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A NOTE ON X-HARMONIC FUNCTIONS

E. B. DYNKIN

Dedicated to the memory of Joseph Leo Doob whose work was my inspiration and

admiration for many years

Abstract. The Martin boundary theory allows one to describe all pos-
itive harmonic functions in an arbitrary domain E of a Euclidean space
starting from the functions ky(x) = g(x, y)/g(a, y), where g(x, y) is the
Green function of the Laplacian and a is a fixed point of E. In two
previous papers a similar theory was developed for a class of positive
functions on a space of measures. These functions are associated with
a superdiffusion X and we call them X-harmonic. Denote by Mc(E)
the set of all finite measures µ supported by compact subsets of E. X-

harmonic functions are functions on Mc(E) characterized by a mean
value property formulated in terms of exit measures of a superdiffusion.
Instead of the ratio g(x, y)/g(a, y) we use a Radon-Nikodym derivative

of the probability distribution of an exit measure of X with respect to
the probability distribution of another such measure. The goal of the

present note is to find an expression for this derivative.

1. Introduction

1.1. X-harmonic functions. Suppose that L is a second order uniformly
elliptic operator in a domain E of Rd. An L-diffusion is a continuous strong
Markov process ξ = (ξt,Πx) in E with generator L. Let ψ be a function from
E ×R+ to R+, where R+ = [0,∞). An (L,ψ)-superdiffusion is a model of an
evolution of a random cloud. It is described by a family of random measures
(XD, Pµ), where D ⊂ E and µ is a finite measure on E.1 If µ is concentrated
on D, then XD is concentrated on ∂D. We call XD the exit measure from
D. Heuristically, it describes the mass distribution on an absorbing barrier
placed on ∂D.
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We put µ ∈ Mc(D) if µ is a finite measure concentrated on a compact
subset of D. We write D b E if D is a bounded smooth2 domain such that
the closure D̄ ofD is contained in E. We say that a functionH :Mc(E)→ R+

is X-harmonic if, for every D b E and every µ ∈Mc(D),

(1.1) PµH(XD) = H(µ).

For every domain D ⊂ E we have an inclusion Mc(D) ⊂Mc(E). We say
that H is X-harmonic in D if

(1.2) PµH(XO) = H(µ) for all O b D,µ ∈Mc(O).

1.2. Superdiffusions. We write f ∈ B if f is a positive B-measurable
function. We denote by B(E) the class of all Borel subsets of E and byM(E)
the set of all finite measures on the σ-algebra B(E).

Suppose that to every open set D ⊂ E and every µ ∈ M(E) there corre-
sponds a random measure3 (XD, Pµ) on Rd such that, for every f ∈ B(E),

(1.3) Pµe
−〈f,XD〉 = e−〈VD(f),µ〉,

where u = VD(f) satisfies the equation4

(1.4) u+GDψ(u) = KDf.

Here

(1.5) GDf(x) = Πx

∫ τD

0

f(ξs) ds, KDf(x) = Πx1τD<∞f(ξτD )

are the Green operator and the Poisson operator of ξ in D. We call the family
X = (XD, Pµ) an (L,ψ)-superdiffusion if, besides (1.3)–(1.4), it satisfies the
following condition.

1.2.A (Markov property). For every µ ∈Mc(E) and every D b E,

PµY Z = Pµ(Y PXDZ)

if Y ≥ 0 is measurable with respect to the σ-algebra F⊂D generated by
XO, O ⊂ D, and Z ≥ 0 is measurable with respect to the σ-algebra F⊃D
generated by XO′ , O

′ ⊃ D.

The existence of a (ξ, ψ)-superprocesses is proved in [Dyn02, Theorem 4.2.1]
for

(1.6) ψ(x;u) = b(x)u2 +
∫ ∞

0

(e−tu − 1 + tu)N(x; dt)

2We call smooth domains those of the class C2,λ.
3A random measure on a measurable space (S,BS) is a pair (X,P ), where X(ω,B) is a

kernel from an auxiliary measurable space (Ω,F) to (S,BS) and P is a probability measure
on F . (We say that p(x,B), x ∈ E,B ∈ B′, is a kernel from a measurable space (E,B) to a

measurable space (E′,B′) if it is a B-measurable function in x and a finite measure in B.)
4ψ(u) is a short notation for ψ(x, u(x)).
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under broad conditions on a positive Borel function b(x) and a kernel N from
E to R+. It is sufficient to assume that

(1.7) b(x),
∫ ∞

1

tN(x; dt) and
∫ 1

0

t2N(x; dt) are bounded.

An important special case is the function

(1.8) ψ(x, u) = `(x)uα, 1 < α ≤ 2,

corresponding to b = 0 and

N(x, dt) = ˜̀(x)t−1−αdt,

where

˜̀(x) = `(x)
(∫ ∞

0

(e−λ − 1 + λ)λ−1−αdλ

)−1

.

Condition (1.7) holds if `(x) is bounded.
It follows from (1.3)–(1.5) that

(1.9) Pµ{XD(D) = 0} = 1

and

(1.10) Pµ{XD = µ} = 1 if µ(D) = 0.

Let F stand for the σ-algebra in Ω generated by XD(B), where D b E and
B ∈ B(E). Denote by M the σ-algebra in Mc(E) generated by the functions
F (µ) = µ(B) with B ∈ B(E). If µ ∈ Mc(E) and D b E, then, Pµ-a.s.,
XD ∈Mc(E) and XD is a measurable mapping from (Ω,F) to (Mc(E),M).
Moreover, if µ ∈ Mc(D), then, Pµ-a.s., XD ∈ M(∂D). It follows from (1.3)
that H(µ) = PµY is M-measurable for every F-measurable Y ≥ 0.

We have:

1.2.B (Absolute continuity property). For every set C ∈ F⊃D ei-
ther Pµ(C) = 0 for all µ ∈Mc(D) or Pµ(C) > 0 for all µ ∈Mc(D).

A proof of this property can be found in [Dyn04b, Theorem 5.3.2].
We denote by PD(µ, ·) the probability distribution of XD under Pµ, that

is,

(1.11) PD(µ,A) = Pµ{XD ∈ A} for A ∈M.

Fix a reference point a ∈ E and put PD(A) = PD(δa, A) (δa is the unit
mass concentrated at a). By 1.2.B, there exists a Radon-Nikodym derivative

(1.12) Hν
D(µ) =

PD(µ, dν)
PD(dν)

.

For every µ ∈ Mc(D), this is a function of ν ∈ M(∂D) defined up to
PD-equivalence. We continue it to M(E) × M(E) by setting Hν

D(µ) = 0
off Mc(D)×M(∂D). It is proved in [Dyn05, Theorem 1.1] that there exists
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a version of Hν
D(µ) which is M×M-measurable and X-harmonic in µ in the

domain D for every ν ∈ M(∂D). We will use the notation Hν
D(µ) for this

version.

1.3. Main results. To every Polish space S there corresponds a Polish
space

ZS =
∞⋃
n=0

ZnS .

For n > 0, ZnS = Sn is the product on n replicas of S (Z0
S consists of a single

element ∅). We call ZS the configuration space over S.
We consider the configuration space over S = D×M, whereM =M(∂D).

We also use the configuration spaces ZD and ZM. We denote by zn =
(z1, . . . , zn) and νn = (ν1, . . . νn) generic elements of ZnD and ZnM. A pair
(zn, νn) represents a generic point of ZnS . Every function f on ZM can be
continued to ZS by setting f(zn, νn) = f(νn). A similar continuation can be
defined for functions on ZD.

We will first establish an expression for the transition function (1.11) and
then deduce from this expression a formula for the X-harmonic function
(1.12).

A special role is played by a mapping N : ZM →M defined by the formula

N(νn) = ν1 + · · ·+ νn for νn = (ν1, . . . , νn).

Fix domains D̃ b D b E. We will introduce in Section 2 a positive Borel
function ρµ on ZD depending on a parameter µ ∈Mc(D̃) and in Section 3 a
probability measure P on ZS . (Both ρµ and P depend on D̃ and D.)5

There exists an M×M-measurable function ϕµ(ν) such that

(1.13) P{ρµ|N} = ϕµ(N).

Theorem 1.1. Let D b E and let u be the minimal solution of the problem

Lu = ψ(u) in D,

u =∞ on ∂D.
(1.14)

If a ∈ D̃ b D, then for every f ∈ B(M) and every µ ∈Mc(D̃),

(1.15)
∫
M

PD(µ, dν)f(ν) = ce−〈u,µ〉Pf(N)ϕµ(N),

where c is a constant depending on D̃ and D.

5Instead of configurations over S we could consider configurations over S̃ = ∂D̃ ×
M(∂D) ⊂ S (the functions ρµ vanish off S̃), but we prefer to deal with a configuration

space independent of D̃.
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Theorem 1.2. In the notation of Theorem 1.1,

(1.16) Hν
D(µ) = eu(a)−〈u,µ〉ϕµ(ν)

ϕa(ν)
for all ν ∈M, µ ∈Mc(D̃),

where a ∈ D̃ and ϕa = ϕδa .

2. The function ρµ

2.1. We give an expression for the function ρµ in terms of a class of
directed graphs which we call diagrams. A diagram is the union of a finite
set of disjoint rooted trees with marked leaves. Each rooted tree has a single
root. There exists only one tree with one leaf and only one tree with two
leaves. All distinguishable trees with three leaves are presented in Figure 1.

2
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1

1

2

3

Figure 1

Fix domains D̃ b D b E. To define ρµ on ZnD = Dn we consider all
diagrams with n leaves. We set ρµ(zn) = 0 for zn ∈ S \ (∂D̃)n. In Section
2.2 we will define, for every rooted tree D, a function ρx(D, zn) on (∂D̃)n

depending on the parameter x ∈ D̃ . For µ ∈Mc(D̃) we put

(2.1) ρµ(D, zn) =
∫
ρx(D, zn)µ(dx).

For a diagram D which is a union of trees D1, . . . ,Dk we put

(2.2) ρµ(D, zn) =
k∏
i=1

ρµ(Di, (zn).

Finally, we define

(2.3) ρµ(zn) =
∑

ρµ(D, zn),

where D runs over all diagrams with n leaves.

2.2. To define ρx(D, ·) for a tree D we label the sites and the arrows of D
by certain functions.

Put `(x) = ψ1[x, VD(φ)(x)] and consider a sequence

(2.4) qr(x) = (−1)rψr[x, `(x)] for r = 2, 3, . . . ,
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where ψr is the r-th derivative of ψ with respect to u. (For the functions
(1.6) subject to the conditions (1.7), ` and qr are strictly positive.) Denote by
g(x, y) the Green function and by k(x, y) the Poisson kernel of the operator
Lu− `u in D̃.

Denote by V the set of all sites of D different from leaves and roots. Mark
v ∈ V by a D̃-valued variable yv, the root by a D̃-valued variable x and the leaf
i by a ∂D̃-valued variable zi. Mark every arrow by the marks of its beginning
and end. For instance, (yv, yv′) is the mark of the arrow leading from v to v′.

We attach a label qr(yv) to v ∈ V if r is the number of arrows starting from
v. The leaves and the root are labeled by the constant 1. The labels of the
arrows are:

g(yv, yv′) for (yv, yv′), k(yv, zi) for (yv, zi),

g(x, yv) for (x, yv), k(x, z1) for (x, z1).

(The last type appears only for the tree with one leaf.)
Denote by L(D) the product of the labels of all sites and all arrows and

put

(2.5) ρx(D, zn) =
∫
L(D)

∏
v∈V

dyv for zn ∈ (∂D̃)n.

Examples. For the first diagram in Figure 1,

ρx(D, z3) =
∫
g(x, y)q3(y)k(y, z1)γ(dz1)k(y, z2)k(y, z3)dy.

For the second diagram,

ρx(D, z3) =
∫
g(x, y1)q2(y1)k(y1, z3)g(y1, y2)q2(y2)k(y2, z1)k(y2, z2)dy1dy2.

(In contrast to the leaves, the enumeration of the sites in V is of no impor-
tance.)

3. The measure P

3.1. The measures Rµ. It follows from (1.3) that, for every µ ∈ M(E)
and every f ∈ B(E),

(3.1) logPµe−〈f,XD〉 =
∫
E

µ(dz) logPze−〈f,XD〉,

which implies that, for every n,

Pµe
−〈f,XD〉 =

[
Pµ/ne

−〈f,XD〉
]n
.
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Hence (XD, Pµ) is an infinitely divisible measure on ∂D and, since Pµ{XD =
0} > 0 for µ 6= 0, there exists a finite measure Rµ on M(∂D) such that

(3.2) − logPµe−〈f,XD〉 =
∫

[1− e−〈f,ν〉]Rµ(dν)

for all f ∈ B(E) (see, e.g., [Dyn04b, p. 37]). The right side in (3.2) does not
depend on the value of Rµ{0}. If we put Rµ{0} = 0, then the measure Rµ is
determined uniquely. Put Rz = Rδz . Formula (3.1) implies

(3.3) Rµ =
∫
D

Rzµ(dz)

and (3.2) implies

(3.4) c(µ) = Pµ{XD = 0} = e−Rµ(M).

If µ 6= 0, then c(µ) > 0.

3.2. Definition of P. Fix D̃ b D and denote by γ the surface area on
∂D̃. Consider a measure Q on S = D ×M concentrated on ∂D̃ ×M and
given on ∂D̃ ×M by the formula

(3.5) Q(dz, dν) = γ(dz)Rz(dν).

The total mass of Q is equal to Rγ(M). For every n, we consider a measure
Qn on ZS concentrated on ZnS and defined by the formula

(3.6) Qn(dzn, dνn) = Q(dz1, dν1) . . . Q(dzn, dνn) = γn(dzn)Rzn(dνn).

The formula

(3.7) P = c(γ)
∞∑
0

1
n!
Qn

defines a probability measure on ZS depending on D and D̃.

4. Proof of Theorem 1.1

4.1. For the sake of brevity we put

ν̄ = N(νn) = ν1 + · · ·+ νn for νn = (ν1, . . . , νn),

Rzn(dνn) = Rz1(dν1) . . .Rzn(dνn),

µn(dzn) = µ(dz1) . . . µ(dzn),

Rnµ(dνn) = Rµ(dν1) . . .Rµ(dνn).

We define a linear operator Cn mapping positive Borel functions f on M =
M(∂D) to functions on Dn by the formula

(4.1) Cnf(zn) =
∫
Mn

e−〈1,ν̄〉f(ν̄))Rnzn(dνn).
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Put

An(µ, f) =
∫
Cnf(zn)µn(dzn) =

∫
Mn

e−〈1,ν̄〉f(ν̄)Rnµ(dνn) for µ ∈Mc(D).

It follows from formula (3.6) in [Dyn04b, Chapter 5, p. 58] that

(4.2) Pµe
−〈1,XD〉f(XD) = c(µ)

∞∑
0

1
n!
An(µ, f).

4.2. We claim that, for every D̃ b D,

(4.3) Pµe
−〈1,XD〉f(XD) =

∞∑
n=0

1
n!
Pµ{XD = 0, An(XD̃, f)}.

Indeed, by the Markov property 1.2.A,

(4.4) Pµe
−〈1,XD〉f(XD) = PµPXD̃e

−〈1,XD〉f(XD).

By (4.2),

(4.5) PXD̃e
−〈1,XD〉f(XD) = c(XD̃)

∞∑
0

1
n!
AnD(XD̃, f).

By the Markov property and (3.4),

(4.6) Pµ{XD = 0, An(XD̃, f)} = Pµc(XD̃)An(XD̃, f)}.
Formula (4.3) follows from (4.4), (4.5) and (4.6).

4.3. Put

(4.7) Bn(F ) =
∫
F (zn)Xn

D̃
(dzn) for F ∈ B(Zn

D̃
).

It follows from Theorem 1.2 and Theorem 3.1 in [Dyn04b, Chapter 5] that,
for µ ∈Mc(D̃),

(4.8) Pµe
−〈Φ,XD̃〉Bn(F ) = e−〈VD̃(Φ),µ〉

∫
F (zn)ρµ(zn)γn(dzn)

if Φ ∈ B(∂D̃) is the subject to the condition r1 < Φ < r2 with 0 < r1 < r2 <
∞. Here ρµ is the function defined in Section 2 and γ is the surface area on
∂D̃ (as in Section 3.2).

Choose a constant λ > 0 and put Φ = VD(λ). By the Markov property
and (1.3),

Pµ{Bn(F )e−〈λ,XD〉} = Pµ{Bn(F )PXD̃e
−〈λ,XD〉}(4.9)

= Pµ{Bn(F )e−〈Φ,XD̃〉}

and VD̃(Φ) = Φ. By (4.8) and (4.9),

(4.10) Pµ{Bn(F )e−〈λ,XD〉} = e−〈Φ,µ〉
∫
F (zn)ρµ(zn)γn(dzn).
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Note that, as λ → ∞, Φ = VD(λ) tends to the minimal solution u of (1.14)
and therefore (4.10) implies

(4.11) Pµ{XD = 0, Bn(F )} = e−〈u,µ〉
∫
F (zn)ρµ(zn)γn(dzn).

By (4.1) and (4.7), An(XD̃, f) = Bn(Cnf). Thus (4.11), (4.1) and (3.6) imply

Pµ{XD = 0, An(XD̃, f)} = e−〈u,µ〉
∫
ZnS

e−〈1,ν̄〉f(ν̄)ρµ(zn)Qn(dzn, dνn)(4.12)

= e−〈u,µ〉
∫
ZnS

e−Nf(N)ρµdQn.

By (4.3), (4.12), (3.7) and (1.13),

Pµe
−〈1,XD〉f(XD) = ce−〈u,µ〉Pe−Nf(N)ρµ(4.13)

= ce−〈u,µ〉Pe−Nf(N)ϕµ(N),

where c = c(γ)−1. We obtain (1.15) by applying (4.13) to the function
f(ν)eν(M). �

5. Proof of Theorem 1.2

By (1.12),

(5.1)
∫
PD(µ, dν)f(ν) =

∫
PD(dν)f(ν)Hν

D(µ)

for all f ∈ B(M). It follows from (1.15) that

(5.2)
∫
PD(dν)f(ν)Hν

D(µ) = ce−u(a)
Pf(N)HN

D (µ)ϕa(N).

By (5.1), (1.15) and (5.2),

(5.3) e−〈u,µ〉Pf(N)ϕµ(N) = e−u(a)
Pf(N)HN

D (µ)ϕa(N).

By (1.15),
Pe−〈u,µ〉ϕµ(N) = c−1PD(µ,M) <∞.

Therefore (5.3) implies

(5.4) e−〈u,µ〉ϕµ(N) = e−u(a)HN
D (µ)ϕa(N) P-a.s..

Since N(ν) = ν on Z1
S and since the restriction of P to Z1

S is cQ(dz, dν) =
γ(dz)Rz(dν), we conclude from (5.4) that

(5.5) Hν
D(µ) = eu(a)−〈u,µ〉ϕµ(ν)

ϕa(ν)
Rγ-a.s.

We have
PD(A) = ce−u(a)

∫
A

ϕa(ν)Rγ(dν) = 0
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if Rγ(A) = 0. Hence (1.16) follows from (5.5). �
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