SUBFIELDS OF $K\left(2^{n}\right)$ OF GENUS 0

BY

Joseph B. Dennin, Jr.

1. Introduction

Let Γ be the group of linear fractional transformations

$$
w \rightarrow(a w+b) /(c w+d)
$$

of the upper half plane into itself with integer coefficients and determinant 1. Γ is isomorphic to the 2×2 modular group, i.e. the group of 2×2 matrices with integer entries and determinant 1 in which a matrix is identified with its negative. Let $\Gamma(n)$, the principal congruence subgroup of level n, be the subgroup of Γ consisting of those elements for which $a \equiv d \equiv 1(\bmod n)$ and $b \equiv c \equiv 0(\bmod n) . \quad G$ is called a congruence subgroup of level n if G contains $\Gamma(n)$ and n is the smallest such integer. G has a fundamental domain in the upper half plane which can be compactified to a Riemann surface and then the genus of G can be defined to be the genus of the Riemann surface. H. Rademacher has conjectured that the number of congruence subgroups of genus 0 is finite. The conjecture has been proven if n is prime to $2 \cdot 3 \cdot 5$ or is a power of 3 or $5[5,1]$. In this paper we show that the conjecture is true if n is a power of 2 .

Consider $M_{\Gamma(n)}$, the Riemann surface associated with $\Gamma(n)$. The field of meromorphic functions on $M_{\Gamma(n)}$ is called the field of modular functions of level n and is denoted by $K(n)$. If j is the absolute Weierstrass invariant, $K(n)$ is a finite Galois extension of $C(j)$ with $\Gamma / \Gamma(n)$ for Galois group. Let $S L(2, n)$ be the special linear group of degree two with coefficients in $Z / n Z$ and let $L F^{\prime}(2, n)=S L(2, n) / \pm \mathrm{Id}$. Then $\Gamma / \Gamma(n)$ is isomorphic to $L F(2, n)$. If $\Gamma(n) \subset G \subset \Gamma$ and H is the corresponding subgroup of $L F(2, n)$, then by Galois theory, H corresponds to a subfield F of $K(n)$ and the genus of H equals the genus of F equals the genus of G.

The following notation will be standard. A matrix

$$
\pm\left(\begin{array}{ll}
a & b \\
d & d
\end{array}\right)
$$

will be written $\pm(a, b, c, d)$.

$$
\begin{gathered}
I= \pm(1,0,0,1) ; \quad T= \pm(0,-1,1,0) \\
S= \pm(1,1,0,1) ; \quad R= \pm(0,-1,1,1)
\end{gathered}
$$

T and S generate $L F\left(2,2^{n}\right)$ and $R=T S . \quad H$ will be a subgroup of $L F\left(2,2^{n}\right)$; $g(H)=$ the genus of H and h or $|H|=$ the order of H. $[A]$ or $[\pm(a, b, c, d)]$ will denote the group generated by A or $\pm(a, b, c, d)$ respectively. φ_{r}^{n} will denote the natural homomorphism from $L F\left(2,2^{n}\right)$ to $L F\left(2,2^{r}\right), 1 \leq r \leq n$,

[^0]obtained by reducing all the entries in a matrix in $L F\left(2,2^{n}\right) \bmod 2^{r} . K_{r}^{n}$ is the kernel of φ_{r}^{n} and so is a normal subgroup of $L F\left(2,2^{n}\right)$.
$\left|L F\left(2,2^{n}\right)\right|=3 \cdot 2^{3 n-3}$ and $\left|K_{r}^{n}\right|=2^{3(n-r)}$ if $r \neq 1$ and $2^{3 n-4}$ if $r=1$.
Our main result is
Theorem 1. Let H be a subgroup of LF ($2,2^{n}$) with $\left|H \cap K_{n-1}^{n}\right| \leq 4$. If $g(H)=0$, then $n<8$.

To compute $g(H)$ we use the following formula derived from McQuillan [5]: Let r, t and $s\left(2^{r}\right)$ be the number of distinct cyclic subgroups of H generated by a conjugate in $L F\left(2,2^{n}\right)$ of R, T and $S^{2^{r}}$ respectively where $1 \leq 2^{r} \leq 2^{n}$. Then

$$
\begin{align*}
& g(H) \\
& =1+\left\{\left(2^{n}-6\right) \cdot 3 \cdot 2^{2 n-2}-\left(8 r \rho\left(2^{n}\right)+6 t \tau\left(2^{n}\right)+6 \cdot 2^{2 n-2} W\right)\right\} / 24 h \tag{1.1}
\end{align*}
$$

where $W=\sum s\left(2^{r}\right), \rho\left(2^{n}\right)=3 \cdot 2^{n-1}$ and $\tau\left(2^{n}\right)=2^{n}$.
One consequence of this is that if two groups are conjugate they have the same genus.

2. Some results on the structure of K_{1}^{n}

We first analyze K_{n-1}^{n} for $n>2$ which has order 8 and in which every nonidentity element has order two. It contains the center of

$$
L F\left(2,2^{n}\right)=\left[\pm\left(1+2^{n-1}, 0,0,1+2^{n-1}\right)\right]
$$

which will be denoted by $\left[Z_{n}\right]$. The other subgroups of K_{n-1}^{n} of order two in which we are interested are the three conjugates of $\left[S^{2 n-1}\right]$, namely

$$
\left[S^{2^{n-1}}\right], \quad\left[\pm\left(1,0,2^{n-1}, 1\right)\right] \quad \text { and } \quad\left[\pm\left(1+2^{n-1}, 2^{n-1}, 2^{n-1}, 1+2^{n-1}\right)\right]
$$

The subgroups of K_{n-1}^{n} of order four are divided into three different conjugacy classes: (1) three groups containing Z_{n} and one conjugate of $S^{2^{n-1}}$ such as

$$
D=\left\{I, Z_{n}, S^{2^{n-1}}, \pm\left(1+2^{n-1}, 2^{n-1}, 0,1+2^{n-1}\right)\right\}
$$

(2) three groups containing two conjugates of $S^{2^{n-1}}$ such as

$$
\begin{array}{r}
C=\left\{I, S^{2^{n-1}}, \pm\left(1+2^{n-1}, 0,2^{n-1}, 1+2^{n-1}\right)\right. \\
\left. \pm\left(1+2^{n-1}, 2^{n-1}, 2^{n-1}, 1+2^{n-1}\right)\right\} \\
\quad \pm=\left\{I, \pm\left(1+2^{n-1}, 2^{n-1}, 0,1+2^{n-1}\right), \pm\left(1+2^{n-1}, 0,2^{n-1}, 1+2^{n-1}\right)\right. \\
\left. \pm\left(1,2^{n-1}, 2^{n-1}, 1\right)\right\}
\end{array}
$$

which contains neither Z_{n} nor any conjugate of $S^{2^{n-1}}$ and is normal in $L F\left(2,2^{n}\right)$.
We wish to prove for $L F\left(2,2^{n}\right)$ two results for subgroups of K_{1}^{n}, which Gierster [2] has already done for $\operatorname{LF}\left(2, p^{n}\right), p>2$. For $p>2$, an element of K_{r}^{n} has the form

$$
\pm\left(u+p^{r} \mu, p^{r} \nu, p^{r} \rho, u-p^{r} \mu\right)
$$

where $0 \leq \mu, \nu, \rho<2^{n-r}$ and $u^{2} \equiv 1+p^{2 r}\left(\mu^{2}+\nu \rho\right)\left(\bmod p^{n}\right)$ which has two solutions for u. Gierster fixed the choice of u by further assuming $u \equiv 1$ $(\bmod p)$ so that μ, ν, ρ determine a unique element of $K_{r}^{n} . \quad$ For $p=2$,

$$
u^{2} \equiv 1+2^{r}\left(\mu^{2}+\nu \rho\right) \quad\left(\bmod 2^{n}\right)
$$

has four solutions for $n \geq 3$. We can restrict the choices for u to two by assuming $u \equiv 1(\bmod 4)$ but the representation of an element of K_{r}^{n} depends on the choice of u as well as μ, ν and ρ. In fact,

$$
\{\mu, \nu, \rho, u\} \quad \text { and } \quad\left\{\mu+2^{n-r-1}, \nu, \rho, u+2^{n-1}\right\}
$$

determine the same element of K_{r}^{n}. For an element of $K_{1}^{n}, n \geq 3$, we also require that $\mu^{2}+\nu \rho$ be even since $u^{2} \equiv 1+4\left(\mu^{2}+\nu \rho\right)\left(\bmod 2^{n}\right)$ has a solution if and only if $1+4\left(\mu^{2}+\nu \rho\right) \equiv 1(\bmod 8)$. Further note that if U is an element of K_{r}^{n}, then U^{2} is in K_{r+1}^{n} and so an element in $K_{r}^{n}-K_{r+1}^{n}$ has order exactly 2^{n-r}.

The proofs of the propositions require the following two lemmas.
Lemma 2.1. Suppose U_{1} and U_{2} are elements of K_{r}^{n}. Then $U_{1}^{2}=U_{2}^{2}$ if and only if $U_{1}=U_{2} \cdot k_{n-1}$ where k_{n-1} is an element of K_{n-1}^{n}.

Proof. Since $K_{r}^{n}=U_{2} \cdot K_{r}^{n}, U_{1}=U_{2} \cdot k_{r}$ for some k_{r} in K_{r}^{n}. If k_{r} is in K_{n-1}^{n}, then, since K_{n-1}^{n} is in the center of K_{1}^{n} [4],

$$
U_{1}^{2}=U_{2} k_{r} U_{2} k_{r}=U_{2} k_{r}^{2} U_{2}=U_{2}^{2}
$$

Conversely suppose $U_{2} k_{r} U_{2} k_{r}=U_{2}^{2}$. Then $U_{2} k_{r}=k_{r}^{-1} U_{2}$. Let

$$
U_{2}= \pm\left(u^{\prime}+2^{r} \mu^{\prime}, 2^{r} \nu^{\prime}, 2^{r} \rho^{\prime}, u^{\prime}-2^{r} \mu^{\prime}\right)
$$

and

$$
k_{r}= \pm\left(u+2^{t} \mu, 2^{t} \nu, 2^{t} \rho, u-2^{t} \mu\right)
$$

We may assume not all of μ, ν and ρ are divisible by two since we could then factor out two and change t to $t+1$. To show $t=n-1$, we assume $t<n-1$ and prove that then two divides each of μ, ν and ρ.

Since $U_{2} \cdot k_{r}=k_{r}^{-1} \cdot U_{2}$, we have by multiplying and comparing terms:

$$
\begin{gather*}
2^{t} u^{\prime} \mu+2^{r+t} \mu^{\prime} \mu+2^{r+t} \nu^{\prime} \rho \equiv-2^{t} u^{\prime} \mu-2^{t+r} \mu^{\prime} \mu-2^{t+r} \rho^{\prime} \nu \tag{2.1}\\
2^{t} u^{\prime} \rho \equiv-2^{t} u^{\prime} \rho \tag{2.2}\\
2^{t} u^{\prime} \nu \equiv-2^{t} u^{\prime} \nu \tag{2.3}
\end{gather*}
$$

Congruences (2.2) and (2.3) imply that

$$
2^{t} u^{\prime} \rho \equiv 0\left(\bmod 2^{n-1}\right) \quad \text { and } 2^{t} u^{\prime} \nu \equiv 0\left(\bmod 2^{n-1}\right)
$$

so that 2 divides ρ and ν since u^{\prime} is odd and $t<n-1$. Replacing ν and ρ by $2 \nu_{0}$ and $2 \rho_{0}$ in congruence (2.1), we have

$$
2^{t} u^{\prime} \mu+2^{r+t} \mu^{\prime} \mu+2^{r+t} \rho^{\prime} \nu_{0}+2^{r+t} \rho_{0} \nu^{\prime} \equiv 0 \quad\left(\bmod 2^{n-1}\right)
$$

or $-2^{t} u^{\prime} \mu=2^{r+t} \mu^{\prime} \mu+2^{r+t} \rho^{\prime} \nu_{0}+2^{r+t} \nu^{\prime} \rho_{0}+2^{n-1} w$ for some w. Now the right hand side of the equation is divisible by a power of two higher than t so that two divides μ which gives our contradiction.

Corollary 2.1. Each element in K_{r}^{n} has 8 square roots if it has any and, by induction, has at most $2^{3 t} 2^{t}$-th roots.

Lemma 2.2. Suppose U and U_{1} belong to K_{n-r}^{n}. Then for $s \leq r-1, U^{2^{\circ}}=$ $U_{1}^{2 s}$ if and only if $U_{1}=U \cdot k_{n-s}$ where k_{n-s} is an element of K_{n-s}^{n}.

Proof. By induction on s with the case $s=1$ being Lemma 2.1. Assume for $t<s, U^{2 t}=U_{1}^{2 t}$ if and only if $U_{1}=U k_{n-t}$. Let $U_{1}=k_{n-8} U$. Then $U_{1}^{2 \theta}=\left(k_{n-8} U\right)^{20^{\circ}}$. Since K_{n-s}^{n} is a normal subgroup, $k_{n-8} U=U k_{n-8}^{\prime}$ for some k_{n-s}^{\prime} in K_{n-s}^{n}. Since k_{n-s} and k_{n-s}^{\prime} are conjugate, they have the same order, $2^{l} \leq 2^{s}$. Then

$$
U^{-1}\left(k_{n-8}\right)^{2^{l-1}} U=\left(k_{n-8}^{\prime}\right)^{2^{l-1}}\left(k_{n-8}\right)^{2^{l-1}}
$$

belongs to K_{n-1}^{n} which is in the center of $K_{n-r}^{n}[4]$ so that $\left(k_{n-8}\right)^{2^{l-1}}=\left(k_{n-8}^{\prime}\right)^{2^{l-1}}$. Hence by induction $k_{n-s}=k_{n-s}^{\prime} k_{n-t}$ for some k_{n-t} in K_{n-t}^{n} where $t<8$. But then

$$
k_{n-s}^{\prime} k_{n-s}=\left(k_{n-s}^{\prime}\right)^{2}\left(k_{n-s}^{\prime}\right)^{-1} k_{n-s}=\left(k_{n-s}^{\prime}\right)^{2} k_{n-t}=k_{n-s+1}
$$

where k_{n-s+1} is in K_{n-s+1}^{n}. Hence

$$
U_{1}^{2 b}=\left(k_{n-s} U\right)^{2 b}=U\left(k_{n-s}^{\prime} k_{n-s} U^{2}\right)^{2^{\circ-1}} U^{-1}=U\left(k_{n-s+1} U^{2}\right)^{2^{2-1}} U^{-1}
$$

But by induction $\left(k_{n-8+1} U^{2}\right)^{2^{-1}}=\left(U^{2}\right)^{2^{-1}}=U^{2^{\circ}}$. So if $U_{1}=k_{n-\infty} U, U_{1}^{28}=$ $U^{2^{\circ}}$. On the other hand, by Corollary 2.1, U^{20} has at most $2^{38} 2^{8}$-th roots and there are 2^{88} elements in $U \cdot K_{n-s}^{n}$; so if $U_{1}^{20}=U^{26}, U_{1}$ belongs to $U \cdot K_{n-s}^{n}$.

Corollary 2.2. Suppose U is an element of $H \cap K_{n \rightarrow r}^{n}$. Then U_{1} is an element of $H \cap K_{n-r}^{n}$ and $U^{2^{8}}=U_{1}^{2^{\circ}}$, if and only if $U_{1}=U \cdot k_{n-8}$ where k_{n-s} is an element of $H \cap K_{n-s}^{n}$.

Proposition 2.1. If $\left|H \cap K_{n-1}^{n}\right|=2$, then $H \cap K_{r}^{n}$ is cyclic of the form

$$
\left\{U^{i}\right\}_{i=1}^{2 \theta}=\left\{ \pm\left(u_{i}+2^{r} \xi_{i} \mu, 2^{r} \xi_{i} \nu, 2^{r} \xi_{i} \rho, u_{i}-2^{r} \xi_{i} \mu\right)\right\}
$$

where $s \leq n-r, U= \pm\left(u+2^{r} \mu, 2^{r} \nu, 2^{r} \rho, u-2^{r} \mu\right)$ and u_{i} and ξ_{i} are given inductively by the formulas

$$
u_{i} \equiv u_{i-1} u+\xi_{i-1}\left(u^{2}-1\right) \quad \text { and } \quad \xi_{i} \equiv \xi_{i-1} u+u_{i-1}
$$

both $\bmod 2^{n}$ with $u_{1}=u$ and $\xi_{1}=1$.
Proof. We prove $H \cap K_{r}^{n}$ is cyclic by induction. Since $H \cap K_{n-1}^{n}$ is cyclic, we suppose $H \cap K_{s+1}^{n}$ is cyclic and show $H \cap K_{s}^{n}$ is cyclic for $s \geq r$. Let $H \cap K_{s+1}^{n}=\left[U_{0}\right]$ and let U be a fixed element of $\left(H \cap K_{s}^{n}\right)-\left(H \cap K_{s+1}^{n}\right)$. If there are no such elements we are done as then $H \cap K_{r}^{n}=\left[U_{0}\right]$. Let U_{1} be any other element in $\left(H \cap K_{s}^{n}\right)-\left(H \cap K_{s+1}^{n}\right)$. Both U^{2} and U_{1}^{2} belong
to $H \cap K_{s+1}^{n}$ so $\left[U_{0}\right]=\left[U^{2}\right]=\left[U_{1}^{2}\right]$. So $U_{1}^{2}=\left(U^{2}\right)^{j}=\left(U^{j}\right)^{2}$ which, by Corollary 2.2, implies that $U_{1}=k_{n-1} \cdot U^{j}$ where k_{n-1} belongs to $H \cap K_{n-1}^{n}$. Also $U_{0}=\left(U^{2}\right)^{m}$ for some m. Therefore $U_{1}=k_{n-1} \cdot U^{j}=U_{0}^{l} U^{j}=U^{2 m l}$. U^{j}. So U_{1} is in [U]. Clearly any element of $H \cap K_{s+1}^{n}$ is in [U] since U_{0} is. So $H \cap K_{s}^{n}=[U]$ which has order less than or equal to 2^{n-s}.

Finally suppose we fix a representation of

$$
U= \pm\left(u+2^{r} \mu, 2^{r} \nu, 2^{r} \rho, u-2^{r} \mu\right)
$$

and suppose $U^{i}= \pm\left(u_{i}+2^{r} \xi_{i} \mu, 2^{r} \xi_{i} \nu, 2^{r} \xi_{i} \rho, u-2^{r} \xi_{i} \mu\right)$. Then

$$
\begin{aligned}
U^{i+1}=U^{i} U= \pm\left(u_{i} u+\right. & \xi_{i}\left(u^{2}-1\right)+2^{r}\left(\xi_{i} u+u_{i}\right) \mu, 2^{r} \nu\left(u_{i}+\xi_{i} u\right) \\
& \left.2^{r} \rho\left(u_{i}+\xi_{i} u\right), u_{i} u+\xi_{i}\left(u^{2}-1\right)-2^{r}\left(\xi_{i} u+u_{i}\right) \mu\right)
\end{aligned}
$$

and we are done.
Proposition 2.2. If $\left|H \cap K_{n-1}^{n}\right|=4$, then $H \cap K_{r}^{n}$ is generated by two elements U_{1} and U_{2} of orders 2^{n-t} and 2^{n-s} respectively where $s \geq t \geq r$. Further

$$
H \cap K_{n-r}^{n}=\left\{U_{1}^{i} U_{2}^{j}\right\}, \quad 1 \leq i \leq 2^{n-t}, \quad 1 \leq j \leq 2^{n-s}
$$

so that $\left|H \cap K_{n-r}^{n}\right|=2^{2 n-t-s} \leq 2^{2 n-2 r}$.
Proof. We first show that $\left|H \cap K_{r}^{n}\right| \leq 2^{2 n-2 r}$. This is true for $r=n-1$ so we assume that, for $x>r,\left|H \cap K_{x}^{n}\right| \leq 2^{2 n-2 x}$ and show that $\left|H \cap K_{x-1}^{n}\right|$ $\leq 2^{2 n-2 x+2}$. By Lemma 2.1 and the fact that $\left|H \cap K_{n-1}^{n}\right|=4$, if U is an element of $H \cap K_{x-1}^{n}$, there are four elements in $H \cap K_{x-1}^{n}$ which square to U^{2}. Since $\left|H \cap K_{x}^{n}\right| \leq 2^{2 n-2 x}$, there are at most $2^{2 n-2 x}$ possibilities for U^{2}. Hence there are at most $4 \cdot 2^{2 n-2 x}=2^{2 n-2 x+2}$ elements in $H \cap K_{x-1}^{n}$.

Let 2^{n-t} be the maximum of the orders of elements in $H \cap K_{r}^{n}$, let U_{1} be an element of order 2^{n-t} in $H \cap K_{r}^{n}$ and note that $t \geq r$. Then $H_{1}=H \cap K_{r}^{n}$ is contained in K_{t}^{n} and so $\left|H_{1}\right| \leq 2^{2 n-2 t}$. $\quad U_{1}^{2^{n-t-1}}$ is an element of $H \cap K_{n-1}^{n}$. Let $V=\left\{U^{\prime} \mid U^{\prime}\right.$ is in $H \cap K_{r}^{n}$ and $U^{\prime m}=U_{1}^{2^{n-t-1}}$ for some $\left.m\right\}$. Then $H_{1}-V$ is non-empty since $\left|H \cap K_{n-1}^{n}\right|=4$ and so $\left(H_{1}-V\right) \cap\left(H \cap K_{n-1}^{n}\right)$ has two elements in it. Let 2^{n-s} be the maximum of the orders of elements in $H_{1}-V$, let U_{2} be an element of order 2^{n-s} in $H_{1}-V$ and note that $s \geq t \geq r$. Since $U_{1}^{i} \neq U_{2}^{j}$ for $1 \leq i \leq 2^{n-t}, 1 \leq j \leq 2^{n-s}$, the set $\left\{U_{1}^{i} U_{2}^{j}\right\}$ has $2^{2 n-t-s}$ elements in it and is contained in H_{1}. On the other hand, $V u$ ($H \cap K_{s}^{n}$) is all of H_{1}. By the first part of the proof $\left|H \cap K_{s}^{n}\right| \leq 2^{2 n-2 s}$. But the set $\left\{U_{1}^{l i} U_{2}^{j}\right\}$ where $l=2^{s-t}, 1 \leq i, j \leq 2^{n-s}$, contains $2^{2 n-2 s}$ elements all belonging to $H \cap K_{s}^{n}$. So $\left|H \cap K_{s}^{n}\right|=2^{2 n-2 s}$. By Corollary 2.2 and choice of s,

$$
V \cap\left(K_{s-1}^{n}-K_{s}^{n}\right)=U_{1}^{2 s-t-1} \cdot\left(H \cap K_{s}^{n}\right)
$$

which has order $2^{2 n-2 s}$. So $\left|H \cap K_{s-1}^{n}\right|=2^{2 n-2 s}+2^{2 n-2 s}$. In general,

$$
V \cap\left(K_{s-q}^{n}-K_{s-(q-1)}^{n}\right)=U_{1}^{2 s-t-q} \cdot\left(H \cap K_{s-(q-1)}^{n}\right)
$$

which has order $=\left|H \cap K_{s-(q-1)}^{n}\right|$. Hence
$|H|=\left|K_{s}^{n}\right|+\left|V n\left(K_{t}^{n}-K_{s}^{n}\right)\right|=2^{2 n-2 s}+2^{2 n-2 s}\left(\sum_{i=0}^{s-t-1} 2^{i}\right)=2^{2 n-s-t}$ which is the order of $\left\{U_{1}^{i} U_{2}^{j}\right\}$. So $H=\left\{U_{1}^{i} U_{2}^{j}\right\}$.

3. Conjugates of S, T, and R

Unless otherwise indicated, by a conjugate of S, T, or R we mean $a S a^{-1}$, $a T a^{-1}$ or $a R a^{-1}$ where a is in $L F\left(2,2^{n}\right)$. To calculate W for a given H, we are interested in how many groups conjugate to $S^{2^{r}}$ belong to H. A conjugate of $\pm\left(1,2^{r}, 0,1\right)$ has the form

$$
\begin{aligned}
\pm(a, \quad b, \quad c, \quad d) \cdot \pm\left(1, \quad 2^{r}, \quad 0, \quad 1\right) \cdot & \pm\left(\begin{array}{ll}
d, \quad-b, \quad-c, a) \\
& = \pm\left(1-2^{r} a c, 2^{r} a^{2},-2^{r} c^{2}, 1+2^{r} a c\right)
\end{array}\right.
\end{aligned}
$$

Since $a d-b c \equiv 1\left(\bmod 2^{n}\right)$ both a and c cannot be even. The group generated by $\pm\left(1-2^{r} a c, 2^{r} a^{2},-2^{r} c^{2}, 1+2^{r} a c\right)$ is

$$
\left\{ \pm\left(1-2^{r} t a c, 2^{r} t a^{2},-2^{r} t c^{2}, 1+2^{r} t a c\right), 0 \leq t \leq 2^{r}-1\right\}
$$

Thus if a is odd, any other conjugate of $S^{2^{r}}$ generating the same group also has a odd. From [1], to obtain the number of subgroups of H conjugate to $S^{2 r}$ for which a is odd, it is sufficient to count the number of elements in H of the form

$$
\pm\left(1-2^{r} c, 2^{r},-2^{r} c^{2}, 1+2^{r} c\right)
$$

i.e. we set $a=1$. For each r, there are 2^{n-r} such elements and so there are $\sum_{r=0}^{n-1} 2^{n-r}=2^{n+1}-2$ such elements in $L F\left(2,2^{n}\right)$. Similarly if a is even, c has to be odd and to count the number of groups conjugate to $S^{2^{r}}$ generated by such elements we can set $c=1$. For each r, there are 2^{n-r-1} such elements and so $\sum_{r=0}^{n-1} 2^{n-r-1}=2^{n}-1$ such elements are in $\operatorname{LF}\left(2,2^{n}\right)$. So for $L F\left(2,2^{n}\right)$,

$$
W=2^{n+1}-2+2^{n}-1=3\left(2^{n}-1\right)
$$

Note that if U is conjugate to $S^{2^{r}}$, then U^{2} is conjugate to $S^{2^{r+1}}$.
Lemma 3.1. Suppose U is conjugate to $S^{2 r}$. Then U_{1} is conjugate to $S^{2^{r}}$ and $U_{1}^{2}=U^{2}$ if and only if $U_{1}=Z_{n} \cdot U$.

Proof. Suppose $U= \pm\left(1-2^{r} a c, 2^{r} a^{2},-2^{r} c^{2}, 1+2^{r} a c\right)$. Then

$$
U \cdot Z_{n}= \pm\left(1-2^{r} a c+2^{n-1}, 2^{r} a^{2},-2^{r} c^{2}, 1+2^{r} a c+2^{n-1}\right)
$$

If a is odd, set $\alpha=a$ and $\gamma=c+2^{n-r-1}$; if a is even, c is odd and set $\gamma=c$ and $\alpha=a+2^{n-r-1}$. In either case we see that

$$
U \cdot Z_{n}= \pm\left(1-2^{r} \alpha \gamma, 2^{r} \alpha^{2},-2^{r} \gamma^{2}, 1+2^{r} \alpha \gamma\right)
$$

and is conjugate to $S^{2^{r}}$. Further $U^{2}=U_{1}^{2}$ since Z_{n} is in the center of
$L F\left(2,2^{n}\right)$. On the other hand, if

$$
A= \pm\left(1-2^{r+1} a c, 2^{r+1} a^{2},-2^{r+1} c^{2}, 1+2^{r+1} a c\right)
$$

is conjugate to ${S^{2 r+1}}^{2}$, then $U= \pm\left(1-2^{r} a c, 2^{r} a^{2},-2^{r} c^{2}, 1+2^{r} a c\right)$ is conjugate to $S^{2^{r}}$ and $U^{2}=A$. But then $U \cdot Z_{n}$ is also conjugate to $S^{2 r}$ and $\left(U \cdot Z_{n}\right)^{2}=A$. So each conjugate of $S^{2 r+1}, r \geq 0$, has at least two square roots conjugate to $S^{2^{r}}$. Since K_{n-1}^{n} has three conjugates of $S^{2^{n-1}}$, if any conjugate of $S^{2^{r+1}}$ had more than two square roots conjugate to $S^{2 r}, W$ would be greater than $3\left(2^{n}-1\right)$, a contradiction.

Corollary 3.1. $s\left(2^{r}\right)=$ the number of groups conjugate to $S^{2 r}=3 \cdot 2^{n-r-1}$.
Next we calculate $t=$ number of conjugates of T and $\tau(n)$ for $L F\left(2,2^{n}\right)$ and obtain some information about conjugates of T. Let $E^{\prime}=K_{1}^{n} \cdot[T]$ which is one of the three conjugate Sylow 2 -groups in $L F\left(2,2^{n}\right)$. So $t=3 t^{\prime}$ where t^{\prime} is the number of conjugates of T in E^{\prime}. Note that a conjugate of T has the form

$$
\pm\left(a c+b d,-b^{2}-a^{2}, c^{2}+d^{2},-a c-b d\right)
$$

and so has trace 0 .
Lemma 3.2. In $L F\left(2,2^{n}\right), t=3 \cdot 2^{2 n-8}$ and $\tau\left(2^{n}\right)=2^{n}$.
Proof. Since E^{\prime} contains K_{1}^{n},

$$
\begin{aligned}
0=g\left(E^{\prime}\right)=1+\left[2 ^ { 2 n - 3 } \left(2^{n}\right.\right. & -6) \\
& \left.\quad-t^{\prime} \tau(n)-2^{2 n-2}\left(3 \cdot\left(2^{n-1}-1\right)+2^{n-1}\right)\right] / 4 \cdot 2^{3 n-3}
\end{aligned}
$$

so that $t^{\prime} \tau(n)=2^{3 n-3}$. By writing down the elements one sees that, in $L F(2,4), E^{\prime}$ has two conjugates of T. Let

$$
\varphi: L F\left(2,2^{n}\right) \rightarrow L F\left(2,2^{n-1}\right)
$$

be the natural homomorphism with kernel K_{n-1}^{n}. If T in $L F\left(2,2^{n-1}\right)$ has precisely four pre-images under φ which are conjugate to T in $L F\left(2,2^{n}\right)$, then any conjugate of T in $L F\left(2,2^{n-1}\right)$ has precisely four pre-images conjugate to T in $L F\left(2,2^{n}\right)$. Using the fact conjugates of T have the form

$$
\pm\left(a c+b d,-b^{2}-a^{2}, c^{2}+d^{2},-a c-b d\right)
$$

we calculate that T in $\operatorname{LF}(2,4)$ has precisely four pre-images in $L F(2,8)$ so that $t^{\prime}=8=2^{2 n-3}$ for $L F(2,8)$. In general, for $n \geq 4$, the kernel of

$$
\varphi=\left\{ \pm\left(1+2^{n-1} \alpha, 2^{n-1} \beta, 2^{n-1} \gamma, 1+2^{n-1} \alpha\right), 0 \leq \alpha, \beta, \gamma \leq 1\right\}
$$

Then the elements U in $L F\left(2,2^{n}\right)$ such that $\varphi(U)=T$ in $L F\left(2,2^{n-1}\right)$ are given by

$$
K_{n-1}^{n} \cdot T=\left\{ \pm\left(2^{n-1} \beta,-1+2^{n-1} \alpha, 1+2^{n-1} \alpha, 2^{n-1} \gamma\right)\right\}
$$

Since conjugates of T have trace 0 , for an element of $K_{n-1}^{n} \cdot T$ to be conjugate
to T, it is necessary that $\beta=\gamma$. To see that the four elements of $K_{n-1}^{n} \cdot T$ with $\beta=\gamma$ are actually conjugate to T we need a, b, c and d which simultaneously satisfy

$$
\begin{align*}
c^{2}+d^{2} & \equiv 1+2^{n-1} \alpha \tag{3.1}\\
a^{2}+b^{2} & \equiv 1+2^{n-1} \alpha \tag{3.2}\\
a c+b d & \equiv 2^{n-1} \beta \tag{3.3}\\
a d-b c & \equiv 1 \tag{3.4}
\end{align*}
$$

all $\bmod 2^{n}$. Since $n \geq 4$, let u be a solution to

$$
x^{2} \equiv 1+2^{n-1} \quad\left(\bmod 2^{n}\right)
$$

If $\alpha=\beta=0$, let $c=b=0$, and $a=d=1$; if $\alpha=0, \beta=1$, let $a=2^{n-1}$, $c=-1, b=1, d=0$; if $\alpha=1, \beta=0$, let $c=b=0, a=u$ and $d=u+2^{n-1}$; if $\alpha=\beta=1$, let $b=0, c=2^{n-1}, d=u$ and $a=u+2^{n-1}$. We then see that T has four conjugates in $L F\left(2,2^{n}\right)$ which reduce to T in $L F\left(2,2^{n-1}\right)$. Hence, by induction, $t^{\prime}=4 \cdot 2^{2(n-1)-3}=2^{2 n-8}$ in $L F\left(2,2^{n}\right)$. So $t=3 \cdot t^{\prime}=3 \cdot 2^{2 n-8}$ and $\tau(n)=2^{3 n-3} / t^{\prime}=2^{n}$.

Lemma 3.3. For $n \geq 2$, an element of E^{\prime} or any of its conjugates has trace 0 if and only if it is conjugate to T.

Proof. We have seen that a conjugate of T has trace 0 . An element of K_{1}^{n} has trace $2 u \neq 0$ since u is odd. So the only elements with trace 0 in E^{\prime} are in the set

$$
K_{1}^{n} \cdot T=\{ \pm(-2 \nu, u+2 \mu,-(u-2 \mu), 2 \rho)\}
$$

So an element in E^{\prime} has trace 0 if and only if $\nu=\rho$ which implies there are $2^{n-1} \cdot 2^{n-1} / 2=2^{2 n-3}$ such elements. But E^{\prime} contains $2^{2 n-8}$ conjugates of T all of which have trace 0 and hence these are the only elements of E^{\prime} with trace 0 . If A, an element of one of the conjugates of E^{\prime}, has trace 0 , then since conjugation preserves traces, A is conjugate to an element in E^{\prime} with trace 0 and so is conjugate to T.

From the proof of this lemma, we see that, if

$$
U= \pm(u+2 \mu, 2 \nu, 2 \rho, u-2 \mu)
$$

then $U \cdot T$ has order two if and only if $\nu=\rho$. Furthermore, by multiplying and comparing entries, we see first that if U has $\nu=\rho$ so does U^{2} and second that if U has $\nu=\rho$ so does $d \cdot U$ where d is in

$$
\left\{I, Z_{n}, \pm\left(1,2^{n-1}, 2^{n-1}, 1\right), \pm\left(1+2^{n-1}, 2^{n-1}, 2^{n-1}, 1+2^{n-1}\right)\right\}=D^{\prime}
$$

which is conjugate to D. Finally $(d \cdot U)^{2}=U^{2}$ so that, if an element of K_{1}^{n} has one square root with $\nu=\rho$, it has precisely four.

Finally we obtain some information about conjugates of R in $L F\left(2,2^{n}\right)$ and calculate $r=$ the number of conjugates of R and $\rho(n)$ for $L F\left(2,2^{n}\right)$.

Lemma 3.4. An element of $\operatorname{LF}\left(2,2^{n}\right)$ is conjugate to R if and only if it has order 3 if and only if it has trace 1.

Proof. $\quad R$ has order three and all elements of $L F\left(2,2^{n}\right)$ of order three are conjugate by Sylow. Since R has trace 1 and conjugation preserves traces, all conjugates of R have trace 1. On the other hand, if an element has trace 1 , it has the form $\pm(a, b, c, 1-a)$ where $a-a^{2}-b c \equiv 1\left(\bmod 2^{n}\right)$ which has order three and hence is conjugate to R.

Lemma 3.5. $\quad \rho(n)=3 \cdot 2^{n-1}$ and $r=2^{2 n-2}$ for $L F\left(2,2^{n}\right)$.
Proof. Let $H=K_{1}^{n} \cdot[R]$ which is normal in $L F\left(2,2^{n}\right)$ and so contains all the conjugates of R.

$$
0=g(H)=1+\left[3\left(2^{n}-6\right) \cdot 2^{2 n-5}-9 \cdot 2^{2 n-4}\left(2^{n-1}-1\right)-\rho(n) \cdot r\right] / 9 \cdot 2^{3 n-4}
$$

so that $\rho(n) \cdot r=3 \cdot 2^{3 n-3}$. Arguing as in Lemma 3.2, there are eight elements of trace 1 in $L F(2,4)$ and R, in $L F\left(2,2^{s}\right), s<n$, has four pre-images in $L F\left(2,2^{s+1}\right)$ which have trace 1 and which are given by $B \cdot R$ in $L F\left(2,2^{s+1}\right)$. So we see that $L F\left(2,2^{n}\right)$ contains $2^{2 n-1}$ elements of trace 1 and therefore $r=2^{2 n-2}$. This implies that $\rho(n)=3 \cdot 2^{n-1}$.

4. Subgroups of genus 0

Since $L F(2,4)$ has genus 0 [3], we can restrict our attention to $L F\left(2,2^{n}\right)$ for $n \geq 3$.

Proposition 4.1. Suppose $\left|H \cap K_{n-1}^{n}\right|=1$ and $n \geq 4$. Then $g(H)>0$.
Proof. Since $\left|H \cap K_{1}^{n}\right|=1,|H| \leq 6$ and $W=0$. So

$$
g(H) \geq 1+\left(2^{3 n-2}-3 \cdot 2^{2 n-1}-2^{n+2}-3 \cdot 2^{n+1}\right) / 48>0
$$

for $n \geq 4$.
Lemma 4.1. (a) If $\left|H \cap K_{n-1}^{n}\right|=2$, then $r \leq 2^{n-1}$.
(b) If $\left|H \cap K_{n-1}^{n}\right|=4$ and $H \cap K_{n-1}^{n} \neq B$ then $r=0$.

Proof. Suppose $r \neq 0$ and conjugate H so that R is an element of H^{\cdot}
(a) Any element of order three in $L F\left(2,2^{n}\right)$ is in $K_{1}^{n} \cdot[R]$. Thus any element of order three in H is in $\left(H \cap K_{1}^{n}\right) \cdot[R]$.

But $\left|H \cap K_{1}^{n}\right| \leq 2^{n-1}$ and so the number of groups of order three is bounded by 2^{n-1}.
(b) Let

$$
\begin{gathered}
S_{1}=S^{2^{n-1}}, \quad S_{2}= \pm\left(1+2^{n-1}, 2^{n-1}, 2^{n-1}, 1+2^{n-1}\right) \\
S_{8}= \pm\left(1,0,2^{n-1}, 1\right)
\end{gathered}
$$

denote the three conjugates of $S^{2 n-1}$ in K_{n-1}^{n}. Then $S_{1} \cdot R=R \cdot S_{2}$, $S_{3} \cdot R=R \cdot S_{1}$ and $S_{2} \cdot R=R \cdot S_{3}$. Since $\left|H \cap K_{n-1}^{n}\right|=4$ and $H \cap K_{n-1}^{n} \neq B$, at least one of S_{1}, S_{2} and S_{3} is in H. But then since R is in H, the above
equalities show that S_{1}, S_{2} and S_{3} all are in H and so $H \cap K_{n-1}^{n}=K_{n-1}^{n}$ which is a contradiction. Therefore $r=0$.

Corollary 4.1. If $\left|H \cap K_{n-1}^{n}\right|=4$ and $H \cap K_{n-1}^{n} \neq B$, then $|H|=2^{l}$ for some l.

Proof. Since $r=0$, there are no elements of order 3 in H and so 3 does not divide $|H|$.

Suppose $|H|=3 \cdot 2^{l}$ and that P_{1}, P_{2} and P_{3} are the three Sylow 2-groups of $L F\left(2,2^{n}\right)$. If $\left|H \cap K_{1}^{n}\right|=2^{l-1}$, then $\left|H \cap P_{i}\right|, i=1,2,3,=2^{l}$. This can be seen by observing that

$$
H=\left(\bigcup_{i=1}^{3}\left(H \cap P_{i}\right)\right) \mathbf{u}(H \cap E)
$$

where $E=K_{1}^{n} \cdot[R]$ and then counting elements. So H has three Sylow groups, $H \cap P_{i}, i=1,2,3$, which are conjugate in H. Each of these contains the same number of conjugates in $L F\left(2,2^{n}\right)$ of T since $T^{\prime}=b T b^{-1}$ for b in $L F\left(2,2^{n}\right)$ if and only if trace $T^{\prime}=0$. But conjugation, whether by elements of H or $L F\left(2,2^{n}\right)$, preserves traces. So if T_{1}, \cdots, T_{m} are the conjugates in $L F\left(2,2^{n}\right)$ of T which are in $H \cap P_{1}$ and $a\left(H \cap P_{1}\right) a^{-1}=H \cap P_{2}$ where a is in H, then $a T_{i} a^{-1}$ are precisely the elements of $H \cap P_{2}$ of trace 0 , i.e. the conjugates in $L F\left(2,2^{n}\right)$ of T which are in $H \cap P_{2}$. Similarly for $H \cap P_{3}$.

Lemma 4.2. Suppose $\left|H \cap K_{n-1}^{n}\right|=2$. If 3 does not divide $|H|, t \leq 2^{n-1}$; if 3 divides $|H|, t \leq 3 \cdot 2^{n-1}$.

Proof. If $t \neq 0$, conjugate H so that T is in H. Since $\left|H \cap K_{n-1}^{n}\right|=2$, $H \cap K_{1}^{n}$ is cyclic of order bounded by 2^{n-1} and the set $\left(H \cap K_{1}^{n}\right) \cdot T$ also has order bounded by 2^{n-1}. Now if $|H|=2^{k}$, then $H=\left(H \cap K_{1}^{n}\right) \cdot[T]$ and since no conjugate of T belongs to K_{1}^{n}, all the conjugates of T in H are in $\left(H \cap K_{1}^{n}\right) \cdot T$. So $t \leq 2^{n-1}$. If $|H|=3.2^{k}$, then H has three conjugate subgroups of order $2^{\bar{k}}$ each containing the same number of conjugates of T. So $t \leq 3 \cdot 2^{n-1}$.

Proposition 4.2. Suppose T is an element of H and $\left|H \cap K_{n-1}^{n}\right|=4$. Suppose $|H|=2^{k}$. If $H \cap K_{n-1}^{n} \neq D^{\prime}$, then $t \leq 2^{n-1}$; if $H \cap K_{1}^{n}=D^{\prime}$, then

$$
t \leq 2^{n-1}+2^{n}(n-s-r+1)
$$

where $\left|H \cap K_{1}^{n}\right|=2^{2 n-s-r}$. Suppose $|H|=3 \cdot 2^{k}$. Then $t \leq 3 \cdot 2^{n-1}$ or $3 \cdot\left(2^{n-1}+2^{n}(n-s-r+1)\right)$ depending on whether $H \cap K_{n-1}^{n} \neq D^{\prime}$ or $=D^{\prime}$.

Proof. If $|H|=3 \cdot 2^{k}$, it contains three conjugate subgroups of order 2^{k} all containing the same number of elements conjugate to T. So we only have to consider H with order 2^{k} containing T.

By the remark following Lemma 3.3, to compute t, it is sufficient to count the number of elements U in $H \cap K_{1}^{n}$ with $\nu=\rho$. If $H \cap K_{1}^{n} \neq D^{\prime}$, then $H \cap K_{n-1}^{n}$ has at most one non-identity element with $\nu=\rho$ and so, again by
the remarks after Lemma $3.3, H \cap K_{n-r}^{n}$ has at most 2^{r} elements with $\nu=\rho$. So $t \leq 2^{n-1}$.

Suppose now that $H \cap K_{n-1}^{n}=D^{\prime}$ and that r is the smallest number such that $H \cap K_{r}^{n}$ contains an element with $\nu=\rho$. By Propositions 2.1 and 2.2, $H \cap K_{r}^{n}$ has the form

$$
\begin{aligned}
\left\{U_{1}^{i} U_{2}^{j}\right\}= & \left\{ \pm\left(u_{i} u_{j}^{\prime}+2^{r} \xi_{i} \mu u_{j}^{\prime}+2^{s} \xi_{j} \mu^{\prime} u_{i}+2^{r+s} \xi_{i} \xi_{j}\left(\mu \mu^{\prime}+\nu \rho^{\prime}\right)\right.\right. \\
& 2^{s} \xi_{j} \nu^{\prime} u_{i}+2^{r} \xi_{i} \nu u_{j}^{\prime}+2^{r+s} \xi_{i} \xi_{j}\left(\mu \nu^{\prime}-\mu^{\prime} \nu\right) \\
& 2^{r} \xi_{i} \rho u_{j}^{\prime}+2^{s} \xi_{j} \rho^{\prime} u_{i}+2^{r+s} \xi_{i} \xi_{j}\left(\rho \mu^{\prime}-\rho^{\prime} \mu\right) \\
& \left.\left.u_{i} u_{j}^{\prime}-2^{r} \xi_{i} \mu u_{j}^{\prime}-2^{s} \xi_{j} \mu^{\prime} u_{i}+2^{r+s} \xi_{i} \xi_{j}\left(\mu \mu^{\prime}+\nu^{\prime} \rho\right)\right)\right\}
\end{aligned}
$$

where
$U_{1}= \pm\left(\mathrm{u}+2^{r} \mu, 2^{r} \nu, 2^{r} \rho, u-2^{r} \mu\right), U_{2}= \pm\left(u^{\prime}+2^{s} \mu^{\prime}, 2^{s} \nu^{\prime}, 2^{s} \rho^{\prime}, u^{\prime}-2^{s} \mu^{\prime}\right)$, $s>r, 1 \leq \xi_{i} \leq 2^{n-r}, 1 \leq \xi_{j} \leq 2^{n-s}$ and $2^{n-r-x-1}$ of the ξ_{i} and $2^{n-\varepsilon-x-1}$ of the ξ_{j} are divisible by precisely 2^{x} since the ξ_{i} and ξ_{j} determine which $K_{l}^{n} U_{1}^{i}$ and U_{2}^{j} belong to. By the choice of r, to calculate t, it is sufficient to consider $H \cap K_{r}^{n}$ rather than $H \cap K_{1}^{n}$.

Suppose both U_{1} and U_{2} have $\nu=\rho$. We want the number of elements in $\left\{U_{1}^{i} U_{2}^{j}\right\}$ such that

$$
\begin{aligned}
& 2^{r} \xi_{i} \nu u_{j}^{\prime}+2^{s} \xi_{j} \nu^{\prime} u_{i}+2^{r+s} \xi_{i} \xi_{j}\left(\nu \mu^{\prime}-\nu^{\prime} \mu\right) \\
& \equiv 2^{s} \xi_{j} \nu^{\prime} u_{i}+2^{r} \xi_{i} \nu u_{j}^{\prime}+2^{r+s} \xi_{i} \xi_{j}\left(\mu \nu^{\prime}-\mu^{\prime} \nu\right) \quad\left(\bmod 2^{n}\right)
\end{aligned}
$$

which is satisfied if and only if $\xi_{i} \xi_{j}\left(\nu \mu^{\prime}\right) \equiv \xi_{i} \xi_{j}\left(\mu \nu^{\prime}\right)\left(\bmod 2^{n-r-s-1}\right)$. Now using the fact that $\rho=\nu$ and $\rho^{\prime}=\nu^{\prime}$ and the observation that if $\mu=\mu^{\prime}$, $\nu \equiv \nu^{\prime}$ and $\rho \equiv \rho^{\prime}$ all $\bmod 2$, then $U_{1}^{2 n^{-r-1}}=U_{2}^{2^{n-\theta-1}}$, one calculates that $\nu \mu^{\prime} \not \equiv \mu \nu^{\prime} \quad(\bmod 2)$. So

$$
\xi_{i} \xi_{j}\left(\nu \mu^{\prime}-\mu \nu^{\prime}\right) \equiv 0 \quad\left(\bmod 2^{n-r-s-1}\right)
$$

if and only if $\xi_{i} \xi_{j} \equiv 0\left(\bmod 2^{n-r-s-1}\right)$. If $2^{n-r-x} \| \xi_{i}$ where $0 \leq x \leq s-1$, there are 2^{x-1} choices for ξ_{i} if $x>0$ and one choice if $x=0$. Then ξ_{j} can be chosen arbitrarily so there are 2^{n-s} choices for ξ_{j}. If $2^{n-r-x} \| \xi_{i}$ where $s \leq x \leq n-r$, there are 2^{x-1} choices for ξ_{i} and 2^{n-x+1} choices for ξ_{j} since 2^{x-s-1} has to divide ξ_{j}. So

$$
t=2^{n-s}+2^{n-s} \sum_{i=1}^{s-1} 2^{i-1}+\sum_{i=s}^{n-r} 2^{n}=2^{n-1}+2^{n}(n-r-s+1)
$$

Suppose U_{2} does not have $\nu=\rho$. We want the number of elements such that
$2^{8} \xi_{j} \nu^{\prime} u_{i}+2^{r+8} \xi_{i} \xi_{j}\left(\mu \nu^{\prime}-\nu \mu^{\prime}\right) \equiv 2^{s} \xi_{j} \rho^{\prime} u_{i}+2^{r+8} \xi_{i} \xi_{j}\left(\nu \mu^{\prime}-\rho^{\prime} \mu\right) \quad\left(\bmod 2^{n}\right)$
which holds if and only if

$$
2^{8} \xi_{j} u_{i}\left(\nu^{\prime}-\rho^{\prime}\right)+2^{r+s}\left(\xi_{i} \xi_{j}\right) \zeta \equiv 0 \quad\left(\bmod 2^{n}\right)
$$

where $\zeta=\mu\left(\nu^{\prime}+\rho^{\prime}\right)=2 \mu^{\prime} \nu$. Let $2^{x} \| \nu^{\prime}-\rho^{\prime}$. If $x=0$, there are no
solutions unless 2^{n-s} divides ξ_{j} in which case there are at most 2^{n-r} such elements; if $x=1$, there are no solutions unless 2^{n-s-1} divides ξ_{j} in which case there are at most 2^{n-r+1} such elements. Suppose $x \geq 2$. If $\nu^{\prime}, \rho^{\prime}$ and μ are even and μ^{\prime} and ν are odd, then 4 divides $\mu\left(\nu^{\prime}+\rho^{\prime}\right)$ and 2 precisely divides $2 \nu \mu^{\prime}$ so that $2 \| \zeta$. Considering the other possible combinations for μ, ν, $\mu^{\prime}, \nu^{\prime}$ and ρ^{\prime} in the same way we see that if $x \geq 2,2 \| \zeta$. So, if $x \geq 2$, we want the number of elements such that

$$
\begin{equation*}
2^{s+x} \xi_{j} u_{i} y+2^{r+\varepsilon+1} \xi_{i} \xi_{j} \xi^{\prime} \equiv 0 \quad\left(\bmod 2^{n}\right) \tag{4.1}
\end{equation*}
$$

where y, ζ^{\prime} are odd. Clearly $x \leq n-s$. We can assume that $r+s<n$ since otherwise the number of elements in $\left\{U_{1}^{i} U_{2}^{j}\right\}$ is bounded by 2^{n} so that $t \leq 2^{n}$. If $x<r+1$, then 2^{n-s-x} has to divide ξ_{j} and so one has less than or equal to $2^{x} \cdot 2^{n-r} \leq 2^{n}$ elements of the type desired. So we can assume $r+1 \leq x \leq n-s$. Let $2^{l} \| \xi_{j}$ where $0 \leq l \leq n-s$. For each $l, 0 \leq l<$ $n-s-r-1$, there are at most 2^{n} elements of the type desired since there are at most $2^{n-s-l-1}$ choices for ξ_{j} and for each choice of ξ_{j} there are

$$
2^{n-r-(n-r-s-l-1)}=2^{s+l+1}
$$

choices for ξ_{i} because in these cases congruence (4.1) becomes

$$
2^{x-r-1} y^{\prime}+\xi_{i}^{\prime} \zeta^{\prime \prime} \equiv 0 \quad\left(\bmod 2^{n-s-l-r-1}\right)
$$

with y^{\prime} and $\zeta^{\prime \prime}$ odd. For each $l, n-s-r-1 \leq l \leq n-s-1$, there are $2^{n-s-1-l}$ choices for ξ_{j} and 2^{n-r} choices for ξ_{i} for each ξ_{j}. Finally for $l=n-s$, there is one choice for ξ_{j} and 2^{n-r} choices for ξ_{i}. So the total number of elements of the type desired is bounded by

$$
\begin{aligned}
(n-s-r-1) 2^{n}+2^{n-r} & +\sum_{\substack{n-s-1 \\
n-s-r-1}}^{2 n-s-r-1-l} \\
& =(n-s-r-1) 2^{n}+2^{n-r}+2^{n-r-1} \sum_{i=1}^{r+1} 2^{i} \\
& =2^{n}(n-s-r+1)
\end{aligned}
$$

Lemma 4.3. If $\left|H \cap K_{n-1}^{n}\right|=2, W \leq n$.
Proof. By Proposition 2.1, $H \cap K_{n-r}^{n}$ is cyclic. So for $n-r \neq 0$, $s\left(2^{n-r}\right) \leq 1$ and therefore $W \leq n-1+s(1)$. If Z_{n} is not an element of H then, from Lemma 3.1 and the fact that $H \cap K_{1}^{n}$ is cyclic, there can be at most one group conjugate to S in H. If Z_{n} is in $H, W=0$. So, in any case, $W \leq n$.

Lemma 4.4. If $H \cap K_{n-1}^{n}$ is conjugate to C, then $W \leq 2 n$.
Proof. Note that Z_{n} does not belong to H. Hence given U in H conjugate to $S^{2^{n-r+1}}$, Lemma 3.1 implies that at most one of its square roots which are conjugate to $S^{2^{n-r}}$ belongs to H. So, arguing by induction, we see that, in passing from conjugates of $\left[S^{2^{n-r+1}}\right]$ to conjugates of $\left[S^{2^{n-r}}\right]$ we add at most two conjugates of $\left[S^{2^{n-r}}\right]$. So $W \leq 2 n$.

Proposition 4.3. If $H \cap K_{n-1}^{n}$ is conjugate to D,

$$
W \leq 2^{(n+1) / 3}+2^{2 n / 3+5 / 3}-3
$$

Proof. Recall that a conjugate of $S^{2 r}$ has the form

$$
\pm\left(1-2^{r} a c, 2^{r} a^{2},-2^{r} c^{2}, 1+2^{r} a c\right)
$$

and that for computing $s\left(2^{r}\right)$ the relevant conjugates of ${S^{2 r}}^{2 r}$ are the ones with $a=1$; so we restrict our attention to these conjugates of $S^{2^{2}}$. By conjugating H, assume that $H \cap K_{n-1}^{n}=D$ and that $H \cap K_{1}^{n}$ has as many conjugates of $S^{2^{r}}, 1 \leq r \leq n-1$, with zero in the lower left corner as possible. If H can be conjugated so that all the conjugates of $S^{2 r}, 1 \leq r \leq n-1$, have this form, then if n is even,

$$
W \leq 1+2^{(n / 2)+1}+2 \sum_{i=1}^{(n / 2)-1} 2^{i}=2^{(n / 2)+2}-3
$$

if n is odd,

$$
W \leq 1+2^{(n+1) / 2}+2 \sum_{i=1}^{(n-1) / 2} 2^{i}=3 \cdot 2^{(n+1) / 2}-3 .
$$

Since $n \geq 2, W<2^{(n+1) / 3}+2^{2 n / 3+5 / 3}-3$.
If not, let m be the smallest integer such that $2^{n-m} c_{0}^{2} \not \equiv 0\left(\bmod 2^{n}\right)$ for some c_{0} and suppose $m \leq 2 n / 3-1 / 3$. Since m has the property that

$$
2^{n-m} c_{0}^{2} \not \equiv 0\left(\bmod 2^{n}\right) \quad \text { and } \quad 2^{n-(m-1)} c_{0}^{2} \equiv 0\left(\bmod 2^{n}\right)
$$

$c_{0}^{2} \equiv 0\left(\bmod 2^{m-1}\right)$ and $c_{0}^{2} \not \equiv 0\left(\bmod 2^{m}\right)$ so that $2^{m-1} \| c_{0}^{2}$ implying that m is odd. Now

$$
\begin{aligned}
& \pm\left(1+2^{n-m} c_{0}, 2^{n-m},-2^{n-m} c_{0}^{2}, 1-2^{n-m} c_{0}\right)^{2 m-1-1} \\
& = \pm\left(1-2^{n-m} c_{0}, 2^{n-1}-2^{n-m}, 2^{n-m} c_{0}^{2}, 1+2^{n-m} c_{0}\right) \\
& =S^{\prime}
\end{aligned}
$$

is in H. By the second statement of the proof, we may assume that H contains $S^{2^{n-m}}$. So H contains

$$
\begin{aligned}
S^{\prime} \cdot S^{2 n-m} & = \pm\left(1-2^{n-m} c_{0},-2^{2 n-2 m} c_{0}+2^{n-1}, 2^{n-m} c_{0}^{2}, 1+2^{2 n-2 m} c_{0}^{2}+2^{n-m} c_{0}\right) \\
& = \pm\left(1-2^{n-s} x, 2^{n-1}, 2^{n-1}, 1+2^{n-s} x\right)
\end{aligned}
$$

where x is odd and $1 \leq s=(m+1) / 2 \leq n / 3+1 / 3$. The last equality is obtained by factoring the highest power of two out of c_{0} and c_{0}^{2} and observing that $m \leq 2 n / 3-1 / 3$ implies that $2 n-2 m+(m-1) / 2 \geq n$. Taking powers of

$$
\pm\left(1-2^{n-s} x, 2^{n-1}, 2^{n-1}, 1+2^{n-s} x\right)
$$

we get $U^{\prime}= \pm\left(1-2^{n-s}, 2^{n-1}, 2^{n-1}, 1+2^{n-s}\right)$ is in H .
Now suppose U and V are conjugates of $S^{2^{2-r}}$ such that $U^{2^{8}}=V^{2^{8}}$ and s is the smallest integer for which this is true. Then

$$
U= \pm\left(1+2^{n-r} c, 2^{n-r},-2^{n-r} c^{2}, 1-2^{n-r} c\right)
$$

and

$$
V= \pm\left(1+2^{n-r} \gamma, 2^{n-r},-2^{n-r} \gamma^{2}, 1-2^{n-r} \gamma\right)
$$

with $\gamma=c-2^{r-s}$. Let

$$
\frac{2}{3} n-\frac{1}{8} \geq r \geq m+1>(m+1) / 2=s
$$

If U and V belong to H, so does

$$
\begin{aligned}
U \cdot V^{k}= & \pm\left(1+2^{n-r}(c+k \gamma)+2^{2 n-2 r} k \gamma(c-\gamma), 2^{n-r}(k+1)+2^{2 n-2 r} k(c-\gamma)\right. \\
& -2^{n-r}\left(c^{2}+k \gamma^{2}\right)-2^{2 n-2 r} k c \gamma(c-\gamma) \\
& \left.1-2^{n-r}(c+k \gamma)-2^{2 n-2 r} k c(c-\gamma)\right)
\end{aligned}
$$

Further note that $2^{s-1}=2^{(m-1) / 2}$ divides c since if not, let $2^{t} \| c$ with $t<(m-1) / 2$ and let $x=r-(m-1)$. Since U is conjugate to $S^{2^{n-r}}$, $U^{2^{x}}$ is conjugate to $S^{2^{n-r+x}}$ and the lower left corner of

$$
U^{2 x}=-2^{n-(m-1)} c^{2} \equiv 2^{n-(m-1)+2 t} y \not \equiv 0 \quad\left(\bmod 2^{n}\right)
$$

where y is odd. But this contradicts the choice of m. Set $k=2^{r-1}-1$. Then

$$
\begin{aligned}
& 2^{n-r}(c+k \gamma)+2^{2 n-2 r} k \gamma(c-\gamma) \\
& \quad \equiv 2^{n-r}\left(c+2^{r-1} c-c+2^{r+s}\right)+2^{2 n-2 r}\left(2^{r-1}-1\right)\left(c-2^{r-s}\right) 2^{r-s} \\
& \quad \equiv 2^{n-s} \quad\left(\bmod 2^{n}\right)
\end{aligned}
$$

since $r \leq \frac{2}{8} n-\frac{1}{3}, s<r / 2$ and 2 divides c.

$$
\begin{aligned}
& -2^{n-r}\left(c^{2}+k \gamma^{2}\right)-2^{2 n-2 r} k c \gamma(c-\gamma) \\
& \quad \equiv-2^{n-r}\left(c^{2}+\left(2^{r-1}-1\right)\left(c-2^{r-s}\right)^{2}\right)-2^{2 n-2 r}\left(2^{r-1}-1\right)\left(c^{2}-2^{r-s} c\right) 2^{r-s} \\
& \quad \equiv 0\left(\bmod 2^{n}\right)
\end{aligned}
$$

since $r \leq \frac{2}{3} n-\frac{1}{3}, s<r / 2$ and 2^{s-1} divides c.

$$
2^{n-r}(k+1)+2^{2 n-2 r} k(c-\gamma) \equiv 2^{n-1} \quad\left(\bmod 2^{n}\right)
$$

So $U \cdot V^{k}= \pm\left(1+2^{n-s}, 2^{n-1}, 0,1-2^{n-s}\right)$. But then

$$
U^{\prime} \cdot U \cdot V^{k}= \pm\left(1,0,2^{n-1}, 1\right)
$$

is in H contradicting the fact that $H \cap K_{n-1}^{n}=D$. So any two conjugates of $S^{2^{n-r}}$ where $\frac{2}{3} n-\frac{1}{3} \geq r \geq m$ whose 2^{3}-th powers are the smallest powers which are equal can not both belong to H.

For the rest of the proof, the phrase "at the r-th level" will mean in $K_{n-r}^{n}-K_{n-(r-1)}^{n}$. At the $(m-1)-t h$ level, all conjugates of $S^{2^{n-(m-1)}}$ have zero in the lower left corner so that there are at most 2^{s-1} conjugates of $S^{2^{2-(m-1)}}$ in H. At the m-th level, there are at most 2^{s} conjugates of $S^{2^{n-m}}$ since each conjugate of $S^{2^{n-(m-1)}}$ has at most two square roots which are con-
jugate to ${S^{2 n-m}}^{2}$. For each of these 2^{s-1} divides c and all 2^{s} powers are equal. At the $(m+1)$-th level, there are at most $2 \cdot 2^{s}$ conjugates of $S^{2^{n-(m+1)}, 2^{s-1}}$ divides c and all 2^{s+1} powers are equal. So there are at most two elements in the set of 2^{s} powers and each has at most $2^{s} 2^{s}$-th roots from the $(m+1)$-th level. From each of these two disjoint collections of $2^{2}-t h$ roots, whose union is all the conjugates of $S^{2^{n-(m+1)}}$, at most $2^{\sigma-1} 2^{8}-t h$ roots can be in H since, if U given by c is in H, U^{\prime} given by $c-2^{r-s}$ can not be in H. So the ($m+1$)-th level has at most 2^{s} conjugates of $S^{2^{n-(m+1)}}$.

Now each of the two sets of 2^{8}-th roots at the $(m+1)$-th level can give at most one 2^{s-1} power since otherwise H will contain elements whose 2^{8}-th powers are the first ones equal. So there are at most two elements in the set of 2^{s-1} powers of conjugates of $S^{2^{n-(m+1)}}$ from the $(m+1)$-th level and hence the set of 2^{s} powers of conjugates of $S^{2^{n-(m+2)}}$ from the $(m+2)$-th level has at most two elements in it. Furthermore there are at most $2 \cdot 2^{\text {a }}$ conjugates of $S^{2^{n-(m+2)}}$ in H. Repeat the above argument and continue inductively to see that each level from m to t contains at most 2^{8} conjugates of powers of S where t is the greatest integer less than or equal to $\frac{2}{8} n-\frac{1}{3}$. By Lemma 3.1, for $r>t$, the number of conjugates of $S^{2^{n-r}}$ in H is at most twice the number of conjugates of $S^{2^{n-r+1}}$ in H. So if t is even,

$$
W \leq 1+2 \sum_{i=1}^{t / 2} 2^{i}+2^{t / 2} \sum_{i=1}^{n-t} 2^{i}=2^{(t / 2)+1}+2^{n+1-t / 2}-3
$$

if t is odd,

$$
W \leq 1+2 \sum_{i=1}^{(t-1) / 2} 2^{i}+2^{(t-1) / 2} \sum_{i=1}^{n-t} 2^{i}=2^{(i+1) / 2}+2^{n+1-(t+1) / 2}-3
$$

Since in either case, $\frac{1}{3}(n+1) \geq \frac{1}{2}(t+1)>\frac{1}{2} t>\frac{1}{3}(n-2)$,

$$
W \leq 2^{(n+1) / 3}+2^{2 n / 3+5 / 3}-3
$$

Proposition 4.4. Suppose $n \geq 6$. Then if $\left|H \cap K_{n-1}^{n}\right|=2$ or $H \cap K_{n-1}^{n}$ is conjugate to $C, g(H)>0$.

Proof. By Lemma 4.1, $r \leq 2^{n-1}$. If $\left|H \cap K_{n-1}^{n}\right|=2, W \leq n$ by Lemma 4.3 and $t \leq 3 \cdot 2^{n-1}$ by Lemma 4.2 and so

$$
\begin{aligned}
g(H) & \geq 1+\left(2^{3 n-5}-\left(3 \cdot 2^{2 n-4}+2^{n-1} \cdot 2^{n-1}+3 \cdot 2^{n-1} \cdot 2^{n-2}+2^{2 n-4} n\right)\right) / h \\
& \geq 1+2^{2 n-4}\left(2^{n-1}-13-n\right) / h
\end{aligned}
$$

But $2^{n-1}-13-n>0$ if $n \geq 6$. If $H \cap K_{n-1}^{n}$ is conjugate to $C, W \leq 2 n$ by Lemma 4.4 and $t \leq 3 \cdot 2^{n-1}$ by Proposition 4.2 and so

$$
g(H) \geq 1+2^{2 n-4}\left(2^{n-1}-13-2 n\right) / h
$$

and $2^{n-1}-13-2 n>0$ if $n \geq 6$.
Lemma 4.5. Suppose $H \cap K_{n-1}^{n}=B$ and $n \geq 5$. Then $r=2^{2 l}$ with $2 l \leq 2 n-6$.

Proof. By Sylow, r is an even power of 2 so that $r=2^{2 l}$. Since any sub-
group of order three has the form $[U \cdot R]$ where U is in $K_{1}^{n}, r=2^{2 l} \leq 2^{2 n-(t+s)}$ where $\left|H \cap K_{1}^{n}\right|=2^{2 n-(t+s)}$ with $s \geq t$. Since $H \cap K_{n-1}^{n}=B$ and any element in K_{1}^{n} has its 2^{n-2}-th power in $K_{n-1}^{n}-B, t \neq 1$ and so $2 l \leq 2 n-4$. Finally consider the case $t+s=4$ and $2 l=2 n-4$. Then $[U \cdot R]$ is a group of order three for any U in K_{2}^{n}. So suppose

$$
U= \pm(u+4 \mu, 4 \nu, 4 \rho, u-4 \mu)
$$

is in $K_{2}^{n}-K_{3}^{n}$ and $U \cdot R$ has order 3. Now

$$
u^{2} \equiv 1+16\left(\mu^{2}+\nu \rho\right) \quad\left(\bmod 2^{n}\right)
$$

and, since $U^{2 n-8}$ is in B, exactly two of μ, ν and ρ are odd. So $\mu^{2}+\nu \rho$ is odd and $2^{4} \| 1-u^{2}$. Since $U \cdot R$ has order 3 and so trace $1,4(\nu-\rho-\mu)$ $\equiv 1-u\left(\bmod 2^{n}\right) . \quad \nu-\rho-\mu$ is even exactly two of them are odd and so 2^{3} divides $(1-u)$. But $2^{3} \|(1-u)$ since 2 divides $1+u$ and $2^{4} \|\left(1-u^{2}\right)=(1+u)(1-u)$. Therefore $2 \|(\nu-\rho-\mu)$. Now consider $U^{2}= \pm\left(u^{2}+8 \mu u+16\left(\mu^{2}+\nu \rho\right), 8 \nu u, 8 \rho u, u^{2}-8 \mu u+16\left(\mu^{2}+\nu \rho\right)\right)$. $U^{2} \cdot R$ has order 3 so that

$$
8 u(\nu-\rho-\mu)+16\left(\mu^{2}+\nu \rho\right) \equiv 1-u^{2}\left(\bmod 2^{n}\right) .
$$

But $2^{4} \|\left(1-u^{2}\right)$ and, since $\mu^{2}+\nu \rho$ is odd, $2 \|(\nu-\rho-\mu)$ and $n \geq 5$, then 2^{5} divides $8 u(\nu-\rho-\mu)+16\left(\mu^{2}+\nu \rho\right)$ which is a contradiction. So $2 l \neq 2 n-4$ which implies that $2 l \leq 2 n-6$.

Proposition 4.5. Suppose $H \cap K_{n-1}^{n}$ is B and $n \geq 5$. Then $g(H)>0$.
Proof. Since $H \cap K_{n-1}^{n}$ is $B, W=0$. By Proposition 4.2, $t \leq 3 \cdot 2^{n-1}$ and by Lemma 4.5, $r \leq 2^{2 n-6}$. So

$$
g(H) \geq 1+\left(2^{8 n-5}-3 \cdot 2^{2 n-4}-3 \cdot 2^{n-1} \cdot 2^{n-2}-2^{n-1} \cdot 2^{2 n-6}\right) / h
$$

$$
=1+2^{2 n-4}\left(2^{n-1}-\left(3+6+2^{n-8}\right)\right) / h>0
$$

if $n \geq 5$.
Proposition 4.6. Suppose $H \cap K_{n-1}^{n}$ is conjugate to D. Then $g(H)>0$ if $n \geq 8$.
Proof. By Lemma 4.1 and Corollary 4.1, $r=0$ and $|H|=2^{l}$. By Proposition 4.2, $t \leq 2^{n-1}+2^{n}(n-s-r+1)$ and by Proposition 4.3,

$$
W \leq 2^{(n+1) / 3}+2^{2 n, 3+5 / 3}-3 .
$$

So $g(H) \geq 1+2^{2 n-4}\left(2^{n-1}-(3+2+4(n-2)+W)\right) / h$. But if $n \geq 11$,

$$
2^{n-1}-\left(5+4(n-2)+2^{(n+1) / 3}+2^{2 n / 3+5 / 8}-3\right)>0
$$

and so $g(H)>0$. From the proof of Proposition 4.3, we see that for $n=10$, $W \leq 269$; for $n=9, W \leq 133$; for $n=8, W \leq 69$. Therefore for $n=10$,

$$
g(H) \geq 1+2^{16}(512-(37+269)) / h
$$

for $n=9$,

$$
g(H) \geq 1+2^{14}(256-(33+133)) / h
$$

for $n=8$,

$$
g(H) \geq 1+2^{12}(128-(29+69)) / h
$$

So for $n=8,9$ and $10, g(H)>0$.
The proof of Theorem 1 now follows from Propositions 4.1, 4.4, 4.5 and 4.6.

Bibliography

1. J. Dennin, Fields of modular functions of Genus 0, Illinois J. Math.
2. J. Gierster, Über die Galois'sche Gruppe Modulargleichungen, wenn der Transformationsgrad Potenz einer Primzahl > 2 ist, Math. Ann., vol. 26 (1886), pp. 309368.
3. R. C. Gunning, Lectures on modular forms, Princeton, 1962.
4. D. McQuillan, Classification of normal congruence subgroups of the modular group, Amer. J. Math., vol. 87 (1965), pp. 285-296.
5. -, On the genus of fields of elliptic modular functions, Illinois J. Math., vol. 10 (1966), pp. 479-487.

University of Connecticut
Storrs, Connecticut

[^0]: Received April 29, 1970.

