CORE THEOREMS FOR COREGULAR MATRICES

BY
PAUL SCHAEFER

1. Introduction

The relation between the core of a complex sequence and the core of its
transform by a regular matrix has been studied by Knopp and others [1, Ch.
6]. In this paper it is shown that core theorems for coregular matrices can
be obtained rather readily from known core theorems for regular matrices
by means of a decomposition of the coregular matrices. These new core
theorems contain several results of B. E. Rhoades [3] for coregular matrices.

Let A = (aw) be an infinite matrix of complex numbers and let (s.) be a
complex sequence such that A,(s) = Y i @u 8k exists for every n. The se-
quence (A,(s)) is called the transform of (s,) by the matrix A. When
an, = 0 for k > n, A is said to be triangular. Clearly, when A is triangular,
A,(s) always exists. The matrix A is said to be conservative if lim, 4,(s)
exists whenever lim, s, exists. Necessary and sufficient conditions that A
be conservative are well known [2, Th. 1]. When A is conservative, one de-
fines X(A), the characteristic of A4, as X(4) = ¢t — D .x ax, where ¢ =
lim, Zk anrand az = lim, a... If X(A) 5 0, A is said to be coregular. The
matrix A is said to be regular if and only if lim, A,(s) = lim, s, whenever
lim, s, exists. Necessary and sufficient conditions that A be regular are
also well known [2; Th. 2].

The core of a complex sequence (s,) is defined by Cooke [1, p. 137] to be
the intersection of the sets R., where R, is the convex hull of the points
(80 Sup1y - ,m =0,1, ---.

2. The main theorems
For complex sequences (s,) and complex matrices A, the following assertion

will be investigated:

(I) The core of (A.(s)) is a subset of the image of the core of (s,) under
the linear transformation w = z-X(A4) + 2 ax si.

Since the core of a real sequence (s,) is the closed interval [lim inf s,
lim sup s,], the real counterpart of (I) for real matrices with X(4) > 0 is the
following:

(II)

> ai sk + X(A)-liminf s, < lim inf 4,(s)
and

lim sup 4,(s) < 2 ar s + X(A) lim sup s, .
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TuEOREM 2.1. Let A be a complex coregular matriz and let (s.) be a bounded
complex sequence. A mnecessary and sufficient condition for (1) s

lim, D x| @m — ax| = | X(4)].

CoROLLARY 2.2. Let A be a real coregular matriz with X(A) > 0 and let
(sx) be a bounded real sequence. Then a necessary and sufficient condition for
(IT) s

(a) lim, Zk | @ — ar| = X(4).

THEOREM 2.3. Let A be a complex coregular matrixz and let (s.) be a complex
sequence such that A,(s) exists for every n and Y, ay, s converges. A sufficient
condition for (1) is that there exists a number K such that for alln and all k > K,

(ank — a)/X(A) = Re [(am — a)/X(4)] 20,
where Re [z] denotes the real part of =.

CoROLLARY 2.4. Let A be a real coregular matrix with X(A) > 0. Let
(8n) be a real sequence such that A,(s) exists for every n and Y, ax s, converges.
A sufficient condition for (I1) 4s

(b) there exists a number K such that a., > ax for all n and all k > K.

The proofs of these theorems require the following lemma.

LemMa 2.5. Let A be a coregular matrixz and define B = (by:) where by, =
(ane — ax)/X(A). Then B is regular and

An(s) = X(A)-Bu(s) + L ar s
for all sequences (s,) for which Y, a; s converges and A,(s) exists.
Proof. B is regular, since lim, b,x = 0 for every k,
2ol bue | < (kL aml| + 2ok | ai])/| X(A)] for every n,
and lim, 2 bu = 1. Clearly, 4.(s) = X(A) Ba(s) + 2 axs.

Proof of Theorem 2.1. Agnew proved that if B is a regular matrix and
(sx) is bounded, then the core of (B,(s)) is contained in the core of (s,) if
and only if lim, D & |bum | = 1 [1, Th. 6.4 II]. Theorem 2.1 follows from
Agnew’s result, by means of the decomposition of Lemma 2.5.

Proof of Theorem 2.3. Cooke [1, p. 145] remarks that the condition that
there exists a K such that b., = Re [bu] > O for every n and for £ > K is a
sufficient condition that the core of (B,(s)) be contained in the core of (s.)
when B is regular and (s,) is arbitrary. Theorem 2.3 follows from this re-
sult by the use of Lemma 2.5,

TaEOREM 2.6. In order that the triangular coregular matriz A be such that
(1) holds for those sequences (s,) for which D, ax s, converges, it is mecessary
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and sufficient that there exists a number K such that for all n > k = K,
(ant — ax)/X(A) = Re [(am — @)/ X(A)] > 0.

Proof. Define a triangular matrix B = (b.) as follows: let bu, =
(Gnr— ax)/X(A)ifn > k, by = 0 otherwise. Then, asin the proof of Lemma
2.5, B is regular and A,(s) = X(A4)-B.(s) + D ioars;. By a result of
Agnew [1, Th. 6.4 I], the core of (B.(s)) is contained in the core of (s.) if
and only if there exists a K such that b,z = Re [bas] > 0 for all » and for all
k> K. Hence,if W,(s) = X(A) Ba(8) + X ieo G S , the core of (Wn(s))
is contained in the image of the core of (s,) under the transformation

w=2X(4) + 2 as.

| Wa(s) — An(s)l = l Zk2n+l Qi Sk | — 0,
50, the cores of (4,(s)) and (W,(s)) are identical [1, Th. 6.3 II].
COROLLARY 2.7. In order that the real coregular triangular matriz A, with
X(A) > 0, be such that (I1) holds for real sequences (s,) such that > o sk

converges, i 1s mnecessary and sufficient that
(e) there exists a K such that a., > ax foralln 2 k > K.

Now

3. Related results

Recently, B. E. Rhoades [3] investigated statement (II) under various
combinations of conditions on the real matrix A. It will be shown that the

corollaries of Section 2 above imply some of his results. His conditions are
the following.

(d) There exists an integer p such that a;, = 0 for all & > p.
(e) There exists an integer ¢ such that a., > 0 for all & > q.
() lim, D2op|am| = t.

Rhoades’ results for coregular matrices may be stated as follows:

TueoreM 3.1 {3, Th. 4]. (e) s sufficient for (II) for those sequences (s.)
for which Y, ay s, converges.

TuaroreM 3.2 [3, Th. 5]. If A s triangular and satisfies (d), then (e) s
necessary and sufficient for (1I).

TueoreMm 3.3 [3, Th. 6]. (f) 4s sufficient for (I1) for bounded sequences.

TureoreM 3.4 [3, Th. 7. If ax = 0 for all k and A 1s triangular, then (f)
18 mecessary and sufficient for (II) for bounded sequences.

In proving these theorems, Rhoades used the following lemma.

Lemma 3.5 [3, Lemma 1]. If A is coregular and satisfies (&), then X (A) > 0.
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Theorem 3.2 follows readily from Corollary 2.7. For sufficiency, Lemma
3.5 assures that X(4) > 0. Choose K = max(p, q). Then (¢) holds,
and by the corollary, (II) follows. For the necessity part, (d) implies that
> ag sk converges for any sequence. Hence, if (s,) is divergent, (II) and
coregularity imply that X(A4) > 0. Let ¢ = max(K, p). Then condition
(e) holds.

In order to show that Section 2 implies Theorems 3.3 and 3.4, an additional
lemma is required. It may be of some independent interest.

LrmMa 8.6. Condition (f) is equivalent to the assertion that ax > 0 for all
k and condition (a) holds.

Proof. Condition (f) implies that lim, D & (| @ | — am) = 0. If

lim, (| Gup | — @up) = a >0
for some p, then

lim,, Zk (| @nx | = an) = lim, (| Unp | = @np) + lim, Zk#p (| @i | = @nt)
>a>0.

Hence, for all k, a, = lim, | a, | > 0. Since A is conservative, ) | a | =
>~ ax converges. Given & > 0, there is an N such that Y wyar < /2.
Thus,

lim sup, Zkzo | Qnpe — O ] < lim, Z;L-o | Qnk — Qg I + lim, Zk>N | Ank |
+ Do o < lima Doy | aue | + /2.

lim, Y ksn | Gk | = lim, D ks Gk | = Do | ax |
< limy D ks Gk — Dokzo sk + /2,

using (f) and the definition of N. Hence,

lim sups Dk | Gt — @ | < lim, Dk (@ — @) + € = X(4) + &
On the other hand,

lim inf, D k| G — @i | > lim, D & (@ — ax) = X(4).
If a;, > O for all k and condition (a) holds, then
lim sup, D s | @i | < lim, Dokl e — | + > a
= limg Dok (G — @) + DO ax = limy Dk Gk -

Also, lim inf, > | @k | > limg Dk @nz, s0 condition (f) holds.

It is to be noted that since (f) implies (a), if A is coregular and satisfies
(f), then X(A) > 0. In the light of this remark and Lemma 3.6, Theorem
3.3 is a consequence of Corollary 2.2.

Using Lemma 3.6 and Corollary 2.2, it is seen that Theorem 3.4 may be

Now,
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strengthened to the following:

TueorEM 3.7. If ax > O for all k, then (f) is necessary and sufficient for
(II) for bounded sequences.

In order to see that Theorem 3.1 for bounded sequences is a consequence of
Theorem 3.3, one uses a decomposition of the matrix A. Let A satisfy (e).
Define matrices C = (cu) and D = (d.i) as follows: let ¢, = 0 for k< g,
Cot = Onx fOT k > q; let dup = aup for b < ¢, duxy = 0 for k > q. Then C is
conservative and satisfies (f) since ¢, > 0. Furthermore, C is coregular,
since by Lemma 3.5, X(4) > 0, and clearly, X(C) = X(A). Now, if
(s,) is bounded, then A.(s) exists and equals C,(s) + D,(s). Also,
lim, Dn(s) = 2 it axs,. Hence,

lim sup 4A.(s) = lim sup Cu(s) + D &8 ax s ,

and a similar result holds for the inferior limits. Theorem 3.1 for bounded
sequences now follows from an application of Theorem 3.3 to C.
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