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VECTOR-VALUED ANALYTIC FUNCTIONS OF
BOUNDED MEAN OSCILLATION AND GEOMETRY OF
BANACH SPACES

OSCAR BLASCO

Introduction

When dealing with vector-valued functions, sometimes is rather difficult to give
non trivial examples, meaning examples which do not come from tensoring scalar-
valued functions and vectors in the Banach space, belonging to certain classes. This
is the situation for vector valued BMO. One of the objectives of this paper is to look
for methods to produce such examples.

Our main tool will be the vector-valued extension of the following result on mul-
tipliers, proved in [MP], which says that the space of multipliers between H' and
BMOA can be identified with the space of Bloch functions B, i.e. (H!, BMOA) = B
(see Section 3 for notation), which, in particular gives g *x f € BMOA whenever
feH'andg € B.

Given two Banach spaces X, Y it is rather natural to define the convolution of
an analytic function with values in the space of operators £(X,Y), say F(z) =
Ym0 Tnz", and a function with values in X, say f(z) = ) oo, Xa2", as the function
givenby F % g(2) = 300, T (xn)2".

It is not difficult to see that the natural extension of the multipliers’ result to the
vector-valued setting does not hold for general Banach spaces. To be able to get a
proof of such a result we shall be using the analogue of certain inequalities, due to
Hardy and Littlewood [HL3], in the vector valued setting, namely

1 3
(/(; (1—r)M,2(f’,r)dr) <ClIflla

and its dual formulation

| 4
11711 sC(fo (1 —r)M%(f, r)dr) :

This leads us to consider spaces where these inequalities hold when the absolute value
is replaced by the norm in the Banach space, which turn out to be very closely related
to notions as (Rademacher) cotype 2 and type 2.
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VECTOR-VALUED BMOA 533

The paper is divided into five sections. We start with a section of preliminary
character to recall the notions on geometry of Banach spaces to be used throughout the
paper and which also contains the basic properties of vector-valued analytic functions
of bounded mean oscillation and functions in the vector valued Bloch space.

Section 2 is devoted to give some sufficients conditions on the derivative of the
function or on the Taylor coefficients of the function to assure that the function

belongs to BMOA(X). It is shown that one has M,(f’,r) = O((1 — r)_FI’) for
some 1 < p < oo or||x,|| = 0(%) (in the case of B-convex spaces) implies that
f@) = Y0 x.2" € BMOA(X).

Section 3 deals with multipliers between spaces of vector valued functions defined
on different Banach spaces X and Y. This is done by looking at functions with values
in the space of operators £(X, Y) and considering the natural convolution mentioned
above. We also introduce two new notions based on the vector-valued formulations of
the Hardy-Littlewood inequalities previously pointed out, called the (H L)-property
and the (H L)*-property respectively. Itis shown that under the assumptions of (H L)-
property on X and (H L)*-property on ¥ one has (H'(X), BMOA(Y)) = B(L(X, Y)).

Section 4 is devoted to the study of these properties. It is shown that the spaces
having the so-called (H L) and (H L)* must satisfy the Paley property (see definition
in Section 1) and have type 2 respectively. It is also shown that the natural duality
between them holds for UMD spaces. We investigate Lebesgue spaces L? and Schat-
ten classes o, having such properties. The tools to deal with Schatten classes are the
use of certain factorization and interpolation results holding for functions in Hardy
spaces with values in them.

Finally Section 5 is devoted to present several applications of different nature of
the previous results.

Throughout the paper all spaces are assumed to be complex Banach spaces, D
stands for the unit disc and T for its boundary. Given 1 < p < oo, we shall denote by
LP?(X) the space of X-valued Bochner p-integrable functions on the circle T and write
1Flpx = ST IF €17 )7 and My x(F,r) = IF,llp.x = (Jo IF(re) 1P )7
whenever F is any X-valued analytic function on D. We shall write L' (D, X) for the
space of X-valued Bochner integrable functions on D with respect to the area measure
dA(z),and H?(X) (resp. Hé’ (X)) for the vector-valued Hardy spaces, i.e., the space
of functions in L? (X) whose negative (resp. non positive) Fourier coefficients vanish.

Of course Hardy spaces H?(X) (resp. H(f (X)) can be regarded as spaces of ana-
lytic functions on the disc. Actually they coincide with the closure of the X-valued
polynomials, denoted by P(X) (resp. those which vanish at z = 0, denoted by Py (X),)
under the norm given by sup,_, .; Mp x (f, 7).

The reader should be aware that the analytic functions we are considering have
boundary values a.e. on T, but this in general does not hold (such a fact actually
corresponds to the so called ARNP introduced in [BuD]).

Finally let us point out a notation to be used in the sequel. Whenever a scalar-valued
function ¢ is given we write ¢,(w) = ¢ (zw) and look at z — ¢, as a vector-valued
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function. Asusual p’ is the conjugate exponentof p when 1 < p < oo, i.e. 715+ ﬁ =1
and C will stand for a constant that may vary from line to line.

1. Preliminaries on geometry of Banach spaces and vector valued functions

The connection between certain properties in geometry of Banach spaces and
vector-valued Hardy spaces is well known. Some of them, like ARNP [BuD] and
Paley [BP], were actually introduced to have certain theorems on Hardy spaces hold
in the vector-valued setting; others, like UMD [Bu2], B-convexity [MPi] or Fourier
type [Pee], were connected to this theory through the boundedness of classical oper-
ators like Hilbert transform, Paley projection or Fourier transform for vector-valued
functions. In this section we shall recall those to be used in the sequel and give some
references to get more information about them.

One of the more relevant properties in the vector-valued Fourier analysis is the so
called UMD property. It was introduced in the setting of vector valued martingales,
but was shown (see [Bul], [Bol]) to be equivalent to the boundedness of the Hilbert
transform on L?(X) for any 1 < p < oo. Because of this it is a natural assumption
when dealing with vector-valued Hardy spaces.

We shall say that a complex Banach space X is a UMD space if the Riesz projection
R, defined by R(f) = Y, f (n)e™, is bounded from L?(X) into H*(X).

One of the basic facts on this property that we shall use is that the vector valued
version of the Fefferman’s H! — BMO-duality theorem holds for UMD spaces (see,
for instance, [Bo3], [B2], [RRT]). The reader is referred to the surveys [RF], [Bu2]
for information on the UMD property.

Another useful property for our purposes will be the notion of Fourier-type intro-
duced by Peetre [Pee] which corresponds to spaces where the vector-valued analogue
of Hausdorff-Young’s inequalies holds.

Let us recall that for 1 < p < 2, a Banach space X is said to have Fourier type p
if there exists a constant C > 0 such that

P

(Z ||f(n)||"') < Clflero-

R=—00

It is not hard to see that X has Fourier type p if and only if X* has Fourier type p.
Typical examples are L” for p < r < p’ or those obtained by interpolation between
any Banach space and a Hilbert space. The reader is referred to [Pee], [GKT], [K] for
some equivalent formulations, connections with interpolation and several examples
in the contex of function spaces.

Letus now recall two fundamental notions in geometry of Banach spaces associated
to Khintchine’s inequalities. Although they are defined in terms of the Rademacher
functions, to be denoted r,,, we shall replace them by lacunary sequences ¢'2"*, which
gives an equivalent definition [MPi], [Pil].
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Let1 < p <2 < g < oo. A Banach space has cotype g (resp. type p) if there
exists a constant C > 0 such that for all N € N and for all xg, x;, x2,...xy € X one

has
N 4% N "
Dol ) < D] xee*
k=0

k=0

1,X
and respectively

N
Z Xk e2"it
k=0

A Banach space is called B-convex if it has (Rademacher)-type > 1.

The reader is referred to [LT] and [Pi2] for some applications of such notions to
the Banach space theory.

Let us now state two fundamental theorems, to be used in the sequel, due to
J. Bourgain and S. Kwapien respectively.

N 3
<C (Z ||xkn") :
X

k=0

THEOREM A . [Bo4], [Bo5] Let X be a complex Banach space. X has Fourier
type > 1 if and only if Xis B-convex.

THEOREM B. [Kw] Let X be a complex Banach space. X is isomorphic to a
Hilbert space if and only if X has type 2 and cotype 2.

Let us finally recall another property, stronger than cotype 2, to be used later on
that was introduced in [BP] and depends upon the vector-valued analogue of Paley’s

inequality [Pa] for Hardy spaces. A complex Banach space X is said to be a Paley
space if

0
(Z [ u2) <Cliflh.x
k=0

forany f(z) = Y e Xn2" € H'(X).

Let us now consider the vector-valued version of analytic BMO and the space of
Bloch functions B. The reader is referred to [GR], [G] and [Z] for scalar-valued
theory on BMO and to [ACP] and [Z] for results on scalar-valued Bloch functions.

DEFINITION 1.1.  Givena complex Banach space X, we shall denote by BMOA(X)
the space functions f € L'(X) with f(n) = 0 for n < 0 such that

1 ; dt
= sup — M — fill— < oo,
1 =sup o [ 176" = il
where the supremum is taken over all intervals I € [0, 2r), |I| stands for the nor-
malized Lebesgue measure of I and f; = ﬁ L f (e"')g—,';.
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The norm in the space is given by

2n . dt
f (e”)—2 '
0 JT

| fllsmoxy = I + 1l x-
From John-Nirenberg’s lemma [G], [GF], which holds in the vector-valued setting,

one can actually replace the L! norm in the definition by any other L? norm; that is,
forany 1 < p < oo,

1
~ _..1_ ity _ p t_if.) ’
I f 1l x Sl;p (III fl 1 f ™) = fill )

Let us point out certain results on the duality to be used later on. Although most
of the results on the duality H! — BMO for vector-valued functions (see [B2], [Bo3],
[RRT]) are given for the space H! defined in terms of atoms, it is easy to deduce from
the known results the following facts:

For any Banach space X, BMOA(X*) continuously embeds into (H'(X))*. Actu-
ally if f € BMOA(X*) and g € P(X) then

2n . . dt
fo < f(e"), gle™) > 7 < I fllsmoacx+ligl,x-

If X is a UMD space then we actually have the validity of Fefferman’s duality
result

(H'(X))* = BMOA(X™).

In the particular case of Hilbert spaces we also have that following formulation in
terms of Carleson measures holding (see [G] for a proof which can be reproduced in
the Hilbert-valued case).

If f(z) = Y pooxkz* with x, € H then

1
Il fll«x =~ sup (fD(l - |w|)llf’(w)llsz(zb)dA(w)) (1.1)

lz|<1

where P, is the Poisson Kernel P,(w) = L'Jfﬁz

1—zw|**

Let us now recall some results on vector-valued Bloch functions.

DEFINITION 1.2. Given a complex Banach space E we shall use the notation
B(E) for the space of E-valued analytic functions on D, say f(z) = Y poqXa2",
such that

Supl(l = lzZDILf @l < oo.

lz|<

We endow the space with the norm

I flBE) = max{|| f O, ﬂlpn(l = lzDILf @1}
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The next result, although known, is included for the sake of completeness.

PROPOSITION 1.1 (see [ACP], [AS]). Let E be a Banach space and x,, € E.

2n+l

o0
@A) If sup sup Z [{x*, x¢)| < oo then Zx,,z” € B(E).
lx*)| <1 n=0 g =3n n=0

@) | Xon o %2 | B(E) = SUP, 50 IXnll.

Proof. (i) Note that for each ||x*|| < 1,

oo 00 2n+l
ont x| < Y0y kI x el
n=1 n=0 k=2"
2n+| o0
2"—1
< (sule(x*,xm) (Zz"“lzl )
n>0 g —on n=0
C
< .
1 —|z|

Hence ), (x*, x,)2" € B uniformly in ||x*|| < 1.
(i) Take (2) = o2 %az” . From () wehave | 52 52 ey < C supyzg Il
The other estimate follows by takingr =1 — 2L” in the inequality

n_ , C
2" lxallr® =" < sup |l f'@)I < = a
lzl=r =T

PROPOSITION 1.2. Let X be a Banach space, let K, denote the Bergman Kernel
K,(w) = (,—_i—u;; and T € L(LY(D), X). Then f(z) = T(K,) is a X-valued Bloch
function.

Proof. Observe that f(z) = Y oo o(n + )T (uy)z" for u,(w) = w".

Therefore f'(z) = Y po n(n+ DT (u,)2" ! = T((l:?uu;)s) and then we have
b 2r dt
/ < T _— —d
iron i [ [ o=
1
2 1
< c|T)| 4 o

dr <C .
o (1—rlz)? 1—1z|
2. Elementary properties and examples on BMOA(X)

Let us start by pointing out some procedures to obtain non trivial examples of
vector valued BMOA functions. We shall give some simple necessary conditions
following [CP] and [BSS].

For such a purpose we shall need some well known lemmas.
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LEMMA A. Let0 < p < g < oo and let g be an X-valued analytic function.
Then

M, x(g,r) < C(1—r)i M, x(g,r)  (see[D,page84]).  (2.1)
Let y > 1; then
2 do I
| =0 =)' Gee D page6s). @)
o |1 —ze®)y
Let y < B; then

P —ry!

T = 0(A=9)  (eeSW.Lemma6].  (2.3)
b, (=

The next result has an straightforward generalization to the vector-valued setting.

LEMMA B (Hardy-Littlewood [D, Theorem 5.4]). Let f: D — X be analytic,
i<p<ocwandl<a<l.

If My x(f',r) = O (=) (r = 1) then

2n %
(/0 If (") — f(e‘('+h))|l”dt) = 0(|h|*), (h > 0).

THEOREM 2.1. Let f be a X-valued analytic function. If there exists 0 < p < 0o
such that

Mpx(fir)=0(1=r)77)
then f € BMOA(X).

Proof. Note that (2.1) implies that if there exists 0 < pp < oo such that
]

My, x(f',r)=0(1~-r) FQ) then the same property holds for any p > py. There-
fore it suffices to prove the result for 2 < p < oo.

In such a case to see that f € BMOA(X) we can use Lemma B (for o = 1) and
the argument in [BSS, Theorem 2.5] that we include for sake of completeness

Note that Lemma B implies /™ _|| f(e'“~) — f(e")I? & < C|s| V5.

Assume I = [—§, 8] for some 0 < § < 7 (the general case follows by using
translation invariance of the space).

s ||? dt

ity _ _ it is
f 1)~ fillP o —28 = f (e - fENE| 5

1 ity is _S ﬂ
< o _SEE(f_a If ) — fee )u"m)z]r

1]
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1 ’ e it i(t—s) dt
= ([ e - reenr ) o
1 g 2 it i(t—s) dt
=/ (f_%nf(e) FE NP )2—
1 » " i(t—s it ds
==/ (f 17— FI ) 5

1 ds

Letus now go abit further and find conditions on the sequence of Taylor coefficients
x, which guarantees that the corresponding analytic function belongs to BMOA(X).
Some conditions can easily be achieved for spaces of Fourier type p.

IA

IA

COROLLARY 2.1. Letl < p < 2,let X be Banach space with Fourier type p and
(x,) a sequence in X such that

N
D linxall? = ON).
n=1

Then f(z) = Y poq Xn2" € BMOA(X).

Proof. Let us first observe that the assumption implies

2n+|
sup2"P~D Y " x|l < oo.
neN k=2

Let us now show that M,y x(f',r) = O((1—r)~ %) and then the result will follow
from Theorem 2.1.

It is not difficult to see, using duality, that Fourier type p can be also formultated
as

Ifllyx <C (Z uf(n)np) :

nez

Therefore, from the Fourier type p condition, it follows

OO 14
My x(f,r) < C(an’"xn"prp(n—l)>
n=1
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(i (22 % uP) 2P"r"2”) l

n=0 \k=2"

|A

2n+l ; 00 "l’; C
C(supZ”(” 1>Z||xk||1’) (ZZ"r”Z") < . O

=<
k=2 n=0 (1 - r) g
Example 2.1. Consider fi(z) = (%)neN and fo(z) = Y ,o, 22" (r, are the
Rademacher functions).
Observe that
|z|" 1
1@l = 2 eqo.1p = Z — - =logT— L

n=1

Hence || ||y = || 2| L=qo,1p = L but fi ¢ BMOA(I')and f, ¢ BMOA (L*([0, 1]))
(because f; ¢ HY(X;) for X, =11, X, = L®([0, 1])).

This shows that, in general, the simple condition ||x,| = 0(%) does not imply
that f € BMOA(X).

COROLLARY 2.2. Let X be Banach space. The following are equivalent

() IflIxall = O(2) then Y 52| x,2" € BMOA(X).
(it) X is B-convex.

Proof.

(i) = (ii). Assume X is not a B-convex space. Then it contains /! uniformly
which allows to built a function as f; in Example 2.1, leading to a contradiction with
@).

(if) = (i).We can invoke Theorem A to find 1 < p < 2 such that X has Fourier
type p. Now apply Corollary 2.1 for sucha p. 0O

Remark 2.1. The reader should be aware that Corollary 2.3 is nothing but the dual
formulation of a result inlcuded in [BP] due to Pisier, which says that X is B-convex
if and only if the functions in H),(X) satisfy Hardy inequality.

3. Vector valued multipliers from H'(X) into BMOA(Y)

Let us denote by (H', BMOA) the space of convolution multipliers between H'
and BMOA, that is the set of functions F(z) = Z;’f_’__o An2" such that there exists a
constant C > 0 for which

o]
Z An0n 2"

n=0

c|See|

BMOA
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the following scalar-valued result was proved in [MP]
(*) (H',BMOA) = B

where B stands for the space of Bloch functions.

We shall be interested in this section in the vector valued formulation of this result.
First of all we need to give sense to the notion of convolution multiplier acting between
two different Banach spaces. We present here two possible interpretations.

Let us recall that given Banach spaces X, Y we denote by X®Y the completion
of X ® Y endowed with the projective tensor norm, i.e. foru € X ® Y

el xoy = inf [Z llxi s u]
i=1

where the infimum goes over all possible representations of u = ZLI X ® yi, Xxi €
X, yi € Y.

DEFINITION 3.1.  Given f(z) = Y o0 xn2" € H'(X) and g(z) = Y ne o Wn2" €
H'(Y) we shall define the X®Y -valued analytic function

2n

2 _ —it it ﬂ — S n
fig(2) = X fze™) @ gle™) >~ —;xnmnz. 3.1

It is rather simple to observe that f%g(z) € H/(X®Y).

DEFINITION 3.2.  Let X, Y be complex Banach spaces and let F(z) = Y _po T,z"
be a L(X, Y)-valued analytic function and f(z) = Y peqoXa2" € H'(X). We define
the Y -valued function

0 2r . . d
Fxf@) =) T(x)2" = /O F(ze") (fe™) % (32
n=0

We shall denote by (H'(X), BMOA(Y)) the set of analytic functions F: D —
L(X,Y) such that F x f € BMOA(Y) for any f € H' (X).
This becomes a closed subspace of L (H'(X), BMUOA(Y)).

Let us notice first that we have the following obvious extension.
LEMMA 3.1. Let X, Y be two complex Banach spaces. Then
(H'(X), BMOA(Y)) C B(L(X,Y)).

Proof. GivenF € (H'(X), BMOA(Y))andx € X, y* € Y*then (F(z)(x), y*) €
(H', BMOA). Hence, from the scalar-valued case (x),

(F @), y) B < I1Fll (a1 x),Bmoacey) IX 1Ly
This clearly shows F € B(L(X,Y)). O
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Nevertheless let us first point out that there is no hope for the analogue of (x) to
hold for general pairs of Banach spaces as the following remark shows.

Remark3.1. Let us assume B(L(X, X)) C (H'(X), BMOA(X)) then taking
T, = I, the identity operator, part (ii) in Proposition 1.1 shows that F (z) = Zj’,‘;o T,z%
€ B(L(X, X)) and then one should have

o0
n
Xon Zz
n=0

<UF* fllx < Cllifllx.
1,X

This cannot be true as soon as we take X being a cotype 2 space but not a Paley space

(for instance X = I’;—',, see [BP]). In fact it will be shown later that actually under
0

such an assumption X has to be isomorphic to a Hilbert space.

DEFINITION 3.3. Let X, Y be complex Banach spaces. The pair (X, Y) is said to
have the (H', BMOA)-property if

(H'(X), BMOA(Y)) = B(L(X, Y)).

Let us now present various properties holding for pairs having the (H', BMOA)-
property.

THEOREM 3.1. Let (X, Y*) have the (H', BMOA)-property.
If f e H(X)and g € H'(Y) then (f%g) € L'(D, X®Y).

Proof. Letus recall that (X®Y)" = L(X, Y*) under the pairing

n

(T, Zxk ® yk) = Z(T(xk), Yi)s
k=1

k=1
where (, ) stands for the pairing on (¥, Y*).

On the other hand for any Banach space E one has L!(D, E) = L! (D)®E what
gives (L'(D, E))" = £ (L'(D), E*) under the pairing given by

[T, Zem] =D (T @), &)
k=1 1

k=

for any e; € E and ¢, € L' (D) where ({, )) stands for the pairing on (E, E*).
Assume now f(z) = Y ,_,X.2" and g(z) = >, yaz". Hence (f%g)'(z) =
Yo Xn ® yaz" .
According to the previous dualities, and denoting u,(w) = w", we can write

|

D (T Wnt), Xn ® Ya)

n=1

I(f%8) 11D, xgy) = Sup [



VECTOR-VALUED BMOA 543

where the supremum is taken over T € £ (L'(D), £(X, Y*)) with || T|| = 1.
Note that foreach T € £ (L' (D), L(X, Y*)) with T, = T (un—1) € L(X, Y*) and
IT|| = 1 we have

D (T Wn1), X @ y) = ) _ n{T(xa), n).
n=1 n=1

On the other hand, with F(z) = Y oo, nT,z", observe that F(z) = zT(K;)
and therefore, from Proposition 1.2, it is a £(X, Y*)-valued Bloch function with
IT (K Becx, vy < ITI.

Now notice that

2 2 dt d
f / (F(ré ) (f (), g(e*)) 2L L8

;n(Tn(xn),)’n) 2T 27[

< IIF * fllamoar»llgl,y
< ClFlscx,ypl flluxligl,y- O

COROLLARY 3.1. Let (X, Y*) have the (H', BMOA)-property.
If fi2) = Z:°=0 x,2" € HY(X) and g(2) = Z:io " € HY(Y) then

o0
Dl llyzll < ClFllxliglhy.

n=0

Proof. Leth(z) = (f%g)'(z) € L'(D, X®Y). Obviously one has

nlxalllyallr"™" < My xgr(h,r)  (n€N).

Therefore

IV

1 1—2—G+D)
k
[{ Mxortriar = 3 [0 icalintr® s
0 k—O 1

A%

o }_'_j lleae ly2e - O
k=0

COROLLARY 3.2. If (C, Y*) have the (H', BMOA)-property then Y is a Paley
space.

Proof. Apply Corollary 3.1 to f(z) = Y o2 anz* € H' and g € H'(Y) and
recall that || f 1 ~ (350, le |2)2.

LEMMA 32. If (X,Y) has the (H', BMOA)-property then (X, C) and (C,Y)
also have the (H', BMOA)-property.
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Proof. () Let F(z) = Y ox*z" € B(X*) and f(2) = Y2y x:2" € H'(X).
Fixy € Y with ||y|| = 1 and consider I:'(z) = Zﬁ;o T, 7" where T, are the operators in
L(X,Y) defined by T, (x) = (x;, x)y. Itis elementary to show that Fe B(L(X,Y))
and || Fl|scex.ry = I FllBcx+). Therefore

00 o0
D i x)t = | T
k=0 BMOA k=0 BMOA(Y)
N o0
< CllFlBeary | Y xezt
k=0 L,X
(i) Let F(z) = Y 000 yn2" € B(Y) and ¢(2) = Y popanz” € H'. Fixxp € X

and x§ € X* with ||xoll = 1 and (x¥, xo) = 1. Define F(z) = %2, T,z" where T,
are defined by T, (x) = (x, x)y,. Itis elementary to show that Fe B(L(X,Y)) and
I FllBccx,vy) = I FliBr). Observe that

(e e "
Yt =) Tu(@nx)" = Fx f
n=1 n=1

where f(z) = ¢(z)xo. Then we have

o0 oo
Y Ytz < ClFlscyy || Y onXol"
n=1 BMO(Y) n=0 1LX
e
< ClFlsw | ant” o
n=0 H!

PROPOSITION 3.1. Let X, Y be two complex Banach spaces.
(i) If (X, C) has the (H', BMOA)-property then X is a Paley space.
@) If (C, Y) has the (H', BMOA)-property then Y has type 2.

Proof. (i) Let f(2) = Y nexs2" € H'(X) and choose x} € X* with ||lx}|| = 1
and (x;,x2:) = |lx2||. Let us recall that Khintchine’s inequalities hold for BMO

functions ([G)); i.e.,
- 3
(Z 7 |2) ~

k=0

ad k
E ak22
k=0

BMOA
Then, using the previous fact,
L 1
o0 2 o0 2 o0 "
(Z llxze ||2) = <Z [678 x2k>|2) o2 PIEANES
k=1 k=1 k=1 BMOA
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Let us observe that, from (ii) in Proposition 1.1, F(z) = Z;’,":I x;,"zz" belongs to
B(X*) and therefore

00 b oo
(Z llx2x ||2) < Dtk 2y
k=1 k=1 BMOA
o0
< ClIFllBoey | x| < Clifllix
k=1 1,X

This shows that X is a Paley space.
(ii) Now given yo, y1, y2, ... yn € X with y; # O we define F(z) = Z
From Proposition 1.1 again we have F € B(Y) and || F|lgy) < C.
Observe that

2
=0 Ty, | 7

N
Zykz Znykn—z =Fx¢

k=0
where ¢ (z) = Zk-O llyllz%; then we have

N k N k
2 2
z YiZ z YkZ
k=0

=
Ly k=0 BMO(Y)
N
< ClIFlse | Y| yellz® Il
k=0
=<

N }
c (Z 1y ||2)
k=0

We shall now introduce two new properties which are motivated by the inequality
due to Hardy and Littlewood mentioned in the introduction and its dual formulation
and will be connected with the (H', BMOA)-property.

Let us recall the notation P (X) and Py(X) for the X -valued polynomials and those
which vanish at z = 0 respectively.

This shows that X hastype 2. O

DEFINITION 3.4. A complex Banach space X is said to have the (H L)*-property
if there exists a constant C > 0 such that

Ifl.x<C ( (1—=r)sup|lf (z)||2dr) (3.3)

|z|l=r

forany f € P(X).
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PROPOSITION 3.2. Let H be a Hilbert space. Then H has the (HL)* property.

Proof. Using (1.1) we have
1 —=121%)(1 —
1 lles ~ sup f (= ey = DS @I,y

lzl<1JD 11— wz|?

Now for any z € D one has

— 1212)(1 —
f (1—lz| )(lll _lwI?ZHIf(w)HHdA( )
ol —rz)? dt
_ ! 2 A el
A (1 r) :,ufr ILf )iy (/0 T—reigf Zn)dr

1
(l —r) sup || f'(w)l5dr.

lw|=r

Therefore

lwl=r

1 3
W fllem < C( (1 —=r)ysup I f (w)IIHdr) < 0.

The next example shows that X = I! fails to have the (H L)* property.

Example 3.1. LetX =1'and f(z) = (mz ) . Then

1
(1 —r) sup || f'(2)|7idr < o0

|z|=r

but f ¢ H'(Y).

Indeed, since || f ()| = Z:il ZT)E(I_n:(——lilz‘n then
00
lim M V) = = 00,
lim My (f,7) ; nlog()

which gives f ¢ H'(I").
On the other hand, (see [L, page 93-96]),

o0

! _ ; - |z
W@l = ; log(n + 1)'ZI (1 —|z])(log 1_+z|)'
Therefore
. 1 dr
/ 1 =7 EP—I: I @Nhdr < A m =%
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DEFINITION 3.5. A complex Banach space X is said to have the (H L)-property
if there exists a constant C > 0 such that

34 ( (1-r)M} x(fs r)dr) <Clfll.x
forany f € Py(X).

Remark 3.2. Observe that

Tk+1

fo(l—r)Mlx(f r)dr—Z/ (1 —r)M; y(f', r)dr,

for ry = 1 — 27* and then, since M, x(f, r) is increasing the inequalities (3.3) and
(3.4) can be replaced by

Ifl.x<C (Z 27 sup I (z)||2) (3.4)
k=0 Z|=rk
and
o 4
(Z 27%M3 (f, rk)) < Cliflh,x- 3.5)
k=0

Therefore inequality (3.6) says that X has the (H L)-property if and only if the
operator f — (27 f'(rye™)), is bounded from Hy (X) into I* (L'(X)).

Example 3.2. Let X = co; then X fails to have (H L)-property.

Indeed, take fy(z) = 3N_, e,z" and then clearly supycy Il fvll1co = 1.
On the other hand M ., (f}, rx) > C2* for N > 2*. Therefore

00 2
(Z 27*M2 . (fy, rk)) > CN1. m
k=0

THEOREM 3.2. Let X, Y be Banach spaces.
If X has the (HL)-property and Y has the (HL)*-property then (X, Y) has the
(H', BMOA)-property.

Proof. From Lemma 3.1. we only have to prove

B(L(X,Y)) C (H'(X), BMOA(Y)).
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Let F(z) = Y oo Tnz" € B(L(X,Y)) and f(2) = Y oo xn2" € HY(X).
Now observe that

2(F* f)(2%) = ZnT,.(xn)zz"‘1

27t

= f F'(ze") (f(ze™™)) "

[ [ (e m)

(an sn—l —i(n— l)t) ;—tsds
2
f f F'(zse") (f'(se™)) sé’

Therefore, since F € B(L(X,Y)), we have

Y My x(f1, slzl)
S Myx(fi, s12)
W2(F* FY@ON < CiFlsean | =150

1 ds 3 Izl ) Y 3
ClIFllBecx.vy (fo m) (? Mix(f's) S)

CIF Iz :
—%%(/0 Mlz.x(f',s)ds) )

A

IA

IA

Hence

sup [|z(F * fY @)l <

o r !
’ < | M2 /’ d ) .
lzl=r -} (/0 i,x(f', 8)ds

‘Now, using the (H L)*- property on Y and the (H L)-property on X, we can estimate

IF*fI2y < f (1= r?) sup I(F % f) @ |Prdr

l2l=r2

c f ( f ' M?y(f, s)ds) dr
01 0

c fo (1= M2 (', $)ds < Cll flh.x.

IA

Il

Clearly || fo Fxf (e") I = To(xo)ll < Cllfll1,x. This combined with the
previous estimate finishes the proof. O



VECTOR-VALUED BMOA 549
4. Lebesgue spaces and Schatten classes with (HL)-property

In this section we study these new properties and investigate the Lebesgue spaces
and the Schatten classes having the (H L)-property and the (H L)*-property.

Let us start with some general facts and their relations with the notions of type and
cotype.

PROPOSITION 4.1. (i) If X has the (H L)-property then X is a Paley space.
(@) If X has the (HL)*-property then X has type 2.

Proof. Combine Theorem 3.2 together with Proposition 3.1. O
Let us now establish the duality existing between both notions.

THEOREM 4.1 (DUALITY). (i) If X* hasthe (H L)*-property then X hasthe (HL)-
property.

(ii) Let X be an UMD space. Then X* has the (H L)*-property if and only if X
has the (H L)-property.

Proof. Letf(z) =) oo, x,2" € H}(X) with || f||;,x = 1. Using the embedding
(LX) € (X)),
and setting ry = 1 — 2%, we have

(Z 27% M2 (f, rk)) = sup

k=0

X [T . d
Z/ 27 ' (ree™), gile™))
k=0 Y0

E ’

where the supremum is taken over the set of sequences (gi)xey C C(X*) such that

e llgliZ, x- = 1.
Letting

2 it
gk(e") dt
G = LA
k@) _/0 (1—ze ) 2n
we have, for |z| = r,

s 1 dt 1
1GL D lxe < lgklloo.x- /0 |

_——— < C— "
1— zrke—,tl3 2ar — (1 — rkr)2 "gk"oo.X

Therefore for any sequence (gi) with Y ;2 llgllo, x» = 1,

0 2 ) . . d
> f <2-‘f’<rke"),gk(e-")>2—’
k=070 T
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(f(e”) Zrka( e‘”))

k=0

< Iflhx lZZ"‘G;(rke")
k=0 *’X:
o 2 3
<C (1 —rysup | Y 27*Gi(r)|  dr
lzl=r || k=0 X*

co[amn (S uter AN
- 0 k=0 (l—rkr)2

Using Holder’s inequality and the facts

iz_k 1 N/' ds
A =rr)?  Jo (1=rs)?

k=0
/‘ ds 1
o 1—rs)2 1-r’
we can write

c [(1_ " 2_k |36, x- iz'k—l— o)
k=0 a —rkr)z k=0 a —rkr)2
- "gk" X* ! ds ?
(/ a )(Zz (1—rkr>2) (! (1—rs>2)d')

r ;»
Cc 271 gk ll2 / — ] <c.
(kz=(:) |gk”oo,X o (1 _ rkr)2

(ii) From part (i) we only have to show that if X is a UMD space having the
(H L)-property implies X* has the (H L)*-property .

Given an X*-valued polynomial, say f(z) = Y »_,x:z", and using the duality
(H'(X))* = BMOA(X*), we have

~
IA

IA

IA

2 . . d
£l x+ = sup [/(; (f(e”),g(e"'))é :g € Hy(X), llglh,x = 1]-

Now let us observe that for g(z) = Y oo X42"

m

f2"< ), N =3 (at,m)
A fe'), gle . Xy Xn

n=1
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1
=2 / (1-r%
/ an* n—1 -t(n—l)t Z(n+1)x n x(n )t -d—tdr
—~ n" 2
2 . o dt
=2 / A=r) | (fi(re"), g re™))e" —dr
0 0 2

where g1(z) = zg(z). Hence

2n . . d
‘ f (£, g™ 5
0 v

IA

1
/0 (1 —r)M x (g}, 1) |Slllp I f' @l x-dr

1

1 2
([a-nm Ex(gionar) ( f (1= sup Ilf(z)llx.dr)

1
Cliglx ( / (1= r) sup ||’ (z)ux.dr)

IA

<
|z|=r
1
1 2
< Cllglh,x( 1-r) S}lp Ilf(z)llx~dr) . O
lz|=r

PROPOSITION 4.2.  Hilbert spaces have the (H L)*-property and the (H L)- prop-
erty.

Proof. The (HL)*-property was proved in Proposition 3.2. Now apply Theo-
rem 4.1 to get the (H L)-property. O

COROLLARY 4.1 [B2]. X is isomorphic to a Hilbert space if and only if (X, X)
has the the (H', BM O)-property.

PROPOSITION 4.3. Let (2, X, u) be ameasure space. If X has the (H L)-property
then L!(u, X) has the (H L)-property.

Proof. It follows from the vector-valued Minkowsky’s inequality that
00 3 o0 3
IfelZig) <€ | feOP? : @.1

() —

k=0
L'(w)

for any sequence (f;) € L!(u).
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Now, given an L! (i, X)-valued analytic polynomial, say F(z) = Y n_o x»2", for
a.a. o € Q the X-valued polynomial F(w)(z) = Y_,_, X»(w)2" satisfies

1

00 2 27 ) d
(ZZ‘Z*M%,X(F’(w),rk)) <c fo IF@EIge e

k=0
Now integrating over £2,
1
o0 2
(Z 27 M} (F' (), rk)) < ClIFlly,Liux)-
k=0 L' ()
On the other hand, from (4.1),

0 } 00 ;
(Z 27*M3 L (Fs rk)) = (Z 127 M, x (F' (o), rk)ui.(m>
k=0 =0

o0 2
< (Z 27| F ., rk>||§>
k=0 L'(n)
< NFIh,z e, x)- O

PROPOSITION 4.4. Let (2, X, i) be a measure space.
(i) LP(u) has the (HL)- property ifand only if 1 < p <2.
(ii) L? () has the (H L)*-property if and only if2 < p < oo.

Proof. (i) From Proposition 4.1 the (H L)-property implies cotype 2 and then
l<p=<2

On the other hand L!(u) has the (H L)-property according to Proposition 4.3.

The case 1 < p < 2 follows from the fact that L” is isometrically isomorphic to
a subspace of L' (see [R]).

(ii) Follows from (i) and Theorem 4.1. [

Now let us investigate the (H L)*-property and the (H L)-property for the Schatten
classes. Given 1 < p < oo we shall denote by o, the Banach space of compact
operators on /2 such that

IAl, = (tr(A*A)g)% < 0.

It is well known that o} coincides with the space of nuclear operators on /2 and o,
with the space of Hilbert-Schmidt operators on /2. The reader is referred to [GK] for
general properties on o, and to [TJ] for results on (Rademacher) type and cotype on
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these classes. The key point in dealing with them is the use of factorization of analytic

functions with values on theses classes. The reader is referred to [BP], [L-PP], [Pi3]

for the use of factorization in related questions. Let us establish the result to be used
later.

LEMMA D (NONCOMMUTATIVE FACTORIZATION [S]). Let f € H'(oy). Then
there exist two functions hy, hy € H*(0y) such that

f€") = hi(eha(e") and || fll1o, = 1111135, = I2ll3,,-
THEOREM 4.2. 0 has the (H L)-property.

Proof. Given f € H'(o)) take hy, h, € H*(03) such that

fE@) =hi(€Dh(e"),  Nhl3,, = lh2l}e, = 110,
Note that for i, j € {1, 2},i # j,

e it iy 9t i ity 9t
A l|h;(re'Yh;(re )||a.§ < A [lh;(re')lq, lhj(re )HQE

2m 3
(/ ||h;(re")||(2,2;—t)
0 /4
2n ; dt %
><(‘/0 ||hj(re‘)||§zg) .

Ml,m (flv r) =< M2,U2(h/ ) r)Mz,ﬂz (h29 r) + Mz,dz (hh r)M2,62 (h,2a r)~

IA

Therefore

This gives

2

2n % \ 2n %
(0 (l—r)Mf,a,(f’,r)dr) snfuf,,,,Z(o (l—r)M;a,(h;,r)dr) .

i=1

Since o3 is a Hilbert space we have, using Plancherel,
2 00 R 2
(=M}, (h;, rydr =Y ki) |2, f (1 —r)r*2dr < Cllhi |2,
0 n=1 0

This shows

2 2
(fo (1—r)M.2,a,(f',r)dr) < Cliflha- m



554 OSCAR BLASCC

To cover other values of p we shall use some of the recent advances on interpolation
of vector-valued Hardy spaces. It is known (see [BX]) that interpolation spaces by
complex or real method, (H”'(X1), HP2(X3))e or (HP'(Xy), HP2(X3))e,, do not
coincide, in general, with H?(X,) or H? (X ,), but nevertheless there are some
positive results that still can be used to find the (H L)-property of certain spaces.

For some particular spaces, like L? in the commutative and non-commutative
versions, the expected result remains true (see [X1], [X2], [BX], [Pi4]):

If0<6 <land ;=1 § then

(H'(L'(w)), H' (L*(w))), = H' (L? (w)). 4.2)
(H'(01), H' (02))9 = H' (5}). 4.3)
(H'(L' (), H' (L*(W)))e,1 = H' (L7 (). 4.4)

where L?'!(j1) stands for the corresponding Lorentz space.

PROPOSITION 4.5. Let X; (i = 1,2) be spaces having the (H L)-property and
assume

(H' (X)), H'(X2))o = H' (X1, X2)p)-
Then (X, X2)¢ has the (H L)-property.

Proof. Since

T(f) = Q7 f'(ree

defines a bounded operator T: H{ (X;) — I*(L'(T, X;)) fori = 1, 2, the assumption
together with the well-known result of interpolation

(@ x)), L (X)), = PL (X1, X2)6))

shows that T is also bounded from Hj ((X1, X2)e) into I2(L'((X1, X2))) Which
shows that (X, X»)s has the (H L)-property. 0O

Combining the results (4.3), (4.2) and the previous proposition we easily obtain
the following corollary.

PROPOSITION 4.6. Let 1 < p < oo. Then:

(i) op, has the (H L)-property if and only if 1 < p < 2.
(ii) o, has the (H L)*-property ifand only if 2 < p < oo.
(iii) L' () has the (HL)-property for 1 < p < 2.

Remark 4.1. Some of the previous ideas appeared already in [BP]. Proposition
4.6 gives an alternative proof of the Paley property of o), for 1 < p < 2 and then the
cotype 2 condition (see [TJ]). Another approach was also obtained in [L-PP].
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5. Applications

Let us start this section with some new examples of vector-valued BMOA functions.
Observe that Theorem 3.2 actually provides a procedure to find functions in BMOA(X)
for spaces with the (H L)*-property.

PROPOSITION 5.1.  LetO < o < § and p = 1. Define

2 —it d
L(@)@) = f _ple”) dt
o (

1 —zei)*2m’
Then the operator givenby ¢ — fy(z) = I,(9), is boundedfrom H' to BMOA(LP).

Proof. Take g(z) = (—I_IT)D, and G(z) = g;. First observe that G is an HP -valued

Bloch function. Indeed

2 1 i\  C
IG'@DIl, < My(g, Iz]) = (j(; —— e t) <

(1 — |zle—i)Pe+p 27 1—lz|

Now invoke Theorem 3.2. O

PROPOSITION 5.2. Let (C, X) have the (H', BMOA)-property and let T €
L(LY(D), X). Then f(z) = T(¢;) € BMOA(X) for any ¢ € H'.

Proof. Recall that by Proposition 1.2, g(z) = T(K;) € B(X) where K, is the
Bergman Kernel K,(w) = m

Now for any ¢ € H!,

2 . dt 2 . dt
— . =ity T ) i =ity 2" ) — '
g*x¢(2) = /0 T(Kip(e™)) o T ([) K. (e )271') T(¢z),
so f(z) € BMOA(X) by Theorem 3.2. O

Now let us give a couple of applications to sequences of scalar-valued functions.

Note that if (f,) is a sequence of functions in H'! such that Y owen I fulli < 00
and let (g,) is a sequence of Bloch functions such that sup,.y lg:llz < oo then
3" .cn fa*8n isabsolutely convergentin BMOA. This shows thatif f = (f,) € H' (')
and g = (g,) € B(™) then f x g € BMOA. We now produce an extension of this
result to other values of p different from 1.

PROPOSITION 5.3. Let 1 < p < 2. Let (f,) be a sequence of functions in H'
. 1
such that (3_, 51 fu(€DIP)? € L', and (g,) be a sequence of Bloch functions such
,
that (Y, 18, (DIP)7 = 0(l+|zl)' Then Y, N fn * gn converges in BMOA.
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Proof. Notethat f = (f,) € H'(I?) and g = (g,) € B(I”). Since I? has (HL)-
property then we can apply Theorem 3.2 to (I?,C)toget f xg =Y, .Nfo*8n €
BMOA. 0O

PROPOSITION 5.4. Let¢ € H' and let (g,) be a sequence of Bloch functions such

that (¥,,cn 184D = O(11). Thendpu(z) = (1-12)) T e 1(8n%8) @) PdA(2)
is a Carleson measure on D.

Proof. It folows from (1.1) that diu(z) = (1 — |z]) X ,cny 1(8n * #) (@) 2 dA(2) is
a Carleson measure on D if and only if (g, * ¢),en € BMOA(I?).
This now follows again from Theorem 3.2 applied to (C,/?). O
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