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VECTOR-VALUED ANALYTIC FUNCTIONS OF
BOUNDED MEAN OSCILLATION AND GEOMETRY OF

BANACH SPACES

OSCAR BLASCO

Introduction

When dealing with vector-valued functions, sometimes is rather difficult to give
non trivial examples, meaning examples which do not come from tensoring scalar-
valued functions and vectors in the Banach space, belonging to certain classes. This
is the situation for vector valued BMO. One of the objectives of this paper is to look
for methods to produce such examples.

Our main tool will be the vector-valued extension of the following result on mul-
tipliers, proved in [MP], which says that the space of multipliers between H and
BMOA can be identified with the space of Bloch functions
(see Section 3 for notation), which, in particular gives g f BMOA whenever
f HandgB.

Given two Banach spaces X, Y it is rather natural to define the convolution of
an analytic function with values in the space of operators L(X, Y), say F(z)
"n--0 Tnzn and a function with values in X, say f(z) Y.n=0 xz as the function
given by F g(z) ’n=O Tn(xn)Zn.

It is not difficult to see that the natural extension of the multipliers’ result to the
vector-valued setting does not hold for general Banach spaces. To be able to get a
proof of such a result we shall be using the analogue of certain inequalities, due to
Hardy and Littlewood [HL3], in the vector valued setting, namely

(f0’ (1 r)M2 (f’, r)dr <

and its dual formulation

Ilfll. _< c (1 r)M2(f’, r)dr

This leads us to consider spaces where these inequalities hold when the absolute value
is replaced by the norm in the Banach space, which turn out to be very closely related
to notions as (Rademacher) cotype 2 and type 2.

Received December 29, 1995.
1991 Mathematics Subject Classification. Primary 46B20,46E40.
The author was partially supported by the Spanish DGICYT, Proyectos PB92-0699 and PB95-0261.

(C) 1997 by the Board of Trustees of the University of Illinois
Manufactured in the United States of America

532
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The paper is divided into five sections. We start with a section of preliminary
character to recall the notions on geometry ofBanach spaces to be used throughout the
paper and which also contains the basic properties of vector-valued analytic functions
of bounded mean oscillation and functions in the vector valued Bloch space.

Section 2 is devoted to give some sufficients conditions on the derivative of the
function or on the Taylor coefficients of the function to assure that the function

belongs to BMOA(X). It is shown that one has Mp(f’, r) O((1 r) 7) for
some < p < o or lxn II O() (in the case of B-convex spaces) implies that

f(z) o n’-n=0 XnZ - BMOA(X).Section 3 deals with multipliers between spaces of vector valued functions defined
on different Banach spaces X and Y. This is done by looking at functions with values
in the space of operators Z(X, Y) and considering the natural convolution mentioned
above. We also introduce two new notions based on the vector-valued formulations of
the Hardy-Littlewood inequalities previously pointed out, called the (HL)-property
and the (HL)*-property respectively. It is shown that under the assumptions of (HL)-
property on X and (HL)*-property on Y one has (H (X), BMOA(Y)) I((X, Y)).

Section 4 is devoted to the study of these properties. It is shown that the spaces
having the so-called (HL) and (HL)* must satisfy the Paley property (see definition
in Section 1) and have type 2 respectively. It is also shown that the natural duality
between them holds for UMD spaces. We investigate Lebesgue spaces LP and Schat-
ten classes trp having such properties. The tools to deal with Schatten classes are the
use of certain factorization and interpolation results holding for functions in Hardy
spaces with values in them.

Finally Section 5 is devoted to present several applications of different nature of
the previous results.

Throughout the paper all spaces are assumed to be complex Banach spaces, D
stands for the unit disc and for its boundary. Given < p < cx, we shall denote by
Lp (X) the space of X-valued Bochner p-integrable functions on the circle "]1" and write

Ilfllp,X ,f Ilf (eit)llP dt)7 and Mp,x(F, r) IlFrllp,x (f IlF(reit)llP )Tdt
whenever F is any X-valued analytic function on D. We shall write L (D, X) for the
space of X-valued Bochner integrable functions on D with respect to the area measure
dA(z), and Hp(X) (resp. H(X)) for the vector-valued Hardy spaces, i.e., the space
of functions in Lp (X) whose negative (resp. non positive) Fourier coefficients vanish.

Of course Hardy spaces Hp (X) (resp. H(X)) can be regarded as spaces of ana-
lytic functions on the disc. Actually they coincide with the closure of the X-valued
polynomials, denoted by 79(X) (resp. those which vanish at z 0, denoted by To(X),)
under the norm given by suP0<r Mp,x (f, r).

The reader should be aware that the analytic functions we are considering have
boundary values a.e. on "i[’, but this in general does not hold (such a fact actually
corresponds to the so called ARNP introduced in [BUD]).

Finally let us point out a notation to be used in the sequel. Whenever a scalar-valued
function p is given we write z(W) (zw) and look at z ---> z as a vector-valued
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function. As usual p’ is the conjugate exponent of p when < p < o, i.e. 7 + p--7
and C will stand for a constant that may vary from line to line.

1. Preliminaries on geometry of Banach spaces and vector valued functions

The connection between certain properties in geometry of Banach spaces and
vector-valued Hardy spaces is well known. Some of them, like ARNP [BUD] and
Paley [BP], were actually introduced to have certain theorems on Hardy spaces hold
in the vector-valued setting; others, like UMD [Bu2], B-convexity [MPi] or Fourier
type [Pee], were connected to this theory through the boundedness of classical oper-
ators like Hilbert transform, Paley projection or Fourier transform for vector-valued
functions. In this section we shall recall those to be used in the sequel and give some
references to get more information about them.

One of the more relevant properties in the vector-valued Fourier analysis is the so
called UMD property. It was introduced in the setting of vector valued martingales,
but was shown (see [Bul ], [Bol ]) to be equivalent to the boundedness of the Hilbert
transform on Lp (X) for any < p < o. Because of this it is a natural assumption
when dealing with vector-valued Hardy spaces.
We shall say that a complex Banach space X is aUMD space if the Riesz projection

R, defined by R(f) n>_O f(n)eint, is bounded from L2(X) into H2(X).
One of the basic facts on this property that we shall use is that the vector valued

version of the Fefferman’s H BMO-duality theorem holds for UMD spaces (see,
for instance, [Bo3], [B2], [RRT]). The reader is referred to the surveys [RF], [Bu2]
for information on the UMD property.

Another useful property for our purposes will be the notion of Fourier-type intro-
duced by Peetre [Pee] which corresponds to spaces where the vector-valued analogue
of Hausdorff-Young’s inequalies holds.

Let us recall that for < p < 2, a Banach space X is said to have Fourier type p
if there exists a constant C > 0 such that

f(n p’

n=-

It is not hard to see that X has Fourier type p if and only if X* has Fourier type p.
Typical examples are L for p < r < p’ or those obtained by interpolation between
any Banach space and a Hilbert space. The reader is referred to [Pee], [GKT], [K] for
some equivalent formulations, connections with interpolation and several examples
in the contex of function spaces.

Letus now recall two fundamental notions in geometry ofBanach spaces associated
to Khintchine’s inequalities. Although they are defined in terms of the Rademacher
functions, to be denoted rn, we shall replace them by lacunary sequences ei2nt, which
gives an equivalent definition [MPi], [Pil ].
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Let < p < 2 < q < c. A Banach space has cotype q (resp. type p) if there
exists a constant C > 0 such that for all N 1 and for all x0, Xl, x2 xv X one
has

and respectively

IIxll q < Xke
2it

k=0 k=0 1,X

Xke2it <_ C Ilxk p

k=0 1,x k=0

A Banach space is called B-convex if it has (Rademacher)-type > 1.
The reader is referred to [LT] and [Pi2] for some applications of such notions to

the Banach space theory.
Let us now state two fundamental theorems, to be used in the sequel, due to

J. Bourgain and S. Kwapien respectively.

THEOREM A. [Bo4], [BoS] Let X be a complex Banach space. X has Fourier
type > ifand only if Xis B-convex.

THEOREM B. [Kw] Let X be a complex Banach space. X is isomorphic to a
Hilbert space ifand only ifX has type 2 and cotype 2.

Let us finally recall another property, stronger than cotype 2, to be used later on
that was introduced in [BP] and depends upon the vector-valued analogue of Paley’s
inequality [Pa] for Hardy spaces. A complex Banach space X is said to be a Paley
space if

IIx2 = _< C f 1,x
k=0

’n=oXn . n (X).for any f(z) zn
Let us now consider the vector-valued version of analytic BMO and the space of

Bloch functions/. The reader is referred to [GR], [G] and [Z] for scalar-valued
theory on BMO and to [ACP] and [Z] for results on scalar-valued Bloch functions.

DEFINITION 1.1. GivenacomplexBanachspace X, weshalldenotebyBMOA(X)
the spacefunctions f L (X) with f(n) Ofor n < 0 such that

Ilfll.,x sup IIf (eit) fill
dt

where the supremum is taken over all intervals I [0, 2zr), III stands for the nor-
dtmalized Lebesgue measure of I and f TE f f(eit)"
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The norm in the space is given by

lifo
2 dt

IlfllMox) f(eit)’’- + Ilfll,,X.

From John-Nirenberg’s lemma [G], [GF], which holds in the vector-valued setting,
one can actually replace the L norm in the definition by any other Lp norm; that is,
for anyl <p<

(lfl IIf(e’t) zzdt);Ilfll,,x " sup fll

Let us point out certain results on the duality to be used later on. Although most
of the results on the duality H BMO for vector-valued functions (see [B2], [Bo3],
[RRT]) are given for the space H defined in terms of atoms, it is easy to deduce from
the known results the following facts:

For any Banach space X, BMOA(X*) continuously embeds into (H (X))*. Actu-
ally if f BMOA(X*) and g 79(X) then

2r dt
< f(eit), g(e-it) > < IIflIBMOAX*IIglli,X.

If X is a UMD space then we actually have the validity of Fefferman’s duality
result

(H (X))* BMOA(X*).
In the particular case of Hilbert spaces we also have that following formulation in

terms of Carleson measures holding (see [G] for a proof which can be reproduced in
the Hilbert-valued case).

If f(z)- =oXkZ with Xk H then

(foIlfll,,x sup (1 -Iwl)llf’(w)ll2ez(o)dA(w) (1.1)
Izl<l

where Pz is the Poisson Kernel Pz(w)
Let us now recall some results on vector-valued Bloch functions.

DEFINITION 1.2. Given a complex Banach space E we shall use the notation
13(E) for the space of E-valued analytic functions on D, say f(z) _n__o xnzn,
such that

sup(1 -Izl)llf’(z)ll < o.
Izl<l

We endow the space with the norm

Ilfllw() max{llf(0)ll, sup(1 -Izl)llf’(z)ll}.
Izl<l
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The next result, although known, is included for the sake of completeness.

PROPOSITION 1.1 (see [ACP], [AS]). Let E be a Banach space and xn e E.
2n+! O

(i) If sup sup I(x*, Xk)[ < O then yxnzn 13(E).
IIx*ll_<l n>_0 k=2, n=0
: 2(ii) -0xz Ilu(e) " sup>_o IIx II.

Proof. (i) Note that for each IIx* 1,

n(X*,Xn)Zn-I <_ kl(x*,xk)llz[k-1
n=l n=0 k=2

< sup
\n>0 k=2 n=0

C

1-1zl
Hence =o(X* x)z B unifoly in IIx*ll 1.
(ii) Take f(z) 2 2= XnZ IIe C SUPnz0 IIX=0XnZ From (i) wehave
e other estimate follows by taking r in the inequality

C
2llxnllr2- sup IIf’(z)ll

Izl=r r

PROPOSITION 1.2. Let X be a Banach space, let Kz denote the Bergman Kernel
Kz(w) and T .(L-zo2 (D), X). Then f(z) T(Kz) is a X-valued Bloch

function.

Proof. Observe that f (z) .n=o(n + 1)T(un)zn for Un(W) wn.
Therefore f’ (z) ’n--I n(n + 1)T(un)Zn-l= T( -2w

l_oz3 and then we have

IIf’(z)ll IITIIf0fo 2r dt
dr

I1 rzeit 13 2zr

2r
< CIITII (1 -rlzl)2dr < C

-Izl

2. Elementary properties and examples on BMOA(X)

Let us start by pointing out some procedures to obtain non trivial examples of
vector valued BMOA functions. We shall give some simple necessary conditions
following [CP] and [BSS].

For such a purpose we shall need some well known lemmas.
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LEMMA A. Let 0 < p < q < c and let g be an X-valued analytic function.
Then

Mq,x(g, r2) < C(1 r)-- Mp,x(g, r) (see [D, page 84]). (2.1)

Let ?’ > 1; then

O((1 (see [D, page 65]) (2.2)
dO

Izl) l-)
l1 zeiO It’

Let y < -; then

(1 r)-l

(1 rs)
dr O ((1 s)’-t) (see [SW, Lemma 6]). (2.3)

The next result has an straightforward generalization to the vector-valued setting.

LEMMA B (Hardy-Littlewood [D, Theorem 5.4]).
<p<cxand0<ot < 1.
If Mp,x(f’, r) O((l_)._.)(r 1) then

Let f" D --> X be analytic,

(fo Ilf(eit) f(eit+h))llPdt O(Ihla), (h 0).

THEOREM 2.1. Let f be a X-valued analyticfunction. Ifthere exists 0 < p <
such that

Mp,x(f’, r) O (1 r)-7

then f BMOA(X).

Proof. Note that (2.1) implies that if there exists 0 < P0 < cx such that

Mpo,x(f’, r) O((1 r) P; then the same property holds for any p > P0. There-
fore it suffices to prove the result for 2 < p <

In such a case to see that f BMOA(X) we can use Lemma B (for ) and
the argument in [BSS, Theorem 2.5] that we include for sake of completeness.

Note that Lemma B implies f_ ]]f(e <_ Clsl .
,r (the general case follows by usingAssume I [-8, 8] for some 0 <

translation invariance of the space).

f dt ;ll__d; ds
(f(eit) f(eiS))---III

]lf(eit) /z lip
2rr 28

P dt

2r

; (f_ )< ilf(eit) f(eiS)ll p
ds dt

-28 a’ "
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IIf(eit) f(ei<t-s))llp.--

< Ilf(eit) f(ei<t-s))llP.--482 r 28

f?8(f dt)dsIlf (ei(t-s)) f (eit)llp...

f?8 ds
Isl- < C."< C-- 28

Let us now go a bit further and find conditions on the sequence ofTaylor coefficients
x,, which guarantees that the corresponding analytic function belongs to BMOA(X).
Some conditions can easily be achieved for spaces of Fourier type p.

COROLLARY 2.1. Let < p <_ 2, let X be Banach space with Fourier type p and
(Xn) a sequence in X such that

N., Ilnxnll p O(N).
n=l

Then f(z) n=l XnZ - BMOA(X).

Proof. Let us first observe that the assumption implies

2n+l
sup 2n(p-1) Z Ilxk p < (X).

n.N k=2

Let us now show that Mp,,x(f’, r) O((1 -r)-) and then the result will follow
from Theorem 2.1.

It is not difficult to see, using duality, that Fourier type p can be also formultated
as

Ilfll’,x < C IIf(n)ll p

Therefore, from the Fourier type p condition, it follows

Mp,,x(f’,r) < C nPllx,llPrpn-)
n=l
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1

C IIxll p 2pnrp2n
n=0 \k=2

_< C sup2n(p-1) Ilxgll p 2nrp2n < .
\nl (1 r)k=2 n=0

Example 2.1. Consider fl (z) (%),el and f2(z) -n=l rn zn (rn are the
Rademacher functions).

Observe that

Ilfl(z)llt, IIf2(z)llL([O,l]) log
n=l n 1-Izl

Hence Ile Ill, IIllLoot0,]) A bUtfl BMOA(ll)and f2 BMOA (L([0, 1]))
(because fi H (Xi) for X , X2 L([0, 1 ])).

This shows that, in general, the simple condition Ilxn O() does not imply
that f BMOA(X).

COROLLARY 2.2. ,Let X be Banach space. Thefollowing are equivalent

(i) If IlXn 0 (1/4) then oo n’n= XnZ BMOA(X).
(ii) X is B-convex.

Proof
(i) =, (ii). Assume X is not a B-convex space. Then it contains uniformly

which allows to built a function as fl in Example 2.1, leading to a contradiction with
(i).

(ii) = (/).We can invoke Theorem A to find 1 < p < 2 such that X has Fourier
type p. Now apply Corollary 2.1 for such a p. I"1

Remark 2.1. The reader should be aware that Corollary 2.3 is nothing but the dual
formulation of a result inlcuded in [BP] due to Pisier, which says that X is B-convex
if and only if the functions in H2t (X) satisfy Hardy inequality.

3. Vector valued multipliers from H (X) into BMOA(Y)

Let us denote by (H BMOA) the space of convolution multipliers between H
and BMOA, that is the set of functions F(z) oo--n=0 Znzn such that there exists a
constant C > 0 for which

.nOln Zn <_ C olnzn
n=0 BMOA n=0 H
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the following scalar-valued result was proved in [MP]

(.) (H BMOA) 18

where B stands for the space of Bloch functions.
We shall be interested in this section in the vector valued formulation of this result.

First of all we need to give sense to the notion ofconvolution multiplier acting between
two different Banach spaces. We present here two possible interpretations.

Let us recall that given Banach spaces X, Y we denote by XY the completion
of X (R) Y endowed with the projective tensor norm, i.e. for u X (R) Y

Ilu xr inf Ilxi IlYi
i=1

nwhere the infimum goes over all possible representations of u -.i=1 xi (R) Yi, xi -X, yiY.

DEFINITION 3.1. Given f(z) n=0 YnZn-n=oXnZn H (X) and g(z)
H (Y) we shall define the XY-valued analyticfunction

2r dt
f’g(z) f(ze-it) (R) g(eit)"

n=l
Xn (R) ynZn. (3.1)

It is rather simple to observe that fg(z) HI(XY).

DEFINITION 3.2. Let X, Y be complex Banach spaces and let F(z) n=o
be a 2(X, Y)-valued analyticfunction and f(z) ’.nC=o XnZn H (X). We define
the Y-valuedfunction

o

fo
2rr d

F f(z) Tn(xn)Z F(zeit) (f(e-it)) --. (3.2)
n--0

We shall denote by (H(X), BMOA(Y)) the set of analytic functions F: D
(X, Y) such that F f a__ BMOA(Y) for any f

_
H (X).

This becomes a closed subspace of .. (H (X), BMOA(Y)).
Let us notice first that we have the following obvious extension.

LEMMA 3.1. Let X, Y be two complex Banach spaces. Then

(n (X), BMOA(Y)) C 13(.(X, Y)).

Proof. Given F (H (X), BMOA(Y)) andx X, y* Y* then (F(z)(x), y*)
(H BMOA). Hence, from the scalar-valued case (.),

(F(z)(x), y*)ll < IIFII(,’<X),aMOA<r)) IIxlI IlY*II.
This clearly shows F B (2(X, Y)). U]
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Nevertheless let us first point out that there is no hope for the analogue of (.) to
hold for general pairs of Banach spaces as the following remark shows.

Remark 3.1. Let us assume B (/2(X, X)) c (HI(X), BMOA(X)) then taking
Tn I, the identity operator, part (ii) in Proposition 1.1 shows that F(z) nO Tnz2"

/3 (/(X, X)) and then one should have

_< liE * fll.,x _< Cllfll,x.
n=0 1,X

This cannot be true as soon as we take X being a cotype 2 space but not a Paley space
L(for instance X h-d, see [BP]). In fact it will be shown later that actually under

such an assumption X has to be isomorphic to a Hilbert space.

DEFINITION 3.3. Let X, Y be complex Banach spaces. The pair (X, Y) is said to
have the (H BMOA)-property if

(H (X), BMOA(Y)) 13 (..(X, Y))

Let us now present various properties holding for pairs having the (H BMOA)-
property.

THEOREM 3.1. Let (X, Y*) have the (H l, BMOA)-property.
If f

_
H (X) and g H (Y) then (fg)’ L I(D, XY).

Proof Let us recall that (XY)* ..(X, Y*) under the pairing

where (,) stands for the pairing on (Y, *).
On the other hand for any Banach space E one has LI(D, E) LI(D)E what

gives (Ll (D, E))* 2 (LI(D), E*) under the pairing given by

r, e4 ((T(), e))
k=l k=l

for any e E and L(D) where ((,)) stands for the pairing on (E, E*).
Assume now f(z) =0Yz Hence (fg) (z)n=0 XnZ and g(z)

nO nXn ynzn-l.
According to the previous dualities, and denoting u,(w) w, we can write

II(fg)’ll,(o,x+r) sup n(T(Un-l),Xn Yn)
n=l
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where the supremum is taken over T 6/2 (LI(D),/2(X, Y*)) with IITII 1.
Note that for each T 6/2 (LI(D),/2(X, Y*)) with Tn T(un-) .(X, Y*) and

T 1 we have

m myn(T(Un-l), Xn Yn) n(Tn(xn), Yn).
n=l n=l

On the other hand, with F(z) ,n= nTnzn, observe that F(z) zT(Kz)
and therefore, from Proposition 1.2, it is a/2(X, Y*)-valued Bloch function with
IIT(Kz)llcx,r.)) <_ IITII.
Now notice that

m

n(Tn(xn), Yn)
n=l

F(rei(t-s))(f (eit)), g(e-iS) -- -_< lie * fllnMoa<r*)llgll,r
<_ CIIFIl(c(x,r.))llfll,xllgll,r.

COROLLARY 3.1. Let (X, Y*) have the (H 1, BMOA)-property.
If f(z) zn ’n=O Ynzn H (Y) thenYn--0 Xn . H (X) and g(z)

Y’ IIx2=llllY2=ll < CIIfll,xllgll,r.
n--0

Proof.

Therefore

Let h(z) (f,g)’(z) LI(D, XY). Obviously one has

nllxllllynllr-1 <_ Ml,xy(h,r) (n N).

rq

COROLLARY 3.2.
space.

If (C, Y*) have the (H, BMOA)-property then Y is a Paley

=oOtnZ 6 H and g HI(Y)andProof Apply Corollary 3.1 to f(z) 2"

recall that f I1 (n%0 IOn 12) 1/2"

LEMMA 3.2. If (X, Y) has the (n BMOA)-property then (X, (2) and (C, Y)
also have the (H BMOA)-property.
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N , . ,) HEn=0 xnznProof. (i) Let F(z) ,,=oXn z 13(X and f(z) (X).
Fix y Y with IlYll and consider (z) N zn-.=o Tn where T,, are the operators in

(X, Y) defined by T.(x) (x, x)y. It is elementary to show that B((X, Y))
and IIllc(x,r))--IIll<x.). Therefore

x lz r (x )z
k=0 BMOA k=0

<_ CIIFIlw(c(x,r))

BMOA(Y)

k=0 1,X

(ii) Let F(z) o zn zn H-n=0 0n X0-.=o Y. 13(Y)and (z) Fix X
and x e X* with Ilxoll 1 and (x, xo) 1. Define/(z) -.=o T.z" where T.
are defined by Tn (x) (x, x)y.. It is elementary to show that/ B((X, Y)) and

ll/ll(c(x,r)) ll/ll(r). Observe that

tnYnZn E Tn(tnx)zn= * :
n=l n=l

where f(z) P(z)xo. Then we have

BMO(Y) 1,Xn=O

n

PROPOSITION 3.1. Let X, Y be two complex Banach spaces.
(i) If (X, C) has the (H BMOA)-property then X is a Paley space.
(ii) If (C, Y) has the (H BMOA)-property then Y has type 2.

Proof. (i) Let f(z) n H-’.=0 XnZ (X) and choose xn X with IIxn
and (x*, x2.) IIx2 II. Let us recall that Khintchine’s inequalities hold for BMO
functions ([G]); i.e.,

ICtk 12 " EOkz2
k=0 k=0

Then, using the previous fact,

IIx2 2 I(x, X2)12
k=l k=l

BMOA

k BMOA
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., _2Let us observe that, from (ii) in Proposition 1.1, F(z) Y’n__ .nz belongs to
B(X*) and therefore

_<
k=l BMOA

k=l 1,X

< Cllfll,x

This shows that X is a Paley space.
n--0 IlYn(ii) Now given Yo, Yl, Y2,. Yv X with yj 0 we define F(z) v .._v

From Proposition 1.1 again we have F
_
B() and IlFIIB(r) <_ C.

Observe that

Yk
YkZ

2 E Yk 1--Z
2 F 4

k=O k=O

Nwhere tp(z) Yk=0 IlYk Ilz2; then we have

N

YkZ
2

k=0 I,Y BMO(Y)

N

E YkZ
2

k=0

c Yk 112
k=0

This shows that X has type 2. El

We shall now introduce two new properties which are motivated by the inequality
due to Hardy and Littlewood mentioned in the introduction and its dual formulation
and will be connected with the (H BMOA)-property.

Let us recall the notation P(X) and P0(X) for the X-valued polynomials and those
which vanish at z 0 respectively.

DEFINITION 3.4. A complex Banach space X is said to have the (HL)*-property
ifthere exists a constant C > 0 such that

+/-

Ilfll,,x C (1 -r) sup (z)ll2dr (3.3)

for any f 79(X).
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PROPOSITION 3.2. Let H be a Hilbert space. Then H has the (HL)* property.

Proof. Using (1.1) we have

.f,, (1 -Izl2)(1 -Iwl)lllf’(w)ll 2

Ilfll,,/ H

Izl<lSUp l1 tbzl2
dA(w).

Now for any z 6 D one has

-Iz12)(1 -Iwl)lllf’(w)ll2

t-IdA(w)
l1 tbzl2

fo (fo2rr r2
< (1- r) sup IIf’(w)ll Izl 2 dt

Iwl’-r I1 re-itzl2
dr

f’ 112ndr.(1- r) sup

Therefore

f’ 112ndrf II,,n C (1 r) sup (w)

The next example shows that X fails to have the (HL)* property.

Example 3.1. Let X and f(z) nlog(n+l)Z
n Then

n-’0

1(1 -r) sup IIf’(z)ll,dr < o
Izl-r

but f q HI(II).

Indeed, since IIf (z)lll, , nog<,+)Izln then

lim Ml,l (f, r)
r--

n--1 n log(n)

which gives f H (/l).
On the other hand, (see [L, page 93-96]),

Therefore

Izln "IIf’(z)lll, n=l log(n + 1) (1 -Izl)(log

fo dr
(1 r) sup f’(z)II/2, dr < C

2
Izl=r (1 r) (log TZT-r

]



VECTOR-VALUED BMOA 547

DEFINITION 3.5. A complex Banach space X is said to have the (HL)-property
ifthere exists a constant C > 0 such that

(3.4) (fo (1-r)M2 ),x(f’ r)dr <_ CIIfll,x

for any f 7o(X).

Remark 3.2. Observe that

o prk+l

(1 r)M,x(f’, r)dr EI (1 r)M21,x(f’, r)dr,
k-’0 rk

for rk 2-k and then, since M1,x(f, r) is increasing the inequalities (3.3) and
(3.4) can be replaced by

f II,,x C 2-2k sup f’(z)II 2
k=0 Izl=rk

(3.4)

and

2-2kM21,x(f’,rk)
k=0

<_ CIIfll,x. (3.5)

Therefore inequality (3.6) says that X has the (HL)-property if and only if the
operator f -- (2-kf’(rkeit))k is bounded from Hd(X) into 12 (LI(X)).

Example 3.2. Let X co; then X fails to have (HL)-property.

N n --1Indeed, take fv(z) n=l enz and then clearly supvr IIfll,c0
On the other hand M,co(f;v, rk) >_ C2 for N > 2. Therefore

2-2kM2 (f;v rk) > CN1/21,Co
k=O

THEOREM 3.2. Let X, Y be Banach spaces.
If X has the (HL)-property and Y has the (HL)*-property then (X, Y) has the

(H BMOA)-property.

Proof. From Lemma 3.1. we only have to prove

B ((X, r)) C (H (X), BMOA(Y)).
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Let F(z) o zn oo H-n=0 xnznYn=0 Tn /3 (/(X, Y)) and f(z) e (X).
Now observe that

z(F f)’(z2) y nTn(xn)Z2n-1

n=l

F,(zeit) (f(ze_it)) ei d_._t
2zr

fo2rt(nTnzn-lSn-lei(n-l)t
X nxnsn-le-i(n-l)t ---sds

n=l

2 F’(zseit) (f’(s’e-it)) seit --ds.at
Therefore, since F 6/3 (/2(X, Y)), we have

Ml,x(f, slzl)
IIz(F* f)’(z2)]l _< CllFlltc(x,r)) i ds

(fo<_ CIIFll((x,r))
(1 slz])2

< CIIFllB(r’(x,r)) (folZlM2 )(1 Izl)1/2 1,x(f, s)ds

ME )1,x(f’,s)ds

Hence

(fo )sup IIz(F * f)’(z2)ll < C M2
1/2

Izl=r (1 r)1/2 1,x(f’, s)ds

Now, using the HL *- property on Y and the HL)-property on X, we can estimate

IIF * fll2.,r _< (1 --r2) sup II(F * f)’(z)ll2rdr
Izl----r

fol< C M21,x(f’,s)ds dr

foC (1 s)M21,x(f’, s)ds < CIIflll,x.

Clearly f F f(eit) dtll IIT0(x0)ll Cllfll,x. This combined with the
previous estimate finishes the proof.
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4. Lebesgue spaces and Schatten classes with (HL)-property

In this section we study these new properties and investigate the Lebesgue spaces
and the Schatten classes having the (HL)-property and the (HL)*-property.

Let us start with some general facts and their relations with the notions of type and
cotype.

PROPOSITION 4.1. (i) IfX has the (HL)-property then X is a Paley space.
(ii) IfX has the (HL)*-property then X has type 2.

Proof. Combine Theorem 3.2 together with Proposition 3.1. E!

Let us now establish the duality existing between both notions.

THEOREM 4.1 (DUALITY). (i) IfX* hasthe (HL)*-propertythen X hasthe (HL)-
property.

(ii) Let X be an UMD space. Then X* has the (HL)*-property if and only if X
has the HL)-property.

Proof. Let f (z) En%l xnzn " H(X) with Ilflll,x 1. Usingtheembedding

12(L(X)) c_ (12(C(X*)))
and setting rk 2-k, we have

2-2kM21,x(f’,r)
k=0

sup fo
2r dt

(2-k f’ (rkeit), gk(e-it))---
k=0

where the supremum is taken over the set of sequences (gk)kN C C(X*) such that

’--o IIg ,,x’* 1.
Letting

we have, for zl r,

rt gk(eit) dt
G(z)

(1 ze-it) 2-’

IIG’’(rz)llx, < Ilgklloo,x* fo
Dr dt

<C
I1 Zrke-it 13 2zr (1 rkr)2

IIg lion,x*.

Therefore for any sequence (g) with =0 Ilgkll p,,x’, 1,

27r dt
{2-f’ (rkeit), gk (e-it)}



550 OSCAR BLASCO

2r o d
(f(eit),

_
-k2 Gk(rke-it)).g-Z-

k=0

f I,X Gk (rkeit)
k=0 ,,X*

(zl "(rz) drC (1 r) sup 2-GIzl=r k=0 X*

(ZlC (1 r) 2- lg l,x*
dr I

=o (1 rtr)

Using Htilder’s inequality and the facts

2_, fo ds

,=o (1 rkr)z (1 rs)2’

ds

(1 -rs)2 -r

we can write

< C 2-’ gk
2
,X* < C.

k=0 (1 rkr)2

(ii) From part (i) we only have to show that if X is a UMD space having the
(HL)-property implies X* has the (HL)*-property.

n=0 nGiven an X*-valued polynomial, say f(z) rn xnz and using the duality
(H (X))* BMOA(X*), we have

Ilfll,,x, sup (f(eit), g(e-it))- "g E H(X), Ilglll,X

Now let us observe that for g(z) Zn__l XnZn

2r d
(f (eit), g(e-it))- (x2, Xn)

n=l
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where gl (z) zg(z). Hence

2r dt
(f (eit), g(e-it))---

_< (1 --r)M1,x(gtl, r) sup IIf’(z)llx,dr

1<-(fO (1-r)M,x(gtl,r)dr) (1-r) sup ,If’(z)llx,dr

Cllgllll,X (1 -r) sup Ilf’(z)ll,dr

CIIglll,x (1 -r) sup (z)ll.dr
Izl=r

PROPOSITION 4.2.
erty.

Hilbert spaces have the HL)*-property and the HL)- prop-

Proof The (HL)*-property was proved in Proposition 3.2. Now apply Theo-
rem 4.1 to get the (HL)-property. rq

COROLLARY 4.1 [B2]. X is isomorphic to a Hilbert space ifand only if (X, X)
has the the (H l, BMO)-property.

PROPOSITION 4.3. Let (f2, E,/z) be a measure space. IfX has the (HL)-property
then L (/Z, X) has the (HL)-property.

Proof It follows from the vector-valued Minkowsky’s inequality that

Ilfk I1,() C IA(.)I 2
k=0 k=0

(4.1)

for any sequence (f) L (/,6).
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Now, given an L (/, X)-valued analytic polynomial, say F(z) ,nm=o XnZn, for

Y’n=0 xn (co)z satisfiesa.a. co e f2 the X-valued polynomial F(co)(z) m

2-2kM2,X (F’ (co), r) _< C F(co) (eit) x
k=0

cof

Now integrating over

2-2kM2 (F’(co) r)1,X
k=O

L(#)

<_ CIIFII,L,(,x).

On the other hand, from (4.1),

2-2kM2 (F’ rk)1,L(#,X)
k=0

-< 2-2 F(., rk)llx
k--O

L (#)

_< IIFII

PROPOSITION 4.4. Let (, E,/z) be a measure space.
(i) LP(Iz) has the (HL)-property ifand only if < p < 2.
(ii) LP(l.t) has the (HL)*-property ifandonly if2 < p < cx.

Proof (i) From Proposition 4.1 the (HL)-property implies cotype 2 and then
l<_p<2.
On the other hand L (/x) has the (HL)-property according to Proposition 4.3.
The case 1 < p < 2 follows from the fact that Lp is isometrically isomorphic to

a subspace of L (see [R]).
(ii) Follows from (i) and Theorem 4.1. El

Now let us investigate the (HL)*-property and the (HL)-property for the Schatten
classes. Given < p < c we shall denote by Crp the Banach space of compact
operators on 12 such that

It is well known that Crl coincides with the space of nuclear operators on 12 and or2
with the space of Hilbert-Schmidt operators on 12. The reader is referred to [GK] for
general properties on Crp and to [TJ] for results on (Rademacher) type and cotype on
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these classes. The key point in dealing with them is the use of factorization of analytic
functions with values on theses classes, The reader is referred to [BP], [L-PP], [Pi3]
for the use of factorization in related questions. Let us establish the result to be used
later.

LEMMA D (NONCOMMUTATIVE FACTORIZATION [S]).
there exist twofunctions h, h2 - H2(cr2) such that

Let f . H (try). Then

(eit 2f(eit) hi )h2(eit) and Iifll,,. IIhll 22,a2 IIh2112,o.2.

THEOREM 4.2. trl has the (HL)-property.

Proof. Given f H(cr) take h, hE H2(cr2) such that

f(eit) hi (eit)h2(eit), Ilhlll 2 Iih21122,o.2 2,o.2 f l,o.,

Note that for i, j 1,2},. j,

2r dt f2rt dt
I[hi(reit)hj(reit)llo. <-

Jo
Ilh’i(reit)[[o.2l[hj(reit)llo.2 2-

< Ilh’i(reit)ll22---
Ilhj(reit)ll2

Therefore

M,o.. (f’, r) < M2,o. (h’ r)M2,o.2 (h2, r) 4- M2,a2 (h, r)M2,o.2 (h, r).

This gives

(1 r)M,o..(f’,r)dr < Ilfll l.o., (1 r)M,o.2(h’i, r)dr
i=l

Since tr2 is a Hilbert space we have, using Plancherel,

2r

fo
2rr

2 n2(1 r)M2 (hI, r)dr II/i(n)ll2,o. (1 r)r2n-2dr < Cllhill 2
n=l

This shows

+/-

(f0 (1 r)M2,o.! (f’, r)dr
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To cover other values ofp we shall use some ofthe recent advances on interpolation
of vector-valued Hardy spaces. It is known (see [BX]) that interpolation spaces by
complex or real method, (HP(XI), HP2(X2))O or (HP’(X1), Hp2(x2))O,p do not
coincide, in general, with Hp (Xo) or Hp (Xo,p), but nevertheless there are some
positive results that still can be used to find the (HL)-property of certain spaces.

For some particular spaces, like Lp in the commutative and non-commutative
versions, the expected result remains true (see [X1 ], [X2], [BX], [Pi4]):

1- o thenIf0<0 < land
(HI(LI(/z)), nl(L2(lz)))o HI(LP(Iz)). (4.2)

H(H (trl) H (o2))0 (O’p). (4.3)

(H(LI(/z)), HI(L2(lz)))o,I HI(Lp’I(#)). (4.4)

where LP’ (/z) stands for the corresponding Lorentz space.

PROPOSITION 4.5. Let Xi (i 1, 2) be spaces having the (HL)-property and
assume

(H (Xl), H (X2))o H ((Xl, X2)o).

Then (X, X2)o has the (HL)-property.

Proof Since

T(f) (2-kf’(rkeit))k
defines a bounded operator T" Hd (Xi) /2(Ll(, Xi)) for 1, 2, the assumption
together with the well-known result of interpolation

(12(Ll(Xl)), 12(LI(X2)))O 12(LI((x1, X2)0))

shows that T is also bounded from H)((X, X2)0) into 12(LI((xI, X2)0)) which
shows that (Xl, X2)o has the (HL)-property.

Combining the results (4.3), (4.2) and the previous proposition we easily obtain
the following corollary.

PROPOSITION 4.6. Let < p < oo. Then:
(i) trp has the (HL)-property ifand only if <_ p < 2.
(ii) trp has the (HL)*-property ifand only if2 <_ p <
(iii) Lp’l (lz) has the (HL)-propertyfor < p < 2.

Remark 4.1. Some of the previous ideas appeared already in [BP]. Proposition
4.6 gives an alternative proof of the Paley property of trp for < p < 2 and then the
cotype 2 condition (see [TJ]). Another approach was also obtained in [L-PP].



VECTOR=VALUED BMOA 555

5. Applications

Let us start this section with some new examples ofvector-valuedBMOA functions.
Observe that Theorem 3.2 actually provides a procedure to find functions inBMOA(X)
for spaces with the (HL)*-property.

DefinePROPOSITION 5.1. Let 0 < ot < and p .
2r dp(e-it) dt

la(dp)(z)
(1 zeit) 2--"

Then the operatorgiven by cp -- f (z I (cp is boundedfrom H toBMOA LP).

and G(z) gz. First observe that G is an HP-valuedProof Take g(z)
Blochfunction. Indeed

IIG’(z)llp<Mp(g, lzl)---(fo
z

dt) C
(1 Izle-it)pa+p

<
1-1zl

Now invoke Theorem 3.2.

PROPOSITION 5.2. Let (C, X) have the (H1,BMOA)-property and let T
.(LI(D), X). Then f(z) T(qb’z) BMOA(X)forany qb H I.

Proof. Recall that by Proposition 1.2, g(z) T(Kz) 13(X) where Kz is the
Bergman Kernel Kz(w) <i-zw)2"
Now for any

fo
2r dt (fo

2r

dt)g, qb(z)-- T(Kzei, qb(e-it))-- T .Kze,,qb(e-it)-- T(cp),

so f(z) BMOA(X) by Theorem 3.2. r!

Now let us give a couple of applications to sequences of scalar-valued functions.
Note that if (fn) is a sequence of functions in H such that Y-nr fn I1 <

and let (g) is a sequence of Bloch functions such that supper IIgll < then
-],r f,*gn is absolutely convergentinBMOA. This shows that if f (f) 6 H (l l)
and g (g,,) 6/3(I) then f g BMOA. We now produce an extension of this
result to other values of p different from 1.

PROPOSITION 5.3. Let < p <_ 2. Let fn be a sequence offunctions in H
such that (-nl [fn (eit) p) L l, and (gn) be a sequence ofBlochfunctions such

that (-nI [g’n(Z)lP’) 0(1--1)" Then -nr fn * gn converges in BMOA.
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Proof Notethat f--(fn) Hl(lP)andg (gn) ](lP’) SincelPhas(HL)
property then we can apply Theorem 3.2 to (lp, C) to get f g nr fn * gn
BMOA

PROPOSITION 5.4. Let qb . H and let (gn be a sequence ofBlochfunctions such
that(neN Ig’n(Z)12)1/2 O(_-lzl). Thendlz(z) (1-1zl) nr I(gn*P)’(z)12dA(z)
is a Carleson measure on D.

Proof It folows from (1.1) that d/z(z) (1 -Izl) =N I(g *P)’(z)I2dA(z) is
a Carleson measure on D if and only if (gn * P)N BMOA(12).

This now follows again from Theorem 3.2 applied to (C,/2).
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