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This paper generalizes Suzuki’s characterization of Tl-groups. Specifi-
cally the following theorem is proved.

THEOREM. Let G be a finite group in which the intersection of any two dis-
tinct Sylow 2-subgroups has 2-rank at most one. Let 0 (G)/O (G) be the smallest
normal subgroup of G/O (G) of odd index. Then O’ (G)/O(G) is one of the fol-
lowing"

(1) a 2-group,
(2) GL.(3), SL.(q), or the perfect nontrivial central extension of A by a

2-group, or an extension of rank 1 of such a group,
(3) the extension of a 2-group by L. (q ), Sz (q ), or U (q ), q even,
(4) the central product of two copies of SL (5) with amalgamated centers,

or its extension by an automorphism permuting the copies,
(5) L.(q), q 3, 5 mod 8, or J(ll), the smallest Janko group.

The proof of the above theorem is a reasonably straightforward applica-
tion of results of Alperin, Glauberman, and Shult on fusion, plus several clas-
sification theorems. The author would like to thank Professor John Walter
for pointing out several errors in the original version of this paper.

1. kI-groups
Let G be finite group. The 2-rank r (G) of G is the number of generators

of an elementary 2-subgroup of G of maximal order if G[ is even; if GI is
odd, r(G) O. For k a nonnegative integer, we define G to be a kI-group
if r (G) > k and for any two distinct S.-groups S and T of G, r (S T) <_ k.
If k 0, G is a TI or "trivial intersection" group as defined by Suzuki [7].
The following elementary result is essentially Lemma 1 in [7].

LEMMA 1. Let G be a kI-group. Then
(1) if H

_
G with r(H) > k then H is a kI-group,

(2) if H is a normal subgroup of odd order in G, then G/H is a ki-group.

LEMMA 2. Let G be a kI-group, S an S-group of G, N NaS and A

_
S

such that either r (A ) > k or A is elementary of rank k 1. Then

{A" geG, A

_
N}= {A" xeY}.

Proof. Alperin’s theorem on fusion [1].

LEMMA 3. Let G be a 2-nilpotent kI-group. Then either G is 2-closed or
r(G) k - 1.

Received May 25, 1970.

529



530 MICHAEL ASCI,HBACHER

Proof. Assume the lemma to be false and let G be a counterexample with
H 0 (G) of minimal order. Let E be an elementary 2-subgroup of G of
rankk W 2, and letA {1, a,a,aa} bea4-groupinE. IfB _< Ewith
r(B) k W 1 and [B, HI 1, then for all S-groups S and T of G,
r (S n T) _> r (0. (G)) _> r (B) k - 1, and G is 2-closed. So we can choose
A such that H C. (a) H for all i. But E acts on each H, so by mini-
mality of H, [E, H] 1. Thus H II H is centralized by E, and G is
2-closed.

LEMMA 4. Let G be a solvable kI-group. Then either G is 2-closed or
r(G) k+ 1.

Proof. Assume the lemma is false and let G be a minimal counterexample.
Let 0 0 (G). If 0 1, by minimality of G, G/O is 2-closed, and thus by
Lemma 3, 0.,, (G) and therefore G is 2-closed. So 0 1.

Let K 0 (G), S an S-group of G, H 0., (G) and E an elementary
subgroup ofSwith r (E k - 2. r (K <_ k, so r (EK/K _> 2. For
X _< G let : XK/K. Let e, 1 _< i _< 3, be representatives for nontrivial
cosetsofa4-groupin/. LetK_< H,B Cn (). EactsonH, so
by minimality of G, either EH G or EK EH. If EH G, then
(e, K)

_
G, so ee g contradicting choice of e,. Thus EK EIIH, EH.

As r (EK > k, [, 1] 1.
Let H <_ M, M/H minimal normal in G/H. Then M/H is a 2-group, so as

[$,//] 1, M is 2-closed. Thus M _< H and G H is 2-closed.

2. lI-gmp
For the remainder of this paper we let G be a minimal counterexample to

our main theorem. Let S be an S-group of G and N NS. We shall
refer to the groups described in the statement of the main theorem
as "known".

LEMMA 5. A lI-group which is the central product of known groups, or the
extension of a known group by a 2-group, is known.

Proof. Assume H is a minimal counter example. Then 0 (H) 1 and
O’ (H) H. Suppose H is the extension of A by a 2-group. Then H’A
2 and we can take in H A to be a 2-element. Suppose centralizes A.
Then H/O (H) is a TI-group and H is thus known. For, if T contains and
is contained in two S.-groups of H, then T (t) _< 05 (H). So induces an
outer automorphism of A. If A L (q) or J (11), q 3, 5 mod 8, then H
contains a subgroup isomorphic to PGL (3), a contradiction. If A -- SL (q),
q --- mod 4, e :t= 1, we can choose to be an involution inducing an auto-
morphism in PGL. (q). Then Ca (t) has order 2 (q - e) and does not
normalize an S-group of A unless q 3. So H GL (3). Similarly A
GL. (3) or the perfect extension of AT. If A is the extension of a 2-group
by a TI-group, let S be a t-invariant S-group of A. Then (t, N.S) is not
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2-closed, while r (A) > 1 unless A SLy. (5), a case handled above. Thus A
contains the central product of two copies of SL (5) as a subgroup of in-
dex at most two. Unless permutes these two copies we have a contradic-
tion as above.
Next let H be the central product of A and B, with r (A)

_
r (B). Neither

A or B is a 2-group by the above. If r (B) > 1, then as A centralizes anS -group of B, A is a 2-group. So r (B) r (A) 1. Similarly if A n B 1,
A and B are TI-groups and thus 2-groups. So A and B have a common
center. Now if a and b are elements of order four in A and B respectively,
then ab is an involution which must lie in at most one S-group of H, so a and
b lie in at most one S-group of A and B respectively. Therefore A B
SLy. (5).

Various classification theorems imply r (G) > 1, so G is a lI-group. Clearly
O(G) land0’(G) G. Further

LEMMA 6. If 1 H < G, then H <_ 0. (G).

Proof. Let E 0. (G) and 1 H < G with H ; E. By minimality of
G, Hisknown. LetK Call. KGsinceO(G) landH SE.
Thus K is known. Therefore by Lemma 5, G is known.

LEMMA 7. Let z be an involution in Z (S ).
(1) If Ca (z) is 2-closed, (za) is known.
(2) If z Z (G), and is an involution distinct from z with I (t, z) <3 S,

then (ta) is known.

Proof. (1) Let W(z) (zg: [z, zg] 1). Since Ca(z) is 2-closed and
z e Z (S), Lemma 2 implies W is abelian. Thus a theorem of Schult [6] im-
plies (za) is a central product of known groups, and thus known.

(2) Let Z (z) and for X

_
G let XZ/Z. Then

_
.Z ($). Further

Lemma 2 implies W() is abelian, so Shult’s theorem implies (?)a is known and
thus also (t).
LEMMA 8. J O(G) 1.

Proof. Assume E 1. As G is not 2-closed, r(E) 1. Let z be the
involution in E.
Suppose S contains no normal 4-group. Then S is cyclic, generalized qua-

ternion, dihedral, or semidihedral [5, Proposition 9.5]. As r(G) > 1, S is
not cyclic or quaternion. Thus G has more than one class of involutions,
and transfer implies G has a subgroup of index two, contradicting Lemma 6.
So let (t, z} be a 4-group normal in S. r (E) 1, so E. Thus by Lemma

6, G (t), and thefore by Lemma 7, G is known.
Let z be an involution in Z(S) and C Co(z). C is not 2-closed by

Lemmas 6, 7, and 8. By Glauberman’s Z* theorem [2], za [ S {zl, so by
Lemma 2, r (Z (S)) >_ 2. Thus since by minimality of G, C is known, C is
either the split extension of K 0 (C) by a TI-group H, or C/O (C) is 2-
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closed and by Lemma 4, r (S) 2 so that Z (S) contains all involutions in
S. Here we use the fact that the only perfect central extensions of a 2-group
of rank one by L.(q), Sz(q), or Us(q), q even, are SLy(5) and SzC(8),
1 _< i _< 3. Also that an S-group of Sz (8) has a unique central involu-
tion [6].
Ifr(S) > 2, S T K, TanS-groupofH. Now z is conjugate in

N to u S K, while all involutions in T are conjugate in C. Further all
involutions in S lie in Z(S), so a similar result holds for all of them. There-
fore G has one class of involutions, and N is transitive on the involutions in
S. If T is abelian, it follows from the transitivity of N on its involutions
that S is elementary, and Walter’s classification of groups with abelian
S.-groups [8] implies G is known. Similarly if T is not abelian then it is of
exponent four with elementary center (of order q say) so K is quaternion of
order eight. Thus there are exactly 6q elements a of order four with a z,
where z is the involution in K. It follows that S 6q (2q 1) -t- 2q
4q (3q 1 ) power of two, a contradiction.

Therefore S contains exactly three involutions and by a result of
G. Higman [3] is isomorphic to an S-group of U8 (4). But then a result of
Lyons implies G U (4).
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