intervals begin with an exit due to a traversal or a collision and end with
an arrival time. If t1 > 1, then t1 ends such an interval of S and S∗1 ∈
{((0), ∅), (∅, (1))}. For every k > 1, if tk − tk−1 > 1, then tk ends a 0-interval
of S and S∗k ∈ {((0), ∅), (∅, (1))}. Since (tk − tk−1)k≥1 is a set of independent,
identically distributed random variables with P (tk − tk−1 > 1) = e−(λ+µ),
the expected passage times of S∗ to the set {((0), ∅), (∅, (1))} have uniformly
bounded expectation. Thus, S∗ is uniformly positive recurrent. �

Since S∗ is uniformly positive recurrent, it has a unique stationary proba-
bility measure ν [10, Theorem 7.1]. This measure is technically defined only
on E∗, but it can be extended to all of E by defining ν(E \ E∗) = 0. Like
the continuous-time S process, the discrete-time process S∗ approaches equi-
librium in a bounded way.

Corollary 4 (The Speed of Reaching Equilibrium of the Embedded Pro-
cess). Fix an initial distribution ζ on E∗. Let S∗ζ be a copy of S∗ starting
with initial distribution ζ. There exists a copy S∗ν of S∗ such that for any
k ≥ 1,

‖S∗ζ (k)− S∗ν(k)‖tot ≤ 2(1− e−(λ+µ))k
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where ‖·‖tot is the total variation norm.

At this point, we know that an equilibrium measure η for S exists and an
equilibrium measure ν for S∗ exists. These two measures are related via the
PASTA property [12]. One advantage of ν over η is the ability to express
equilibrium probabilities of escaping interference in terms of arrivals. Once
expressed in terms of arrivals, some explicit derivations can be made using
another discrete-time process X embedded in S.

Consider the ordered set of “exit points” of S, that is the set of the points
in the interval [0, 1] at which a collision or a traversal takes place, ordered
by the time of the event. We derive a discrete-time exit process X from
S in such a way that Xn is the nth element of the set of exit points. In
our previous paper, we developed some properties of X including an explicit
form for its equilibrium distribution π and its transition function. In this
paper, the explicit form of π and the equilibrium distribution of X is used to
derive a closed form expression for the equilibrium probabilities of escaping
interference.

4. The clean-slate escaping probabilities

This first section on the probability of escaping interference considers the
simplest possible initial value for S. The “clean-slate” probabilities assume
that the shared-pathway process starts with no initial travelers: S(0) ∈ E0,0.
Let P 0 denote the probability inherited from S with S(0) ∈ E0,0. The sim-
plicity of the P 0-probabilities of escaping interference indicates that these
derivations be considered without the extra complications inherent in consid-
ering other initial distributions for S.

Theorem 5 (The Clean-Slate Unilateral Probability). The P 0-probability
that the first arrival on the left escapes interference is

λ

λ+ µ
e−µ +

µ

λ+ µ
e−(λ+2µ).

Proof. The probability that the first arrival to the shared pathway is a
left-arrival is λ/(λ + µ). This initial left-arrival escapes interference if and
only if the first right-arrival arrives after this left-arrival traverses (R1 >
L1 + 1 given R1 > L1). The difference R1 − L1 is exponentially distributed
with rate µ, so the probability that R1 − L1 is greater than one is e−µ.

The probability that there are exactly k ≥ 1 right-arrivals before the first
left-arrival is (µ/(λ + µ))k(λ/(λ + µ)). In this case, the first left-arrival es-
capes interference if and only if it arrives after the previous right-arrival has
completely traversed the shared pathway (L1 > Rk + 1 given L1 > Rk)
and the next right-arrival arrives after this left-arrival traverses (Rk+1 >
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L1 + 1 given Rk+1 > L1). Since there are no arrivals in the interval (L1, Rk),
L1−Rk is exponential with rate λ+µ. Thus, the probability that L1−Rk is
greater than one is e−(λ+µ). There may be left-arrivals, though, in the inter-
val (Rk+1, L1). By the memoryless property of exponential random variables,
Rk+1 − L1 is exponentially distributed with rate µ, and the probability that
Rk+1 −L1 is greater than one is e−µ. Thus, the P 0-probability that the next
left-arrival escapes interference is

λ

λ+ µ
e−µ +

∞∑
k=1

(
µ

λ+ µ

)k
λ

λ+ µ
e−(λ+µ)e−µ.

(This is also proved in [7, Theorem 4.2].) �

Theorem 6 (The Clean-Slate Bilateral Probability). The P 0-probability
that the first arrival escapes interference is λ

λ+µe
−µ + µ

λ+µe
−λ.

Proof. The probability that the first arrival is on the left is λ/(λ+µ). In this
case, this first arrival escapes interference if and only if the first right-arrival
arrives at least one time unit after the first left-arrival (R1 > L1+1 given R1 >
L1). By the memoryless property of exponential random variables, R1 − L1

is exponentially distributed with rate µ. Thus, the probability that the first
arrival escapes interference given that it is on the left is e−µ. By similar
reasoning, the probability that the first arrival is on the right is µ/(λ + µ)
and the probability that the first arrival escapes interference given that it is
on the right is e−λ. The theorem follows. �

5. The equilibrium probabilities of escaping interference

Recall that the discrete-version S∗ of the shared-pathway process has equi-
librium distribution ν. In this section, we consider the P ν-probabilities of
escaping interference. We derive the bilateral probability and approximate
the unilateral probability. The proof of the bilateral probability relies on a
result derived in [7]. The main idea of the proof is threefold: 1) express the
desired probability as a limit of two sums, 2) express these sums in terms
of the exit process X, and 3) use the explicit equilibrium distribution of X
for calculation. This same method of proof does not work in the unilateral
case. Besides the approximation and bounds for the unilateral probability in
this paper, there is also a simulation of the unilateral probability for different
values of λ and µ [7, Table 1]. The following ratio

Π(λ, µ) =

{
1/(1 + 2λ) if λ = µ,

(µ− λ)/[µe2(µ−λ) − λ] if λ 6= µ,

was developed in [7] from the position process X and will be used to describe
the probabilities in this section.
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Lemma 7. The P ν-probability that the first arrival is on the left and es-
capes interference is λ

λ+µΠ(λ, µ).

Proof. Let K(n) be the cardinality of the first n arrivals which arrive on
the left and escape interference. The limit as n → ∞ of the ratio of K(n)
to the number of the first n arrivals that are on the left is P η-almost surely
equal to Π(λ, µ) [7, Lemma 4.1]. Since the limit as n→∞ of the ratio of the
number of left-arrivals to total arrivals is λ/(λ+ µ) P η-almost surely,

lim
n→∞

K(n)
n

=
λ

λ+ µ
Π(λ, µ)

P η-almost surely. We can apply the expectation under the assumption that
S∗ is in equilibrium to the above equation. By Lebesgue’s Dominated Con-
vergence Theorem,

lim
n→∞

Eη
[
K(n)
n

]
=

λ

λ+ µ
Π(λ, µ)

Notice that Eη[K(n)] is the sum from k = 1 to n of the P η-probability
that the kth arrival is on the left and escapes interference. As k gets large,
this probability approaches the P ν probability by Corollary 4. Thus, the
P ν-probability that the first arrival is on the left and escapes interference is
λΠ(λ, µ)/(λ+ µ). �

Corollary 8. The P ν-probability that the first arrival is on the right
and escapes interference is µ

λ+µΠ(µ, λ).

Proof. A direct consequence of swapping λ and µ in Lemma 7. �

Theorem 9 (The Equilibrium Unilateral Probability). The value
λ

λ+µΠ(λ, µ) + µ
λ+µΠ(µ, λ)e−2µ is less than the P ν-probability that the first

arrival on the left escapes interference, and their difference is bounded above
by

µ

λ+ µ

(
1− e−(λ+µ)

)( λ

λ+ µ
+ e−λ−2µ − λ

λ+ µ
e−(λ+µ)

)

Proof. Let A be the event that the first arrival is on the left and escapes
interference. Let B be the event that the first arrival is on the right, it escapes
interference, and the first arrival on the left escapes interference. Let C be
the event that the first arrival is on the right, it does not escape interference,
and the first arrival on the left escapes interference. Then, the probability
that we seek is P ν(A ∪B ∪C). Since these three events are disjoint, we seek
the sum P ν(A) + P ν(B) + P ν(C). The probability of event A is derived in
Lemma 7. Thus, P ν(A) = λΠ(λ, µ)/(λ+ µ).
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The equilibrium probability that the first arrival is on the right and even-
tually escapes interference is µΠ(µ, λ)/(λ+µ) by Corollary 8. In event B, the
first arrival on the right escapes interference; thus, the first left-arrival must
happen after time t1 + 1. In order for this left-arrival to escape interference,
there must be no right-arrivals within one time unit of the left-arrival time.
The conditional probability that the first left-arrival escapes interference given
that the first arrival is on the right and this right-arrival escapes interference
is e−2µ. Therefore, P ν(B) = µΠ(µ, λ)e−2µ/(λ+ µ).

It is with the probability of C, that we do not have an exact answer. If
the first arrival is on the right side of the shared pathway and this arrival has
a collision (but this collision is not with the first left-arrival), then it collides
with an initial right-traveler. In this case, the effect of the initial distribution
of S at time 0 is to produce a right-traveler to collide with the first right-
arrival and to possibly produce other initial right-travelers that might have
the effect of acting as “bodyguards”, clearing the path for the first left-arrival
to cross the shared pathway. Thus, the probability of C is bounded above by
the probability that the first arrival is on the right at some time R1 < 1, the
first left-arrival is at some time L1 > R1 and there are no right-arrivals in the
time interval [1 ∨ (L1 − 1), L1 + 1). Thus

P ν(C) ≤ µ

λ+ µ

∫ 1

0

(λ+ µ)e−(λ+µ)R

∫ ∞
0

λe−λLe−µ(L∨2) dLdR

=
µ

λ+ µ

[
λ

λ+ µ

(
1− e−(λ+µ)

)2

+ e−λ−2µ(1− e−(λ+µ))
]

=
µ

λ+ µ

(
1− e−(λ+µ)

)( λ

λ+ µ
+ e−λ−2µ − λ

λ+ µ
e−(λ+µ)

)
.

Thus, the equilibrium probability that the first left arrival eventually escapes
interference is bounded below by P ν(A) + P ν(B) and above by the sum of
P ν(A) + P ν(B) and the upper bound on P ν(C). �

The bound on the unilateral probability is not as satisfying as an exact
result would be. Simulation results are available [7, Table 1]. An exact result
might be possible if we had an explicit form for η.

Theorem 10 (The Equilibrium Bilateral Probability). The P ν-probability
that the first arrival escapes interference is λ

λ+µΠ(λ, µ) + µ
λ+µΠ(µ, λ).

Proof. From Lemma 7, the P ν-probability that the first arrival is on the
left and escapes interference is λΠ(λ, µ)/(λ + µ). By similar reasoning, the
P ν-probability that the first arrival is on the right and escapes interference is
µΠ(µ, λ)/(λ + µ). Thus, by conditioning on the side of arrival, we find that
the P ν-probability that the first arrival traverses the shared pathway without
interference is (λΠ(λ, µ) + µΠ(µ, λ))(λ+ µ). �



THE PROBABILITY OF ESCAPING INTERFERENCE 699

6. Discussion and conclusions

We derived three probabilities of escaping interference and bounds on a
fourth probability. Both the shared pathway process and its discrete-time
version converge in a bounded way to their equilibrium distributions. We are
left, though, with many directions for future research. The exact structure
of the equilibrium distributions seems elusive. Perhaps simulations could be
used to get more insight into these equilibrium distributions.

Generalizations of the shared pathway process would be interesting to
study. We have studied a slight generalization of when the speeds of the
travelers are not the unit speed and may be depend on the side of arrival [7,
Section 5]. The generalization that would be most useful for crystal growth
theory would be one in which the one-dimensional shared pathway line seg-
ment is replaced by a two-dimensional triangle of shared pathways or even to
a three-dimensional configuration of shared pathways.
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