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A GAUSSIAN AVERAGE PROPERTY OF BANACH SPACES

EG. CASAZZA AND N.J. NIELSEN

Introduction

In this paper we introduce a Gaussian average property, abbreviated GAP. A
Banach space X is said to have GAP if there is a constant K so that (T) _< KTtl (T*)
for every finite rank operator from 2 to X. Here (T) denotes the e-norm defined by
Linde and Pietsch [7]; see also N. Tomczak-Jaegermann 13].
We investigate this property in detail and establish that a large class of Banach

spaces have it. It turns out that every Banach space which is either of type 2 or is
isomorphic to a subspace of a Banach lattice of finite cotype has GAP and so does a
Banach space of finite cotype which has the Gordon-Lewis property GL2 with respect
to Hilbert spaces.
GAP and GL2 are closely related, and this enables us to obtain some results on

GL2 by investigating GAP. We prove for example, that GAP and GL2 are equivalent
properties for cotype 2 spaces and that a K-convex Banach space X has GL2 if and
only if both X and X* have GAP. It also turns out that if a space X is of finite cotype
and X* has GAP, then X is K-convex.
We also prove that GAP gives rise to some extension theorems of operators with

range in a Hilbert space. We prove for example, that ifX has GAP, then every operator
from a subspace of X into a Hilbert space, which factors through L1, extends to an
L -factorable operator defined on X. Further, if the dual of a subspace E of a finite
cotype Banach space X has GAP, then every absolutely summing operator from E
to a Hilbert space extends to an absolutely summing operator defined on X. If X*
has GAP then the other direction is true for all subspaces E of X. This implies that
if X is a Banach space of finite cotype with GL2 then a subspace E has GL2 if and
only if every 1-summing operator from E to a Hilbert space extends to a 1-summing
operator defined on X.
We now wish to discuss the arrangement and contents of the paper in greater detail.
In Section we prove the major results on GAP mentioned above. One of the

main tools for obtaining these is the duality theorem 1.7 which also relates GAP
to K-convexity. We provide several examples of Banach spaces with a reasonable
structure which fail GAP. At the end of the section it is shown that the gE-sum of
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a sequence of Banach spaces with uniformly bounded GAP-constants (respectively
uniformly bounded GL2-constants) has GAP (respectively GL2). This is obtained
from an inequality for p-summing operators defined on an e2-sum of a sequence of
Banach spaces with values in a Hilbert space (Theorem 1.18), which turns out to have
applications also outside the scope of this paper.

Section 2 is devoted to the extension theorems mentioned above.

O. Notation and preliminaries

In this paper we shall use the notation and terminology commonly used in Banach
space theory, as it appears in [8], [9] and [13].

If X and Y are Banach spaces, B(X, Y) (B(X) B(X, X)) denotes the space of
bounded linear operators from X to Y. Further, if < p < o we let lip(X, Y)
denote the space of p-summing operators from X to Y equipped with the p-summing
norm rp. We recall that an operator T B(X, Y) is said to factor through Lp if it
admits a factorization T BA, where A . B(X, Lp(v)) and B B(Lp(v), Y) for
some measure v and we denote the space of all operators which factor through Lp by
Up(X, Y). If T Ip(X, Y) then we define

,p (T) inf{ AII II B T BA, A and B as above}.

Vp is a norm on Ip(X, Y) turning it into a Banach space.
Throughout the paper we shall identify the tensor product X (R) with the space

of to*-continuous finite rank operators from X* to in the canonical manner.
We let (gn) denote a sequence ofindependent standard Gaussian variables on a fixed

probability space (, S,/z) andwe let G(X) denote the closureof{E=I gjxj n
_
1

Xj X, < j < n} in L2(/z, X). Further, we let (en) denote the unit vector basis of

If n I1 and T B(e, X) then, following [13], we define the e-norm of T by

e(T) .=l gj(t)Tej dlz(t)

More generally, if T B(e2, X), we call T an e-operator if En__l gn Ten converges
in L2(/z, X) and we put

e(T) gn(t)Ten
n=l

dlz(t)

We also need some notation on operators with ranges in a Banach lattice. Recall
that if E is a Banach space and X is a Banach lattice, then an operator T B(E, X)
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is called order bounded (e.g., see 12] and [3]), if there exists a z X, z > 0 so that

ITxl Ilxllz for allx E (0.1)

and the order bounded norm T IIm is defined by

IITIIm inf{llzll z can be used in (0.1)}. (0.2)

/3(E, X) denotes the Banach space of all order bounded operators from E to X
equipped with the norm I1" IIm.
A Banach space X is said to have the Gordon-Lewis property (abbreviated GL) [2]

if every 1-summing operator from X to an arbitrary Banach space Y factors through
L. It is readily verified that X has GL, if and only if there is a constant K so that, (T) < Kzr (T) for every Banach space Y and every T 6 X* (R) Y. In that case
gl(X) denotes the smallest constant K with this property.
We shall say that X has GL2 if it has the property above with Y 2 and we

define the constant gl2(X) correspondingly. An easy trace duality argument yields
that GL and GL2 are self dual properties and that gl(X) gl(X*) when applicable.
It is known [2] that every Banach space with local unconditional structure has the
Gordon-Lewis property.
We now present a few theorems which all follow from well-known results and

which do not appear in the literature in the form we are going to use them.
The first proposition follows immediately from the contraction principle for inde-

pendent Gaussian variables; e.g., see 15].

PROPOSITION O. 1. IfX is a Banach space and (xj c_C_ X thenfor all n <_ m and
all < p < o we have

dtz(t) <_ f
m

j=l g(t)xj

p

dtz(t).

As a corollary to Proposition 0.1 we obtain:

PROPOSITION 0.2.
have

IfX is a Banach space and f G(X) thenfor all n N we

(f j___ gj(t) f gjdlz d(t) IIf[12, (0.3)

and the series Yj=l g(f f gjdlz) converges to f in L2(/z, X).

Proof. Let .,4 be the subspace of G(X) consisting of all f of the form f
y-.jm= gJxj for some m 6 N and some sequence (xj) c_ X. For every n e N we define
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Pn .,4 G(X) by

Pnf--_g2(ffgjd,) for all f .l.
j=l

(0.4)

From the previous proposition it follows that Pn is a bounded linear projection on
A with Pn _< 1. Hence it can be extended to a norm linear projection on G(X)
also denoted P. This immediately gives (0.3) and since obviously Pn f -- f for all
f e 4 and P _< for all n N we get the same for all f G(X). E]

PROPOSITION 0.3. For every 1 <_ p < cx there is a constant Kp so that ifX is a
Banach space and T B(e2, X) is an e-operator then T* is p-summing with

Zt’p(T*) <_ Kpe(T). (0.5)

If T e2 ( X, then T is an e-operator and

e(T) < Kpzrp(T). (0.6)

Proof. Let 1 _< p < o. By a result of Kahane [6] there are constants ap > 0
and bp > 0 so that

apllfll2 <_ flip _< bpllfll2 for all f G(X). (0.7)

To prove (0.5) we let T B(e2, X) be an e-operator and define

f E gnTen. (0.8)
n=l

If Ip" e2 "- Lp(t.t) denotes the operator defined by lpe gn for all n 11, then
Ip is an isomorphism and

(lpT*x*)(t) x*(f(t)) for almost all e . (0.9)

It follows from 12] that Ip T* is order bounded and therefore p-summing with

Zrp(T*) <_ a-lZrp(IpT*) <_ allllpT*llm allfl[p <_ albpe(T). (0.10)

To prove (0.6) we let T e2 t) X; hence there is a k N, (J))=
___

e2 and

(Xj)jk._.l X with T -=l J (xj. Ifg _,=l(12fj)xj, then for all n
_
N,

k k

Ten y(e., fj)xj Y(gn, 12fj)xj f g(t)gn(t)dtx(t),
j=l j=l

(0.11)
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and therefore, by Proposition 0.2

g Z gnTen. (0.12)
n=l

This shows that T is an e-operator and by 12, Corollary 4.8] we obtain

IllpT*llm < bprrp(T) (0.13)

and

e(T) <_ allIpT*llm <_ a-lbp:rrp(T). (0.14)

I. The Gaussian average property and related topics

In this section we shall introduce our Gaussian average property and prove our
main results, which among other things relates this property to the Gordon-Lewis
property. We start with the following definition.

Definition 1.1. Let X be a Banach space. X is said to have the Gaussian average
property (GAP) if there is a constant K, so that for all T e2 (R) X we have e(T) <

Krl(T*).
X is said to have property (St,) _< p < cx if there is a constant K so that if

T B(ez, X) with T* Ill(X*, ez), then T 6 l’Ip(ez, X) with rt,(T) _< KZrl(T*).
We shall say that X has (S), if it has (Sp) for some p, _< p < cxz.

Recall that a Banach space Y is called a Grothendieck space (abbreviated GT)
[15] if B(Y, e2) Ill(Y, e2). It follows from Grothendieck’s inequality that every
Z-space is a GT space. We make the following observation:

PROPOSITION 1.2. IfX is a Banach space so that X* is a GT-space then X does
not have GAP. In particular, L does not have GAP.

Proof. Let K be the GT-constant of X and let n 6 N be given. By Dvoretzky’s
theorem [8] there is an isomorphism T e --, X so that IITII _< 2 and IIT-II 1.

2/-, which shows that X doesClearly Zrl(T*) < KIITII < 2K and /-fi < e(T) <
not have GAP. r-]

It follows easily from the results of the previous section that if X has GAP, then
the e-norm of an operator T B(e2, X) is equivalent to the 1-summing norm of
the adjoint. If X has (Sp) then it follows that the p-summing norm of an operator
T 6 lip(e2, X) is equivalent to the 1-summing norm of the adjoint.
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It is readily seen that both GAP and (S) are hereditary properties and from the
principle of local reflexivity it is easily seen that X has GAP, respectively (S), if and
only if X** has GAP, respectively (S). Furthermore we have:

THEOREM 1.3. Let X be a Banach space. Then thefollowing statements hold.

(i) IfX has (S), then it has GAP.
(ii) IfX has (Sp), then it is ofcotype max(2, p).
iii) IfX has GAP, then it is offinite cotype.
(iv) IfX is offinite cotype and has GL2, then X has S) and hence also GAP.

Proof (i) and (ii) Let X have (Sp) with constant K for some p, 1 < p < o and
put q max(p, 2). It follows from Proposition 0.3 that for every T e2 (R) X we
have

Zrq,2(T) < 7rp(T) <_ KzrI(T*) <_ KKIe(T)
<_ KpKKllrp(T) <_ K2KpKITrl(T*).

From (1.1) we obtain directly that X has GAP. Furthermore, together with [13,
Theorem 12.2], (1.1) gives that X has cotype q.

(iii) Assume that X has GAP. If X is not of finite cotype it contains uni-
formly 11 and since GAP is hereditary this implies that has GAP, which is a
contradiction.

(iv) Let X be a Banach space of cotype q with GL2 and let p > q. By self-duality
X* has GL2 as well and if T B(e2, X) with T* HI (X*, e2) then T r(e2, X**)
and hence by 11 T e Flp(e2, X). If q 2, we can actually take p 2 as well.

The next theorem describes some classes of Banach spaces which have GAP.

THEOREM 1.4. Let X be a Banach space.

(i) IfX is ofcotype 2 then X has GAP ifand only if it has GL2.
(ii) IfX is oftype 2 then it has GAP.
(iii) If X is a subspace ofa Banach lattice offinite cotype, then X has (S) and

hence GAP.

Proof (i) If X is of cotype 2 it follows from [13, Theorem 12.2] that there is a
constant K so that

r2(T) < Ke(T) for all T e2 (R) X. (1.2)

If X has GAP with constant C then it follows from (1.2) that for all T e2 (R) X
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we have

,(T*) ,(T) _< rr2(T) _< Ke(T) <_ KCrrl(T*). (1.3)

This shows that X* and hence X has GL2.
The other direction follows from Theorem 1.3.
(ii) Let X be of type 2 with constant K and let T e e2 (R) X. Again, by [13,

Theorem 12.2], we get

e(T) < KTr2(T*) < KI(T*), (1.4)

which shows that X has GAP.
(iii) Let X be a subspace of a Banach lattice Z of finite cotype. Hence, by [9], Z

is q-concave for some q, < q < cx with constant say K. If T e2 (R) X and I
X Z denotes the identity operator, then it follows from 12, Proposition 4.9] that

IIITII,,, < zrl(T*l*) < rl(T*). (1.5)

Since T is of finite rank it follows from 12, Theorem 2.9] that there exists a compact
Hausdorffspace S and operators A B(e2, C(S)), B B(C(S), Z) sothat IIAII 1,
B > 0, B IT IIm and I T BA. Since B > 0 and Z is q-concave, B is q-
summing with :rt’q(B) < KIIBII ([9]). Hence T is q-summing as well with

7to(T) <_ IIAIlrq(B) < KIITIIm < Krrl(T*). (1.6)

This shows that X has (Sq). 0

Since GAP is a hereditary property, Theorem 1.4 gives the following corollary:

COROLLARY 1.5. If X of cotype 2 has GL2 then so does every subspace. In
particular, ifX is a Banach lattice ofcotype 2, then every subspace has GI_.

Corollary 1.5 can of course also easily be deduced from the fact that if X is of
cotype 2 then H (X, L2) FI2(X, L2) and the fact that 2-summing operators extend
to 2-summing operators.

The cotype 2 situation is not the only one where GAP and GL2 coincide. We shall
return to this after we have proved an important duality theorem. First we need:

PROPOSITION 1.6. IfX is a Banach space ofcotype r and r < q < o, then there
is a constant Kr,q >_ 0 SO that

(T) < gr,q’(T) for all T g.2 (R) X. (1.7)

Proof. Let X be of cotype r and let q > r. From [11 it is easily derived that
there is a constant Cr,q so that

Ke(T) < 7t’q(T) <_ Cr,q’o(T) for all T e e2 (R) X,

where the first inequality in (1.8) comes from Proposition 0.3. 021
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We are now able to prove the following duality theorem.

THEOREM 1.7.
lent:

IfX is a Banach space then thefollowing conditions are equiva-

(i) X is K-convex and there is a constant K > 0 so that K-yo(T) <_ (T) <
Kyo(T) for all T 2 (R) X.

(ii) X* has GAP and X is offinite cotype.

Proof. (i) = (ii). Assume that (i) holds and let C denote the K-convexity constant
of X (for the definition of K-convexity we refer to 15]).

If S 2 (R) X* we get

(S) < C sup{lTr(T*S)llT 6 2 (R) X, (T) < 1}

< KC sup{ITr(T*S)[ T 6 2 (R) X, ’(T) < 1}

KCTrl(S*), (1.9)

which shows that X* has GAP. Clearly X is of finite cotype.
(ii) := (i). Since X is of finite cotype it follows from Proposition 1.6 that there

is a constant C so that (T) < CI?’o(T) for all T 2 (R) X. If C2 denotes the
GAP-constant of X* then for every T 2 (R) X

,(T) sup{ITr(S*T)I S e2 (R) X*, l(S*) _< 1}

<_ C2 sup{ITr(S*T)I S 2 (R) X*, (S) < 1}

C2*(T*) < C2(T) < CIC2yoc(T).

This shows that the fourth and fifth entries in (1.10) are equivalent, which clearly
implies (see [13]) that X is K-convex. In addition (1.10) shows that %(T) < C2e(T)
for all T 2 (R) X. Hence we have proved that (ii) = (i). I3

Since X has GAP if and only if X** has GAP, as noted just after Definition 1, it
follows that the roles of X and X* can be interchanged in Theorem 1.7.

Theorem 1.7 has several corollaries.

COROLLARY 1.8. IfX has GAP and X* is offinite cotype then X is K-convex.

The next corollary we formulate as a theorem.
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THEOREM 1.9. Let X be a Banach space. Thefollowing statements are equiva-
lent:

(i) X has GL2 and both X and X* are offinite cotype.
(ii) X and X* have GAP.

Under these circumstances X is K-convex.

Proof. (i) = (ii). Since GL2 is a self dual property it follows that both X and X*
have GAP.

(ii) = (i). Assume that (ii) holds. It follows from Theorem 1.3 that both X and
X* are of finite cotype.

Since X has GAP it follows from Theorem 1.7 that there is a constant K > 0 so
that for all T 2 (R) X* we have

,(T) < Ke(T). (1.11)

If C denotes the GAP-constant of X* we get from (1.11) that if S X (R) 2, then

,I(S) ,(S*) < Ke.(S*) < KCrrl(S) (1.12)

which shows that X has GL2. []

It is well known that if X is of cotype 2 then B(L, X) II2(L, X) or equiv-
alently Ill(X, 2) II2(X, 2) and it is an open question whether the converse
implication holds. Pisier [14] showed that this is the case if X has GL2. Here we
prove a similar result using GAP.

._ 1. IfX hasTHEOREM 1.10. Let X be a Banach space and 1 < p <_ 2, 7
GAP, then B(L, X*) l-Iq(L, X*) ifand only ifX is oftype p-stable.

In particular, X is oftype 2 ifand only ifit has GAPand Ill (X*, 2) liE(X*, 2).

Proof If X is of type p-stable then it follows from [11] that B(o, X*)
Flq(e, X*). Next, assume that X has GAP with constant M and that B(Lo, X*)
Ilq(Lcx, X*) with K-equivalence between the norms, hence also I’II(X*, 2)
lip(X*, 2) with K-equivalence between the norms.

If T -.=l ej (R) Xj . -2 (R) X, then

7rp(T*) <_ IIx p

j=l

< Ilxjll p
j=l

sup I(z, ej)Iq
j=l

(1.13)
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and therefore

(f e(T) < Mzrl(T*) < MKrrp(T*)

(1.14)

which shows that X is of type p.
Ifp 2 we are done. Ifp < 2 then by 11 ], {p < 2 I’Iq (Loo, X*) B(Loo, X*)

is an open interval and therefore X is of type p-stable. O

Let us now look at a few examples.

Example 1.11. Let X be the space constructed by Pisier in [14]. Both X and
X* are of cotype 2, but X is not isomorphic to a Hilbert space. Therefore X is not
K-convex and hence cannot have GAP nor GL2 by Corollary 1.8.

There exist K-convex Banach spaces of cotype 2 not having GAP (equivalently
GL2), which the following example shows.

Example 1.12. Let 2 < p < oo. By Figiel, Kwapiefi and Pelczyfiski [1] it
follows that there exists a subspace X c_ Lp(O, 1) which does not have GL2 (See also
Pisier 16] for the case p > 4 and Johnson [4, Lemma for a more general result).
X* is K-convex but does not have GAP by Theorem 1.9. Hence it does not embed
into a Banach lattice of finite cotype.

Similar arguments as in this example leads to

COROLLARY 1.13. Let X be a Banach space with GAP. If X* embeds into a
Banach lattice offinitecotype, then X has GL2.

From the result of Johnson quoted in Example we can also conclude

COROLLARY 1.14. Every Banach lattice offinite cotype which is not of weak
cotype 2 contains a subspace X, so that X* does not embed into a Banach lattice of
finite cotype.

We can pose the following problem:

Problem 1.15. Can the above mentioned theorem of Johnson be strengthened.
Specifically, is a Banach space of cotype 2, if all subspaces have GL2?
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The convexified Tsirelson space T(2) (see 15]) is of type 2 and weak cotype 2,
and one could try to investigate whether there is a subspace X of T(2) failing GL2.
Hence X* will fail GAP and therefore X would be the first example of a weak Hilbert
space, which does not embed any Banach lattice of finite cotype.

One of the many results on unconditional structures obtained by Gordon and
Lewis in [2] states that the Schatten class Cp, p 5 2, does not have lust, but going
through their methods of computing ideal norms for spaces with enough symmetries,
in particular those in Chapter 5, it can be derived from their results that in fact Cp does
not have (S) for any p 2.

Combining this with our Theorems 1.4 and 1.9 we obtain:

Example 1.16. For every q, 2 < q < cxz, Cq has GAP, since it is of type 2, but
not (S). Cp does not have GAP for _< p < 2.

More generally, in 16], Pisier showed among other things, that if L is a unitarily
invariant crossnorm on 2 (R) 2 then e2),2 does not embed into a Banach space
of finite cotype with lust unless ) is equivalent to the Hilbert Schmidt norm. His
argument actually shows that, except for the Hilbert Schmidt case, 2(2 does
not have (S). Indeed, an inspection of the proof shows that the conclusion of his
Proposition 2.1 holds, if the space E is just assumed to have (S) (called (I) there)
and this observation together with his Theorem 2.1 show our statement.

The following condition is stronger than (S).

Definition 1.17. ABanachspaceXissaidtohave(I),ifthereisap, <_ p < o,
and a constant K so that

ip(T) <_ Krr (T*)

where ip denotes the p-integral norm 13].

for all T 6 2 ( X

Condition (I) is equivalent to X being of finite cotype and having GL2. Indeed,
if X has (I), then it has (S) and is of finite cotype. (I) immediately implies that
H1 (X*, 2) C_ 1-’l (X*, 2) and therefore X* and hence X has GL2. On the other
hand, if X is of finite cotype and has GL2, an inspection of the proof of Theorem 1.3,
(iv) shows that in fact X has (I) (use Ip(Lo, X) Flp(Lo, X) together with the
principle of local reflexivity).

This equivalence was also established by Junge [5].
We now wish to show that GAP is closed under the formation of 2-sums of

Banach spaces. For this we need the following theorem, which turns out to have
some importance in itself.

THEOREM 1.18. Let (Xn) be a sequence of Banach spaces and put X
(Yn=l Xn)2" If Y is another Banach space, < p < o and T I-Ip(X, Y)
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with Tn Tx,, then

p(Tn)p
n=l

< 7t’p(T) for 1 <_ p <_ 2

< Zrp(T) for 2 < p < o.

(1.15)

(1.16)

lfY 2 then (1.15) holdsfor all p, < p < o.

Proof. Let e > 0 be given arbitrarily. For every n N we can find a finite set

trn

_
N and {xi(n) an} C_C_ Xn SO that

rcp(Tn)p <_ IlTxi(n)]] p + e2-n, (1.17)
ECrn

For every sequence (fin) C_ ]1+ I,.J {0}, from (1.17) and (1.18) we obtain

(1.18)

Z tnTrp(Tn)P EE [[T(tln/Pxi(n))llP -[-8
n=l n=l iEcrn

n=l i,

x*(n) e X*, IIx*(n)II 2 < + e
n=l

<__ yt’p(T)p sup Ilx*(n)llPtn
x (n) P

n=l icr II/*(n)ll’ xi(n)

x*(n) X2, IIx*(n)ll e _< +
n=l

_< p(T)p sup IIx*(n)llP,, Ix,, e X,,, IIx,,ll <_ 1
n=l n=l

+ e. (1.19)

If < p < 2 we take the supremum in (1.19) over all sequences (ot,) considered
with .2/(2-p)Zn=l IXn and let e -+ 0 to obtain (1.15).

For 2 _< p < o we put Otn for all n 6 N in (1.19) to obtain (1.16).
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Since I-lp(Z, e2) l’I2(Z, e2) for every Banach space Z and every 2 _< p <
(this follows easily from Maurey’s extension theorem 10] and the formula B(Lo, L2)

l-I2(Lo, L2)) the statement for Y 2 follows from the above.

This enables us to prove:

THEOREM 1.19. Let (Xn) be a sequence ofBanach spaces, which all have GAP
with uniformly bounded constants. Then X (n__l Xn)2 has GAP.

Proof. For every n N we let P denote the canonical projection of X onto Xn.
If x, x2, xk e X then it follows immediately from the definition of the norm in
X that

f gl(t)xi gi(t)Pnxi
i=1 n=l i=1

Therefore if T e B(e, x) is an e-operator, then

(T) (P,T)2

n=l

Let K > 0 be a constant so that for all n N,

e(S) < Kzr (S*) for all S 6 e2 (R) X.

dlz(t). (1.20)

(1.21)

(1.22)

Now, if T 6 g2 (R) X, then by Theorem 1.18 with p 1, (1.21) and (1.22), we
obtain

(T) (PnT)2 <_ K Zrl(T*Pff)2 < KZrl(T*). (1.23)
n=l n=l

This shows that X has GAP.

Combining Theorems 1.9 and 1.19 we immediately obtain that if (X,) is a sequence
of Banach spaces with uniformly bounded K-convexity constants and GL2-constants,
then X (Ynl Xn)2 has GL2. However it was pointed out to us by Junge that this
conclusion can be obtained without the K-convexity assumption by combining the
inequality in 1.18 with its dual form. We need:

LEMMA 1.20. Let (Xn) be a sequence of Banach spaces, X (-n= Xn)2,
Pn X -- X the canonical projection.

(i) If T B(g2, X) with ?’(PnT)2 < o then T E 1o(e2, X) with

’o T < ’o Pn T 2
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(ii) If S B(X, 2) with ’.n=l ’1 (SPn)2 < O0 then S l"l (X, e2) with

l_

’1 (S) <_ ’1 (SPn)2

n--1

Proof. (i) follows immediately from Theorem 1.18 by applying trace duality to
the inequality there. Applying (i) to X* we obtain (ii). E3

This leads to:

THEOREM 1.21. Let (Xn) be a sequence ofBanach spaces all having GL2 so that
K SUPn gl2(Xn) < 00. Then X (En=l Xn)2 has GL2.

Proof Let T l’Ii(X, e2). From Theorem 1.18 and our assumptions we get

I (T Pn)2 < K2 7 (T Pn)2 < K27[’I(T)2.
n=l n=l

(1.24)

Lemma 1.20 now gives T F (X, e2) with

y (T) < Krr (T), (1.25)

which shows that X has GL2.

Reisner 17] has proved using different methods that the conclusion of Theorem
1.21 holds for more general unconditional sums of Banach spaces.

Let us end this section by discussing the following problem which seems to be
important since it has some applications to various areas of Banach space theory.

Problem 1.22. Let (Xn) be a sequence of Banach spaces. Under which assump-
tions on the Xn’s does there exist a constant K so that

7"( (T) <_ K r(TPn)2

n=l

for all T 6 X (R) e2. (1.26)

The next theorem gives some conditions for the inequality (1.26) to hold. (iii) was
shown to us by Junge.

THEOREM 1.23. Let (Xn) be a sequence ofBanach spaces, X (Y Xn)2. The
inequality (1.26) holds, ifone of thefollowing conditions is satisfied.

(i) XT, has GAPfor every n N with uniformly bounded GAP-constants.
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(ii) Xn has GLE for every n N and sup gl2(Xn) < cxz.
(iii) Xn is ofcotype 2for every n N with uniformly bounded cotype 2 constants.

Proof. If (i) is satisfied, we choose K >_ 0 so that

e(S) < Kn’ (S*) for all S e2 (R) X,.

X* has GAP by Theorem 1.19 and by repeating the calculations there with X replaced
by X* combined with Proposition 0.3, for every T 6 X (R) 2 we have

7rl(T) _< Ke(T*) KI e(P,T*)z <_ KK1 lrl(TPn)2

n=l n=l

(1.27)

which gives (1.26).
Next, assume that (ii) holds. Put K supn gl2(Xn). IfK denotes the Grothendieck

constant, then by repeating the calculations in the proof of Theorem 1.21, for every
T 6 X (R) 2 we have

7rl(T) <_ Koq(T) <_ Ko ]el(TPn)2 <_ KKo 7tI(TPn)2

n=l

which gives (1.26).
Finally, assume that X is of cotype 2 with constant K and let S 6 2 (R) X. By 13,

Theorem 12.2] we have

7[2(enS) <_ K(PnS) for all n 6 N (1.29)

and hence

2(PnS)2 "< K (PnS)2

n--1 n--1

K(S) < K2Kr2(S), (1.30)

where K2 is the constant from Proposition 0.3.
Dualizing (1.30) and again using the fact that X is ofcotype 2, for every T 6 X(R)2

we have

zr(T) _< Kzr2(T) _< K2KI Ir2(TPn)2

n=l

<_ K2KI 7rl(TPn)2

n=l

(1.31)

which gives (1.26). r-I
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2. GAP and extension properties of certain classes of operators

In this section we shall prove some results concerning extensions of certain oper-
ators defined on a Banach space with GAP with values in a Hilbert space. We start
with the following:

THEOREM 2.1. Let X be a Banach space with GAP. Then there is a constant K
so thatfor every subspace E c_ X and every T 2 (R) E we have

zrl (T*) < Kyrl (T* Q) (2.1)

where Q is the canonical quotient map ofX* onto E*.
Consequently, every S r’ (E, 2) admits an extension S r’ (x, 2) with

Y1 (S) _< K’I (S). (2.2)

Proof. Let C be the GAP-constant of X and let T 6 2 () E be arbitrary.. It is
obvious that (T: 2 E) (T" 2 -- X) and hence

zr(T*) < K(T) < KICzr(T*Q), (2.3)

where K1 is the constant from Proposition 0.3, (2.3) gives (2.1) with K KIC.
An easy dualization argument shows that the second statement is equivalent to

r’’(e2, E)

___
r’’(e2, x) with K-equivalence between the norms. (F’ denotes the

dual operator ideal.)
However, I’’(2, E)= {T 6 B(ez, E) IT* 6 rI(E*, e2)} and similarly for X,

and hence the latter statement is exactly (2.1).

The next theorem gives a characterization of subspaces E of a given Banach space
X so that E* has GAP in terms of extensions of 1-summing operators.

THEOREM 2.2.
ments

Let X be a Banach space and E a subspace. Consider the state-

(i) E* has GAP.
(ii) There, existsaconstant K>__ Oso thatevery T rI (E, 2) admitsanextension

T I’Ii (X, 2) with zr (T) <_ KYrl (T).

IfX is offinite cotype then (i) implies (ii). If X* has GAP then (ii) implies (i).

Proof By duality, (ii) is equivalent to:

(iii) I"o(2, E) c_ Foo(2, X) with equivalence between the norms.
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Let X be of finite cotype and assume that E* has GAP.
We wish to show that (iii) holds. By Proposition 1.6 and Theorem 1.7 there exist

constants K > 0 and C > 0 so that if T E 2 (R) E,

?%(T) < C(T) < KC,(T e2 X) (2.4)

which shows that (iii) holds.
Assume next that X* has GAP with constant M and that (ii) holds. It clearly

follows that there is a constant K > 0 so that every T E I’I(E, 2) admits an
extension T 6 1-I (X, 2) with

yrl (T) < Kyrl (T). (2.5)

Let now T -Y=I fj* (R) ej E E* (R) 2 and let T be an extension of T so that (2.5)
holds. Without loss of generality we may assume that the range of T is contained in

[e _< j _< n] and since X* has GAP we therefore easily obtain

(T*) < e(T*) <_ Myrl(T) < KMZrl(T), (2.6)

which shows that E* has GAP.

Combining Theorem 2.2 with the results of the previous section we obtain the
following corollary.

COROLLARY 2.3. Let X be a Banach space offinite cotype with GL2 and let
E c_ X be a subspace. Then thefollowing statements are equivalent.

(i) E hasGL2.
(ii) Every operator T FII(E, 2) admits an extension T II(X, 2).

Proof. Trivially (ii) implies (i) (for this the finite cotype assumption on X is
superfluous). Next, assume that E has GL2 and let T E Ill(E, 2); hence T
F (E, 2) as well and since X has GAP we get from Theorem 2.1 that T admits an
extension E FI(X, z)

_
Ill(X, 2). [’-I

The assumption that X is of finite cotype cannot be omitted in Corollary 2.3 as the
following example shows.

Example 2.4. Let E be a subspace of isometric to 1, and let T B(E; 2)
be onto. E has GL2 and T is absolutely summing by Grothendieck’s theorem. If T
could be extended to a T 6 l-I1 (, 2), then T and hence also T* would be nuclear
and therefore compact. Since * is an isomorphism this is a contradiction.
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