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EXTREMAL PROPERTIES OF HILBERT FUNCTIONS

VESSELIN GASHAROV

1. Introduction

Recently there has been a lot of interest in the extremal properties of Hilbert func-
tions. This subject is related to combinatorics, commutative algebra, and algebraic
geometry. It was founded by Macaulay [12] who gave a characterization of the Hilbert
functions of quotients of polynomial rings. His result can also be interpreted as a
characterization of the A-vectors of multicomplexes [15, §2.2]. Kruskal [11] and
Katona [10] characterized the f-vectors of simplicial complexes, or equivalently, the
Hilbert functions of quotients of exterior algebras. Gotzmann proved a Persistence
Theorem which states that an extremal (in the sense of Macaulay’s theorem) vector
space of homogeneous polynomials of degree d generates an extremal vector space in
degree d + 1 [6]. We will call such a vector space Gotzmann. Green [7] characterized
the Hilbert functions of rings obtained by moding out quotients of polynomial rings
with fixed Hilbert function by a general linear form. Recently, Aramova, Herzog,
and Hibi [1] proved a Persistence Theorem for exterior algebras.

In §2 we introduce some notation. In §3 we study Gotzmann vector spaces and
obtain:

e a Reverse Persistence Theorem similar to Gotzmann’s;

e a Persistence Theorem for vector spaces which are extremal in the sense of
Green'’s theorem;

e a structure theorem for Gotzmann vector spaces which generalizes structure
results of Green [7] and Bigatti-Geramita-Migliore [4].

Macaulay’s theorem can be stated in two equivalent ways: one is that for every
homogeneous ideal there is a lexicographic ideal with the same Hilbert function; the
other is numerical. The corresponding generalizations to modules over polynomial
rings however are not equivalent. Hulett [8, 9] and Pardue [13, 14] showed that for ev-
ery graded submodule of a free module over a polynomial ring there is a lexicographic
submodule with the same Hilbert function.

In §4 we give a numerical generalization of Macaulay’s theorem and general-
izations of Green’s and Gotzmann’s theorems for finitely generated modules over
polynomial rings. We also give generalizations of Kruskal-Katona’s theorem and
Aramova-Herzog-Hibi Persistence Theorem for finitely generated modules over ex-
terior algebras.
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EXTREMAL PROPERTIES OF HILBERT FUNCTIONS 613
2. Preliminaries

Let d and a be positive integers. Then there exist unique positive integers § =
8(a,d)and my,my_y,...,mssuchthat my > my_1 > --- > ms > 8 and

= md md_l oo ms
a-(d)+(d_1)+ +(6)' ¢))
We call (1) the d-binomial representation of a. Sometimes it will be inconvenient

to specify what the value of § is. For this reason we define the non-reduced d-
binomial representation of a to be

mq mg_y mi
o= (W) (@) e () @
wherem; =i —1for1 <i < 4§ — 1. If § = 1, then the d-binomial representation
and the reduced d-binomial representation of a coincide. Note that the m;’s satisfy
mg > mg—y > --- > m; > 0 and that this condition determines uniquely the non-
reduced d-binomial representation of a. Note also that even though 0 does not have
a d-binomial representation, it does have a non-reduced d-binomial representation,
namely 0 = (;") + (422) +-- - + (). Welet8(0, d) = oo. For fixed d the bijection
a < (myg,my_y,...,mp) is order-preserving, where the order on the left-hand side
is the usual order on the nonnegative integers and the order on the right-hand side is
the lexicographic order.
There are three operations on nonnegative integers which will be important for us.
If the non-reduced d-binomial representation of a is given by (2), then we set

@ _ [(ma+1 mg_1+1 my+1
a _(d+1)+( d +--+ 5 ,
myg — 1 my_) — 1 my — 1
om0 (7 ) ()
@ _ [ ™Md mg—1 my
= () (") o+ (3)

Itiseasy to verify thata < bisequivalenttoa'?) < b9 andimplies thatay < by).
In particular, a = b is equivalenttoa‘¥) = b'9). Note that we can define a'®), a4, and
a® in exactly the same way as above by using the (reduced) d-binomial representation
of a. Later we will need the following lemma which can be easily verified:

LEMMA 2.1. Ifthe d-binomial representation of a isa = ("f,” )+ ('Z"_‘ ! )+ (";”)
and§ = 1, then (a + 1)q) = ay + 1.
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Throughout this paper k£ will be a field, S = k[x, ..., x,] the polynomial ring
over k in the variables xy, ..., x,, and S; the degree i homogeneous component of
S. For a homogeneous ideal I € S we denote by I; the degree i component of /. If
V C 8y is a vector space, then we let §(V) = §(codim(V, S;), d). When there is no
danger of confusion we write codim V instead of codim(V, S;). We denote by (V)
the ideal generated by V.

Throughout x will be a general element of S;. Fixd and let V C S, be a subspace.
We denote by V' the image of V in § = §/(x). Following [7] we set

¢ = codim(V, S;), ¢, = codim(V,S,),

c1 = codim(V Sy, Sg41), €1,c = codim(V'S, Say1).

3. Gotzmann and Green vector spaces

By Macaulay’s Theorem [12] codim(V Sy, Sz41) < codim(V, §,)!/. We call
a vector space Gotzmann if equality holds. For such extremal space by Gotzmann
Persistence Theorem [6] we have that the spaces V' S; are Gotzmann as well. Similarly,
by Green’s Theorem [7], codim(V, S,;) < codim(V, S4) ) and we call a vector space
Green if equality holds.

THEOREM 3.1. Let V C S; be a Gotzmann vector space. Then we have:
1. V is a Green vector space;
2. V is Gotzmann;,

3.(VS1:x)=V;
4. (V:x)=(V:8D.

Proof. From the exact sequence
0—> (VS :x) > VS > VS -0

and the fact that dim S; = dim S;_; + dimS; we can conclude that ¢; = ¢, +
codim(V S| : x). Since V C (VS : x), it follows that

¢y =c1x+codim(VS):x) <cpx+codimV =c¢;, +c, 3)

s0 ¢; — ¢ < c| . Then from the assumption that V is Gotzmann and Macaulay’s and
Green’s theorems it follows that

(ca)@ =c —c=ci—c<crx <) < (ca)®, 4

so all inequalities in (4) must be equalities, and in particular (c,) = (c(4)'?. This
implies that ¢, = c(), so V is a Green vector space. It also follows from (4) that
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crx = ()@, ie., VisGotzmann. Wealsohave thatc; = c¢; ,+c, so the inequality in
(3) is an equality, hence (V S; : x) = V. Since ((V : x)Sp)x = ((V : x)x)S; € VS,
we have that (V : x)S; € (VS : x) = V. Therefore (V : x) € (V : §y), but we
always have that (V : S)) C (V:x),so(V:x)=(V:8). 0O

Remark 3.2. 1t can be shown that if I is a homogeneous saturated ideal in §
generated in degrees < d and I; is Gotzmann, then a linear form is general in the
sense of Theorem 3.1 exactly when it is a nonzerodivisor on the ring S/1. This shows
that a result due to Bigatti, Geramita, and Migliore [4, Lemma 1.1] is equivalent to
Theorem 3.1 (2). Moreover, they also noticed [4, Remark 1.2] that ¢;, = c1(g41),
which is a corollary to Theorem 3.1 (1).

Remark 3.3. It should be noted that not every Green vector space is Gotzmann.
Take for example V = span{x?, y?} C k[x, yl,. Thenc = 1 and ¢, = 0 = cpp), 50
V is a Green vector space, butc; = 0 S ¢ = 1, so V is not Gotzmann. It is also

interesting to note that in this example V does not satisfy the conclusions (3) and (4)
of Theorem 3.1.

THEOREM 3.4 (Reverse Persistence Theorem). Let V C S, be a Gotzmann vector

space and let the d-binomial representation of ¢ be ¢ = (":,") + () 4+ (”;‘)

withd > 1. Then V = (V : $1)8; and (V Sl) is a Gotzmann vector space with
codim(V : §;) = (%) + (") + -+ (5.

Proof. From the exact sequence
0—>(V:x)—x> V>V->0
and Theorem 3.1 it follows that

codim(V : x) = c—c¢y =c¢ —c

[C) (@)= ()]
_[(mdd—1>+(m«(:ll_ )+ +( 3"1)]
(7o) (i) (G0 o

The last expression is the (d — 1)-binomial representation of codim(V : x), because
8 > 1. From Macaulay’s theorem and (5) it follows that

_ [(Mma mqg—_1 o .
_(d)+(d 1)+ +<8)_c—cod1mV.

codim(V : x)S; < (codim(V : x))¥ ™V = (¢ — ¢,)¥4 7"
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Applying Theorem 3.1 we see that (V : x) = (V : §;), hence (V : x)S; = (V :
$1)S; € V. Thus codim(V : x)S; > codim V, hence codim(V : x)S; = codim V.
Therefore (V : $1)S1 = (V : x)8; = V. Then codim(V : §;)8; = codimV =
(codim(V : $;))“~1, so (V : §y) is a Gotzmann vector space. [J

The following theorem is an analog of Gotzmann Persistence Theorem for restric-
tions to general hyperplanes.

THEOREM 3.5. Let V C S; be a Green vector space and the d-binomial repre-
sentation of c be ¢ = Y+ () + e+ () 8= 20r8 =1 and my # 1, then
V is also a Green vector space. Moreover, if y is a general element of Sy and y is
any preimage of y in Sy, then (V :y) = (V : y).

Proof. LetV be the image of V in S; = (S/(x, y))4 and ¢y = codim(V, ).
Consider the exact sequences

0> (V:x)>V->V—>0 and 0»(7:7)17—»%—-»0

We have that

cay = ¢ = codimV = codimV + codim(V : ¥) = cry +codim(V :y)  (6)

Cx,y < (Cx)ia) = (Ca))a)- @)

Also (V :y) € (V : ¥) and codim(V : y) = codim(V : x) (because x and y are
general), so

codim(V : y) < codim (V : y) < (codim(V : ¥))(4—1)
(codim(V : x))(g-1) = (¢ — cx)a-1y = (¢ — c@)a-1- (8)

It follows from (6), (7), and (8) that
cy = ¢x = Cxy +codim(V 1 §) < (cia))iay + (€ — cay)id—1y = Ciay-

Therefore all inequalities in (7) and (8) must be equalities, which completes the proof.
O

The next example shows that it is necessary to assume thatm; s 1in Theorem 3.5.
Example 3.6. Letn > 4 and consider the vector space

V= span(x‘{,xg, .. .,x,‘f_,) C k[x1, X2, ..., Xnla-
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After a change of variables we can assume that

V = span(x{, x4, ..., x?_)) C klx1, x2, ..., Xp—1]a-

We can also assume that y = x,,_| — Z:’;f a;Xxi, SO

_ n-2 d
V =span | x{,x3,...,X,_,, E a;x; C klx1,x2, ..., Xp-214.

i=1

Since the a;’s are general, we see that dim ? =n—1.WealsohavedimV = dimV =
n—1,so

—codimv = ("t4-2 n+d-3 n 1
c—codlmV—( d )+( d—1 )+...+(2)+(1),
. = _ (n+d-3 n+d—-4 n—1
cx—codlmV—( d )+( d—1 )+...+( ) ),

cx,y=codim?=(”+Z“4)+(”Zf;5)+---+(";2)—1.

Therefore my = 1, cx = cy, and ¢,y = (cx) (@) — 1 # (cx)a), s0 this is a coun-
terexample to the first part of Theorem 3.5 without the hypothesis m; # 1. To get
a counterexample to the second part, consider V = span(xj‘ ) C k[x1, x2]a. Then
c=")-1=@+¢ED++().som =1and (V:y) =0, so
Vv: y) = 0. We have that V = span(z%) = k[z]q, where 7 is an indeterminate, so
(V:y) =klzla-1 # (Vi y).

and

LEMMA 3.7. Let V C S; be a Gotzmann vector space and the d-binomial rep-
resentation of ¢ be ¢ = (") + () + o+ () withs = 20r 8 = 1 and my # 1.
Then (V : S1) = (V : 81) and (V : S)) is a Green vector space.

Proof. Lety andc, ,beasin Theorem 3.5. By Theorem 3.1, V is a Green vector
space, so by Theorem 3.5 we have that V is a Green vector space, i.e., Cx,y = (Cx)(4)-

If § > 2, apply Theorem 3.4. Now let§ = 1. By Theorem 3.1, (V : $)) = (V : x)
and (V : §)) = (V :9),s0

codim(V :S) =c—c¢, = (":id—_11> + (m"d‘l_; 1) 4+ (mzl_ 1) +1 and

codim(V . El) = Cx —Cx,y = C(d) — (C(d))(d)

_ md—2 md-|—2 m2—2
= (D) () (M)
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Using the fact that (V : S;) 2 (V : §;) and Lemma 2.1 we conclude that
codim(V : §1) < codim (V : §1) < (codim(V : 81)) -1y

_ (mg—2 my_1—2 my, —2
= (00 (2w () 1
= codim(V : §)).

Therefore codim(V : §;) = codim (V : §;) = (codim(V : $1)) -1y, so (V : §) =
(V : 81) and (V : S)) is a Green vector space. O

It is natural to ask whether we can say something about the structure of Gotzmann
vector spaces. It was proved by Gotzmann in [6] that any homogeneous ideal I C §
has Hilbert polynomial of the form

P ® = (alaTI)+(a2+t—1)+"'+(as+t_(s_1))’ ©)

a as

where a; > a; > --- > 0. This implies that I, is Gotzmann for e > 0. So we
cannot hope to say much about the structure of arbitrary Gotzmann vector spaces
V. However, in some cases the d-binomial representation of codim V determines the
structure of V. One such case is treated in Theorem 3.8 below which was first proved
by Green [7, Theorem 3] and was later given a different proof by Bigatti, Geramita,
and Migliore [4, Lemma 3.1].

THEOREM 3.8. LetV C S, be a Green vector space and I the saturation of (V).
Ifc= ("’Id) for some m > —1, then I is generated by n — m — 1 linear forms, so in
particular V is Gotzmann.

It is not hard to see that if V C S, is a vector space and 4 # 0 a homogeneous
form, then V is Gotzmann if and only if 2V is. A vector space V C S, is called
reduced if there is no vector space V #0anda homogeneous form A # 0 of degree
> 1 such that V. = AV. So to study the structure of Gotzmann vector spaces it is
enough to consider reduced vector spaces. The following theorem follows from [4,
Proposition 2.7].

THEOREM 3.9. Let V C S; be a Gotzmann vector space of dimV > 2. Then V
is reduced if and only if dim V > dim S;_;.

Now let I be a homogeneous ideal whose Hilbert polynomial is given by (9) and
r = r(I) be the least integer such that I, is Gotzmann for all e > r. If I is saturated,
then by Gotzmann Persistence Theorem [6] and Theorem 3.4 it follows that r = s
and I is the saturation of (/,). In particular, the r-binomial representation of codim 7,

is
codim1,=(al+r)+(a2+r_1)+~--+(a’+l),
r r—1 1
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s0 8(1,) = 1. Thus there is a one-to-one correspondence between saturated homoge-
neous ideals / and Gotzmann vector spaces V with §(V) = 1. Namely, I corresponds
to 1,1y and V corresponds to the saturation of (V).

Next we give a structure result about saturated homogeneous ideals, which by
the discussion above can be interpreted as a structure result about Gotzmann vector
spaces.

THEOREM 3.10. Let I be a homogeneous saturated ideal in S. Then the Hilbert
polynomial of S/1 has the form Ps;(t) = (a:-t) + (a+;—1) Tt (a+t—‘fd—2)) +
() witha > b > 1ifand only ifdim I = n — a — 2 and one of the following
is satisfied:

1. a > b and there exist a vector space W C Sy with I, N W = 0 and an element
he€ Sy—1\ (I1)g—1 such thatdimW =a — b+ land I = (I}) + (hW).
2. a = b and there exists an element f € Sy \ (I1)q such that I = (1)) + (f).

Proof. The “if” part is easy to prove. To prove the “only if” part, note that
r(I) = d, so I is a Gotzmann vector space with

. - 1
codim I; = (a-;—d)+(a+z 1)+...+(a:2)+(b';; )
a+d at+d-—1 a+2 b+1
() (G5 ) e (37) < (7).

Since [ is saturated, this implies that I;—; = (I; : S1). By Theorem 3.1, (I; :
S1) = (I; : x), so from the exact sequence 0 — (I : x) 5 I; — T; — 0 we get
codim I;—; = codim I; — codim I;. By Theorem 3.1 codim I; = (codim I;)4), S0
codim I;_; = codim I;—(codim 1)) = “jd_fl)+(“:‘i'2'2)+- . ‘+(‘”1'1)+1 = (‘;t‘f)
By Lemma 3.7, 1;_, is a Green vector space, so, by Theorem 3.8, 1;_; is Gotzmann
and I is spanned by n — a — 2 linear forms. Then

Il

codim ;1§ = (codim I;_1)"" " = (a +Z + 1)

and

dimIl; —diml; 1Sy =a—-b+ 1.

We can assume without loss of generality that I is spanned by x,4+3, Xg+4, - - . , Xn.
Then we can write I; = I;_1S; ® K, where K is a vector subspace of k[x], x, ...,
Xa+2]q of dimension a — b + 1. If a = b, then X is spanned by a single element f €
Sa\(I1)4 and we are done. Ifa > b, then let L be any subspace of k[x, x3, ..., Xs42]4
of dimension a — b + 1. Then

(Ia-1SD)SI N LS,

(xa+3’ Xa+dy o xn)d+1 N LS] = L(xa+3’ Xa+ds -« x,,)1
= LX443® Lxg44 ® --- D Lx,,.
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Hence dim[(/4—1$1)S1NLSil=(n—a—-2)dimL=(n—a—-2)a—b+1),s0

dim[(1;_, 51 & L)S1] = dim[(I4-151)S1 + LS;]
= dim(/y-181)S8; + dim LS, — dim[(/;-;51)S; N LS;]

amis+ (19)- (1477)

—(m—-a—-2)a->b+1

and we can conclude that dim[(/;—1S; @ L)S;] — dim LS; does not depend on the
choice of L. If L is generated by a lex-segment in k[xy, x2, ..., Xo4+2]q, then I;_; $1 ®
L is generated by a lex-segment in k[x1, x2, ..., x,)g (Weorder x,43 < Xg44 < -+ <
Xp < X1 < X3 <+ < Xqy2), thus Iy S} @ L is Gotzmann. Since I;_1 S ® K = I,
is Gotzmann, it follows that

dim[(1;-1 8, & L)S1] = dim[(/z—1 1 ® K)S1],

so dim LS; = dim K S;. But L is Gotzmann, so K is Gotzmann.

SincedmK =a—-b+1and2 <a-b+4+1 < n = dimS, it follows by
Theorem 3.9 that there exists a subspace W in k[xj, x3, ..., Xs42]) with dimW =
a— b+ 1and an element & € k[xy, x2, ..., Xs42]u—1 such that K = hW. Then
I = (X443, X4 ..., X)) + (BW) = (I)) + (hW). O

Green proved the special case a = b = 1 of Theorem 3.10 in [7, Theorem 4]
and Bigatti, Geramita, and Migliore proved the more general special case a = b in
[4, Corollary 3.2]. Theorem 3.10 shows that in suitable coordinates I is “almost”
lexicographic. Itis also clear that the generic initial ideal of I, gin(7), is lexicographic:

COROLLARY 3.11. IfI is as in Theorem 3.10, then gin(I) is lexicographic.

Remark3.12. If V C S, is a Gotzmann vector space, then the saturation of the
ideal generated by V satisfies the hypothesis of Theorem 3.10, so the structure of
Gotzmann vector subspaces of S, is completely determined by Theorem 3.10. Also,
by Theorem 3.9, a Gotzmann vector space V with dimV < dim S, = (*}") has the
form V = hW, where h is a homogeneous form and W is a subspace of S, for some

e € {0, 1,2}. Thus, Theorem 3.10 also determines the structure of any Gotzmann
vector space of dimension < ("'2”).

4. Hilbert functions of modules

Here we generalize Macaulay’s Theorem [12], Green’s theorem [7] and Gotzmann
Persistence Theorem [6] for S-modules. We also give generalizations of Kruskal-
Katona’s Theorem [10, 11] and the Persistence Theorem of Aramova-Herzog-Hibi
[1] for modules over an exterior algebra.
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Remark 4.1. Hulett [8], [9] and Pardue [13], [14] generalized Macaulay’s The-
orem as follows: if F is a finitely generated free S-module and V, L C F, vector
spaces of the same dimension such that L is generated by an initial lex-segment,
then codim(V Sy, Fy41) < codim(LS), Fy41). However, unlike the ideal case, we
no longer have codim(LS;, Fz41) = codim(L, F;) when L C F, is generated
by an initial lex-segment. Take for example § = k[x], F = S&® S,d = 1, and
L = 0 C Fy. Then codim(LS, F,) = 2 $ codim(L, F))" = 3. Nevertheless,
there exists a numerical generalization of Macaulay’s theorem for S-modules which
we give in part 2 of the next theorem.

THEOREM 4.2. Let S = kl[x|,...,x,) and F = S& + --- + S&, be a finitely
generated free S-module. Let N C F be a graded submodule, | = max{degé; |i =
1,...,v},and M = F/N. Let x be a general element in S, S = S§/(x), and
M = F/(N + xF). Then for any pair (p, d) such that p > Oandd > p +1+ 1 we
have:

1. dimﬁd < (dim Md)(d—l—p);

2. dim Mgy, < (dim My)4-1-p);

3. If N is generated in degrees < d and dim My, = (dim M;)%~=P, then
dim M;,; = (dim Md+])(d+l—l~p>.

Note that Theorem 4.2 (2) implies that for any p > O there exists a number
D = D(p) such that dim M, = (dim M,;)*~'~P) whenever d > D. To see why
this is true, set hy = dim Mgy p, S0 hgyy < hf,‘”. There exists a polynomial ring
P and a lexicographic ideal L € P such that dim(P/L); = hy. If D is the largest
degree of a minimal generator of L, then dim(P/L)441 = (dim(P/L)4)¥ for any
d>D.

THEOREM 4.3, Let F = E& +- - -+ E&, be a finitely generated free module over
anexterior algebra E andlet N C F be a graded submodule. Letl = max{degé; |i =
1,...,vland M = F/N. Thenfor any pair (p, d) suchthat p > 0Oandd = p+1+1
we have:

1. dim M;4; < (dim Md)(d_l"p);
2. If N is generated in degrees < d and dim My, = (dim My)“~'=P), then
dim Md+2 = (dim Md+l)(d+1—l_P)‘

We will omit the proof of Theorem 4.3 because it is similar to that of Theorem 4.2.
To prove the latter theorem we need some preliminary results.

LEMMA 4.4. Leta,b > 0andd > 1 be integers. Then:

1. ayy + by < (@+b)u;
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a' + b < (a + b)),
a + b9 < (@ +b)?;
Ifa? + b = (a + b)), then (a'D)@+D) 4 (pd)d+l) = (gid) 4 pld)yid+D),
. Ifa(d) + b = (a+ b)(d), then (a(d))(d+1) + (b(d))(d+l) — (a(d) + b(d))(d+l)_

hoA W

Proof. LetS = k[x,, x,,...1, T = k[y1, 2, ...] be polynomial ringsand I C S,
J < T homogeneous lex-segment ideals generated in degree d such that Hs/;(d) = a
and Hy/;(d) = b, where Hs;; and Hr,; are the Hilbert functions of S/I and T/J

respectively. Then Hg;;(d + 1) = @), Hr/;(d + 1) = b'¥), Hs5(d) = a), and

Hf/y(d) = by, where S = §/(x), I=1+ (x)/(x) for some general element x € S;
and similarly for T and J. Let U = k[x, X2, ..., Y1, ¥2,...] and K be the ideal of
U generated by the elements of 7, J, and all monomials of the form x;y;. Then

WU/K)n =(S/Dn @ (T/J)n forn = 1,
SO

Hy/x(n) = Hg;;(n) + Hryy(n) forn > 1.

Let z = > a;x; + ) B;y; be a general element in U; and let x = Y a;x; and
y = Y_Bjy;. (Then x is a general element in S; and y is a general element in Ty.)
For d > 1 we have the following sequence of maps of k-vector spaces:

U/(K, D)a 2> U)K, x, y)a 5> (S/Ux)a @ T/ y)ar (10)

where ¢ is a surjection and ¢ is an isomorphism. Also ¢ is an isomorphism ford > 2.
Since I € S and J C T are lex-segment ideals generated in degree d, we have

aqy = dim(S/(I, x))a, by =dim(T/(J, y))4,
a'? = dim(S/1)g441, and b9 = dim(T/J)g41.

So from (10) and Green’s theorem [7] we get

awy +bay = dim(S/(1, x))q + dim(T/(J, y))q = dimU/(K, x, ¥))a
< dim(U/(K, 2))q < (dim(U/K)a) gy = (Hy/x (d))(a)
(Hs;1(d) + Hryy(d)) gy = (@ + b) ay. 11

This proves part (1) of Lemma 4.4. To prove part (2), note that

a + b = Hg/i(d + 1)+ Hryy(d + 1) = Hy/x(d + 1)
< (Hyx(@)“ = (a +b)". (12)

To prove part (4), note that the equality a‘?’ + b = (a + b)) implies that the
inequality in (12) is an equality, so

Hyx @+ 1) = (Hy/x ().
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Since K is generated in degrees < d we can apply the Gotzmann Persistence Theorem
and conclude that Hy,k (d + 2) = (Hy kx(d + 1))“+!. Hence

@D + @Y = Hy;i(d +2) + Hr)s(d +2) = Hyx(d +2)
= (Hy/x(d + 1) = @@ + p @)D,

To prove (3) and (5) we replace the polynomial rings § = k[x;, x2,...]Jand T =
k[y1, y2, . . .] by the exterior algebras on the x’s and on the y’s respectively and argue
exactly as in the proofs of (2) and (4). O

LEMMA 4.5. Foranya > Qandd > 1 we have:

Ad+1y = Ay
ald+l) < gld).

Fal9th = g @) then (al4+1)Wd+2) — (g(d))@+1),
a@+D < g@.

CIfa¥tD = g@ ] then (q@+D)@+D — (g@)@+D,

e

Proof. By induction on g and d.
For a = 0 the lemma is obvious. Now we will prove parts (1) and (2) fora > 0.

Firstletd = 1 and leta = ("22) + ("1') be the (possibly non-reduced) 2-binomial
representation of a. Note that k; > 2 since a > 0. We have

ky—1 ky—1, ifkg>1
a(1)=(‘11)m=a_1 and a<2>=( 22 )+[01 ;fk:=0.

Hence

ky —1 0, ifk; > 1

ky — 1 2-1\ , _
CORRGIRE

which proves part (1) when d = 1. Now assume we have already proved that
b? < bV forb < a. Itiseasytoseethatap, < a, sothe inductive hypothesis implies
that (a(z))(Z) < (a(z))(]). We already pI'OVed that apy < aqy, SO (a(z))(l) < (a(l))“).
Since a® = (ap))® +a and a” = (ayy)? + a it follows that a® < a‘! which
proves part (2).

Now letd > 2 and a > 1. Assume we have already proved that by < b4y and
b < =D for any b, and (441, < by and b+ < b for b < a. Let

o= () (B e () = () + (5) ++ (4)

\%
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be the d and (d + 1)-binomial representations of a. If b = a —ayy andc = a —ay41),
then

_(ka—1 kg1 —1 ks — 1

o= (520 (G ) o (52

_flar1—1 Iy—1 1, -1

o= () (E) (o)

(These expressions are not necessarily the (d — 1) and d-binomial representations of
b and c respectively.) To prove that a4, 1) < a(g it is equivalent to prove that b < c.
Assume that on the contrary, b > c. We consider 4 cases:

Casel. §>2,y >2. Inthiscasea = b1 = ¢9) butb > c, so the induction
hypothesis implies that a = b¢~1 > ¢@=1) > ¢ = g which is a contradiction.

Case2. & =1,y > 2. In this case we have thatb — 1 > ¢, so
kq ka1 k2 _ 0 \d-1) o d-1) o ) _
a>(d)+(d_1)+~--+(2)—(b 1)) zc >2c% =a,
which is a contradiction.

Case3. §>2,y = 1. In this case

()
lavi— 1\ [l —1 I —1
— pld=1) {d-1) @ _ | [ta+1 d 2
= () () o+ (B - +1>a
d+1 d 2 ’

which is a contradiction.

Case4. § =1,y = 1. In this case

kq ka_ k2 _ 1 1y@-D o -1 o d)
a>(d)+(d_l)+~'+(2)—(b 1)) >c >c

o law Iy 173 _
() (5) ot (B) a5

which is a contradiction.

This proves part (1) of Lemma 4.5 for all @ and d. Now we will prove part (2).
Assume that we have already proved part (2) for all integers < a. It is not hard to
see that a4y < a for all a > 0, so by the induction hypothesis we have (a4))“*! <
(a(ay)'@. It follows from part (1) that ajz4+1) < aa), S0

a“"t = (@41 +a < (@) +a < (@) +a=a", (13)
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which proves Lemma 4.5 (2). Now we will prove part (3) for a > 0. This is clear for
a = 1 and d arbitrary. Now letd = 1, so a!’’ = a/®. Then all inequalities in (13)
are equalities and in particular (a;2))® = (a(1,)®. This implies that a(y = a and
an easy calculation shows that this in turn implies that a = 0 or 1, so we are done in
this case. Now letd > 2 and a > 1. We have

Y+ = g+

(@@d+1) —a=a"—a=(au)?

and by Lemma 4.5 (1) and (2) we also have that (a(4+1))“ ™" < (@4+1))?9 < (a@))®.
Hence

D = (@) = (@),

The second of these equalities (as well as (13)) implies that a1y = a4, while the
first implies by induction on a that

(a@+1)

(@@sn) D = (@@en) ) = (@)D,
Since (a1t = (@“9*) 41 and (aa)) @ = (@) 441y, We get

(a(d+l))(d+2) — ((a(d+l))(d+2))(d+2) +a(d+l) = ((a(d+l))(d+l))(d+2) +a(d+l)
— ((a(d))(d))(dH) 4 gldth = ((a(d))(d+l))(d+1) +a'¥ = (a(d))(d+l).

Parts (4) and (5) follow from (2) and (3) and the facts that a® = a'¥) — g and
@)@+ = (y@+) 2@ 4 g O

In [1], Aramova, Herzog, and Hibi developed Grobner basis theory for exterior
algebras. They showed that with minor modifications Grobner basis theory known
from polynomial rings carries over. So in what follows we will let R be the polynomial
ring S or the exterior algebra E on x, ..., x,. We will freely cite results proved only
in the case of polynomial rings, since the proofs in the case of exterior algebras
are identical. We extend the definition of a Gotzmann vector space given in §2 to
subspaces of E: A vector space V C E, is called Gotzmann, if codim(V Ey, Eg4)) =
codim(V, E4)@. We use the term syzygies to denote a minimal set of generators for
the first syzygy module.

LEMMA 4.6. Let V C R, be a Gotzmann vector space. Let I = (V) and
J = in(I). Suppose that g1, ..., g is a basis for V = 1; such that the syzygies on
in(gy), ..., in(g,) are linear. Then the syzygies on g\, ..., g, are linear.

Proof. As J; is a Gotzmann vector space, J is generated by in(g), ..., in(g,).
Thus the syzygies of J are linear.

Let w = (wy, ..., w,) be a weight vector such that in(/) = in, (/). We add a
new variable ¢ and homogenize I with respect to w, as in [5, p.343]. We denote by
I the ideal obtained in this way. By [5, §15.17] we have that R[¢]/] is a flat family
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over k[t] whose fiber over 0 is R/J. Therefore the syzygies of I over R[] are linear
inxy, ..., x,. They provide a (non-minimal) generating set of syzygies when we set
t = 1. The fiber of R[¢]/I over 1 is R/I, hence the syzygies of I over R are linear.

a

PROPOSITION 4.7. Let V C R, be a Gotzmann vector space. If gy, ..., 8, is a
basis for V , then the syzygies on gy, . .., g, are linear.

Proof. LetI = (V) and J = gin(J), where gin(/) denotes the generic initial
ideal of I. Assume that we are in general coordinates, so that gin(/) = in(/). We
have that J; is Gotzmann and is generated by in(gy), ..., in(g,). The ideal J is
generated by J,; this follows from Gotzmann and Aramova-Herzog-Hibi Persistence
Theorems. If R is an exterior algebra or char(k) = O, then J is a strongly stable
ideal ([1], [5, Ch. 15]). So the syzygies on in(g)), ..., in(g,) are linear. Applying
Lemma 4.6, we get that the syzygies on gy, ..., g, are linear.

It remains to consider the case when R is a polynomial ring and char(k) # O.
Following [1], let inm(g;) be the monomial such that in(g;) = «;inm(g;) for some
a; € k. Theninm(g,), ..., inm(g,) form abasis of J;. We will show that the syzygies
on the inm(g;)’s are linear. Since the syzygies on the inm(g;)’s do not depend on k [2,
Corollary 5.3], [3, Theorem 1.3 (b)], we can replace k with any field of characteristic
0. By the first part of the proof we have that the syzygies on the inm(g;)’s are linear.
This implies that the syzygies on the in(g;)’s are linear, so by Lemma 4.6 the syzygies
on the g;’s are linear. 0O

We are ready to prove Theorem 4.2. One of the steps in the proof of Theorem 4.2 (3)
is to show that we can assume that the module M has the form (14). In this step we

use ideas from Bigatti’s dissertation 1995 which were also used by Aramova, Herzog,
and Hibi [1].

Proof of Theorem 4.2.  First we will show that it is enough to assume that M has
the form

M = (S/1)§ & (S/12)6 @ - -- & (§/ L), (14)

where I, I, ..., I are ideals in S. That we can make this assumption with respect
to parts (1) and (2) of Theorem 4.2 follows from the Hulett-Pardue theorem [8], [9],
[13], [14]. However, there is a very simple direct proof, so we present it here. Define
a partial order > on the elements of F of the form fe; (where 0 # f € S) as follows:

fei > gejiffi < j.
For a nonzero element r = ) .., fie; define the initial form of r with respect

to >, in,(r), to be fjej, where j = min{i | f; # 0}. For any x € §, we
have in, (N; N xF,;_;) € in(N)g N xFy_y, so dim(N; N xF,;_;) = dim(in, (Ngy N
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xF;_1)) < dim(in,. (N)4 N x F4_;). This implies that dim N; > dim(in, (N),). Let
M’ = F/in, (N). For any d we have dim M = dim M, and from the above discus-
sion it also follows that dim ﬁ; > dim My, so to prove Theorem 4.2 (1) and (2) we
can replace M by M’ and assume that M has the desired form (14).

Now assume that the hypothesis of Theorem 4.2 (3) is satisfied. Let >pex denote
the homogeneous lexicographic order on monomials in S. Define the homogeneous
lexicographic order > on monomials in F to be the lexicographic product of > and
>hlex> 1.€.,

me; > nejifi < jori=jandm >pex 1t

Let N = in. (N) = IVE, @ 1?6 - - - @ I®E, where the IU)’s are monomlal ideals
in S The hypothes1s of Theorem 4.2 (3) implies that for 1 < j <k, Id_deg g4l =

1y e deg g, S1and 1Y i dcg g S Sd—degs; is a Gotzmann vector space. Then Proposition 4.7
1mp11es thatif g, ..., g, form a basis of N, then the syzygies on in(g;), ..., in(g,)
are linear. For 1 < i, j < r let m;; = in(g;)/GCD(in(g;), in(g;)) andfor 1 <i <
J < r let h;; be the remainder of mj;g; — m;;g; with respect to g1, ..., g- when we
perform the division algorithm [5, 15.6 and 15.7]. Then degh;; = d + 1 whenever
hij # 0. Butin(h;;) is a minimal generator of in.. (N) when A;; # 0 and in, (N)
does not have minimal generators in degree d + 1, so all #;; = 0. By the Buchberger
criterion [5, Theorem 15.8] this implies that the g;’s form a Grobner basis for N,
hence the in(g;)’s generate in.. (N). This shows that to prove Theorem 4.2 (3) we can
replace M by F/in. (N) and thus assume that M has the form (14).

Let Hj(n) = Hg/1,(n) be the Hilbert function of S/1; and H (n) = Hg / T (n) be

the Hilbert function of §/T;, where 7 is the image of  in S. Leta; = deg&;. We can
assume without loss of generality thata; =0 >a; > a3 > --- > a;. Thenl =0
and for any n > 0,

k k
dim M, =) dim(S/I))n—q, = »_ Hj(n —a;) and
j=1 Jj=1

dim M, Zdlm(S/I Yna) = Z H;(n — a;).

1_
By Green’s theorem [7], Lemma 4.5 (1), and Lemma 4.4 (1) it follows that

k

k k
dimM, = Z ~a)) <) Hj(d ~a)u-ap < ) Hjd — a))uap)
j=1 Jj=1

J=

k
(Z (d—a,) = (dim My)u—p).,

(d-p)

IA
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which proves part (1) of Theorem 4.2. By Macaulay’s theorem [12], Lemma4.5 (2),
and Lemma 4.4 (2) it follows that

k k k
dimMgy = ) Hid+1-a) <) Hd—a) <3 Hid-a)?
j=1 Jj=1 Jj=1
k (d—p)
< (Z Hj(d — aj)) = (dim My)""P, (15)
j=1

which proves part (2) of Theorem 4.2.

To prove part (3) note that dim M, ; = (dim M,)'¢~?) implies that all inequalities
in (15) are equalities. Thenfor1 < j < k wehave H;(d+1—a;) = Hj(d—a;)""% =
H;j(d — a;)!%~P), so by the Gotzmann Persistence Theorem [6] and Lemma 4.5 (3) it
follows that H;(d +2 —a;) = (Hj(d —a;)4~%))¥4+1=%) = (H;(d —a;)¢~P))ld+1-p),
Applying Lemma 4.4 (4) we get

k k
dim Mg,, = Z Hid+2—-a;) = Z(Hj(d — q;)4-P)yld+i-p
Jj=1 j=I1

k (d+1-p)
= ( Hj(d - aj)(d_p)> = (dim My41)*'77,
j=i

which proves Theorem 4.2 (3). O
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