ABSTRACT HOMOTOPY IN CATEGORIES OF FIBRATIONS AND
THE SPECTRAL SEQUENCE OF EILENBERG AND MOORE

BY
Avex HEeLLER!

In previous articles [5], [6] we have examined those formal characteristics
of the category of topological spaces which make possible the constructions
of homotopy theory and, accordingly, of homology theory. These charac-
teristics are shared by many other categories, which thus admit their own
homotopy and homology theories: as to the latter we might say that, as
“extraordinary’” homology generalizes by changing coefficient objects, so a
further generalization occurs in changing the domain of homology theory.

Our primary purpose here is to exhibit the existence of such structure in
three cases: the category of spaces over a fixed space; the category of Hurewicz
fibrations over a fixed space; the category of spaces provided with a fixed
group of operators.?2 We thus justify assertions made in the references cited
above. This is not however an empty generalization. We shall use it to give
perspicuous derivations of two spectral sequences due to Eilenberg and Moore
[4]. One of these involves the homology of the pullback of a fibration, the
other the homology of the fiber bundle with a prescribed fiber associated to a
principal bundle.

These spectral sequences have been derived in a number of ways. The
original techniques of Eilenberg and Moore use chain-complex arguments and
appear to give results only for singular homology. Rector [8] derives the
pullback spectral sequence by cosimplicial methods which seem to be quite
different from those advanced here. The construction of L. Smith [10],
however, is quite similar to the one below, as is that of Steenrod and Rothen-
berg [8] for the associated bundle.

Smith (loc. cit.) remarks on the analogy between the pullback spectral
sequence and the Adams spectral sequence (cf. [1]). There seems to be no
doubt that they belong to a common domain whose boundaries however have
not yet been completely determined. The argument below, which uses stable
homotopy methods and is couched in terms of homology rather than cohomol-
ogy (thus avoiding finiteness restrictions after the fashion of Eilenberg and
Moore) reinforces this analogy.

In §§1, 2 below we restate the axioms for abstract homotopy theory in an

Received April 16, 1970.

1 This research was in part supported by a National Science Foundation contract.

2 T understand that J. F. McClendon and I. M. James have investigated these cate-
gories, or near neighbors, from similar points of view in as yet unpublished studies.

Added in proof. Cf. also I. M. James, Ex-homotopy theory I, Illinois J. Math., vol. 15
(1971), pp. 324-337.
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“unpointed” version and discuss the introduction of basepoints. These,
together with §§3-7, which establish the relevant properties of the categories
in question, are more or less self-contained. For the remainder of the paper,
certain generalities concerning stable homotopy and homology theories in
the abstract case are assumed. For these [5] and [6] may serve as reference.

In §§8-11 the “pulback” spectral sequence is derived and its convergence
discussed. The “‘associated-bundle” spectral sequence presents many analogies,
and is treated in somewhat more abbreviated fashion in §§12-14.

1. Abstract homotopy theory

In [5], [6] we have introduced the notion of an hc-category as a framework
for abstract homotopy theory. The axioms given there were for pointed
categories, i.e., categories with a 0-object. It is convenient to have an un-
pointed version, which we adduce here with the terminological convention
that what was previously called an hc-category is now a pointed hc-category.
The latter often arise from the former by a process of introducing basepoints,
which we shall describe below.

A c-category 18 a category @ with an initial object @ and a terminal object P,
provided with a subcategory Cof €, whose morphisms are called cofibrations,
such that:

(C1) Cof € contains all isomorphisms and all morphisms ¢ — A.

(C2) Ifa:A’"— Ain Cof €and f': A’ — B’ in @ then the pushout dia-
gram (called a c-pushout)

Y N
(1.1) f! lf
b

B'———B

exists in €, and b ¢ Cof €.

We shall occasionally use the notation B = A u B’, and write morphisms
B — Cin the matrix form (v v) with (u v)f = u, (w v)b = ». The special
cases A’ = @, B’ = P give respectively the coproduct B = A + B’ the cofiber
B =A4/4".

(e, Cof @) is a pointed hc-category if § = P; we then write § = P = 0,
and use the notation A \/ B for A + B.

If (€’, Cof @) is also a c-category a functor @ — @' is a c¢-functor if it pre-
serves cofibrations and c-pushouts. If €, @’ are pointed, a pointed c-functor
preserves 0 as well.

If (e, Cof @) is a c-category a full subcategory €’ C € is a c-subcategory if
(€, @ N Cof @) is a c-category and inclusion is a c-functor.

The primary example we shall have in mind below is the category 3 of
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topological spaces which are compactly generated and in which continuous
real-valued functions separate points. Morphisms are continuous maps, and
cofibrations are those for which the homotopy extension condition holds.
The full subecategory W C 3 of spaces having the homotopy type of a CW-
complex is easily seen to be a c-subcategory.

An hc-category is a c-category (@, Cof @) provided with a congruence =,
called homotopy, satisfying four additional axioms. The quotient category
e” = e/~ is the homotopy category; a morphism in € is a homotopy equivalence
if its image in @" is an isomorphism. The axioms are the following:

(HC 1) (Additivity) Iff~f':4A—>Xandg~g¢g : B— X then
o= ¢):A+B—-X.
(HC 2) (Homotopy extension) If
A2 4% 4/4

f’J f jf’/
B—b .p B/B’'

commutes, a and b being coﬁbratio_ns, and ¢’ =~ f' then there exist g ~ f,
g” >~ f” such that ga = by’, g"a = byg.

(HC 3) (Deformation-retraction) If in the ¢-pushout (1.1) the morphism
a is a homotopy equivalence then so also is b.

N

(HC 4) (Mapping cylinder) Any morphism in € has a factorization gf
with g a homotopy equivalence and f a cofibration.

The fact that 3, supplied with the usual notions of cofibration and homotopy,
is an he-category is a sequence of commonplaces of homotopy theory.
The notion of an hc-subcategory being defined in the obvious way, it is
clear that W is an hc-subcategory of J.
2. Relative homotopy; introducing basepoints

If a1 A’ — A is a cofibration in an hc-category € we may construct a c-push-

out

A—A4 u A

AI a

a

A relative cylinder over a is a mapping cylinder factorization

PRI LN
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of 1 1):4u.A— A If

4 ./ ’
Ao B B E

is another we may construct the pushout

A Y 7.4

4
A u

’

Zi——7.4 ® ZiA
With this notation we have the following lemma.
Lemma 2.1, (i)

u %
Augd —B ) o %4
18 a relative cylinder over a; (ii)
u‘ ul’l /
Augd 0 ) e ma ) 4
18 a relative cylinder over a; (iii) if
BuwB- ", 25 %58

18 a relative cylinder over b : B’ — B and (f', f) : a — b then there is a
2:Z,A—>ZyB
such that z2(t ) = (jo H)f.

If fo, f1: A — X we say that they are homotopic (rel a, or rel A’) if there is
an F:Z,A — X with F(4 %) = (fo fi); this implies of course that
foa = fia. From the lemma we conclude the following.

ProrosiTiON 2.2. Homotopy (rel a) is an equivalence relation on € (A4, X).
Ifg: X - Y and fo =~ f1 (vel a) then gfo >~ gfy (vel a). Ifb:B — Bisa
cofibration and (¢', g) : b — a then fog ~ fig(rel b).

Notice that fo =~ f, (rel A’) implies fo~ f;. Conversely fo = f1 is equivalent
to fo = fi(rel 9).

An essential property of relative homotopy is its behavior with respect to
pushouts.

ProrosiTioN 2.3. If, in the c-pushout (1.1),
(wo v), (x v):B—>X and wup~wu (rel A’)
then (w0 v) >~ (w1 v) (rel B’).
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The characterization of (HC3) as a “deformation retraction” axiom is ex-
plained by the following observation. We say that a: A’ — A is a strong
deformation retract if there is a retraction r: A — A’ i.e., left inverse of a,
such that ar ~ 1, (rel 47).

Prorosition 24. Ifa: A’ — A s a cofibration and a homotopy equivalence
retract.

The proof proceeds just as in the standard topological context.

We may now ‘‘introduce basepoints” in an arbitrary he-category (€. Cof €,
~). Theobjects of @ are the cofibrationszo : P— Xine. Ifalsoy:P—Y
is a cofibration then @"(zo, yo) consists of f : X — Y such that fro = 7. Such
an fis a cofibration in €” if it is onein €.  Homotopy in €’ is homotopy (rel P)
in@. We write Cof @, >~ for the cofibrations and homotopies thus defined.

ProposiTioN 2.5. If (€, Cof @, =) is an he-category then (€°, Cof €, ~"
s a pointed hc-category. Moreover, the forgetful functor € — € and its
coadjoint X — X* = X 4+ P are he-functors.

The category € may well be trivial; examples are easily supplied. How-
ever 3 is certainly not trivial, and we shall introduce additional nontrivial
examples below. Notice that if € is pointed then €' = €.

If F:e — € is an he-functor we define F' : @ — @ by means of the
¢-pushout

Fp_Fx  px

| ]

PP — F'X
ProposITION 2.6. F' is a pointed he-functor.

3. Spaces over a fixed base

By a “space over B we mean a map px : X — BinJ. These are the objects
of the category 33. The morphisms are maps f: X — Y with prf = px;
we shall call them, as usual, fiber-maps over B. 3z has initial object @ — B
and terminal object ps = 15.

A fiber-homotopy over B is a fiber-map X X I — Y, where X X I is given the
structure of a space over B by pxyxs = pxprxr. A morphisma: A4’ — A isa
cofibration over B if it satisfies the following fiberhomotopy-extension condition:

4% (0} =229 4 i)

| |

A X I——AXI

i8 a weak pushout in J5.
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Following the argument of Puppe [7] we obtain a condition for identifying
cofibrations over B.

Lemma 3.1. a: A’ — A is a cofibration over B if and only if it ©s a homeo-
morphism of A’ onto a subspace of A and (making the tmplied identification)
there is a function p: A — I and a fiber-homotopy F : A X I — A stationary
on A’ such that

p'0)=A", Fo=1, Fip'[0,1) C A"
For a is a cofibration over B if and only if
AX{Qud’'XI—>AXI

has a left inverse r in 35. The first statement follows at once. Now, sup-
posing A’ C A, set

pa = max; (¢t — prir(a, t)), F(a,t) = prar(a,t).
Conversely, given p and F we may define the retraction r by

r(a, t) = (F(a,t/pa),0) foraed — A’,t < pa
(F(a, 1),t — pa) fort = pa.

To see that the map so defined is continuous at points of A’ X {0} observe
that if @’ = F(a’, 0) e U, U open in A, then, since I is compact, there is an
open V containing o’ such that F(V X I) < U.

Pursuing further Puppe’s reasoning, we arrive at the following statements.

LemMma 3.2. If A’ € A, ¢’ C C are cofibrations over B then so is
A XBC’UAI XBCCA XBC.

Let p, F be as in 3.1 and suppose that ¢, G play similar roles with respect
to ¢’ < C. Let

‘P:IB_' {(0;071)}_)'I

be a continuous function such that ¢ (r, s,0) = ¢(0,8,¢) = Oand ¢ (r,s,1) = 1
forr > s Letr:4 Xz C — I be given by 7(a, ¢) = (pa) (sc) and define
H: (A XsC)XI—>AXsChy

H@,c,t) (@,c) for (a',c')eA’ XpC’
H(a, ¢, t) = (F(a, ¢(oc, pa, t)), G(c, ¢(pa, ac, t))) for (a, c) ¢ A’ X5 C'.

Continuity at points of (A’ X5 C’) X I follows from the compactness of I as
in the proof of 3.1.

Sincefor A ¢35, A X I = A X5 (B X I)itfollowsthat A X I'ud’ X I C
A X I is a cofibration over B whenever A’ C A is.

LevMa 3.3. If A’ C A is a cofibration over B and also a fiber-homotopy equiva-
lence then A’ is a strong fibered deformation retract of A.

From the homotopy extension condition it follows that it is a weak fibered
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deformation retract and thus that A X {0} u A’ X IC A X I'u A’ X Iisa
fiber homotopy equivalence, as must also be 4 X I'u A’ X I < A X I.
Since this inclusion is a cofibration over B it has a retraction in 3z, from which
the strong deformation retraction of 4 onto A’ is easily manufactured.

These lemmas provide the nontrivial part of the proof of the following
theorem.

TaeorREM 3.4. (38, Cof 35, ~p) 1s an he-category, where Cof 3p is the class
of cofibrations over B and ~p 18 fiber homotopy.

Axiom C1 is trivial. For C2, if A’ < A is a cofibration over B and A’ — C’
is a fiber map then the pushout 4 u C’ exists in 3 and payer = (Psa  Per) makes
it a pushout in J3z. Fiber homotopy extension for ¢’ — (4 u (') is a formal
consequence of the construction.

Conditions HC1, 2 are immediate, while HC4 follows from the usual con-
struction of the mapping cylinder, with the observation that this construction
respects the structure of maps and spaces over B. Finally, HC3 follows, as in
the classical case 3, from 3.3.

As in §2 we may introduce “basepoints”, in this case rather to be described
a8 ‘“base-sections”; and thus construct the pointed hc-category (3%, Cof 33,
~%) whose objects are the diagrams

B, x_P* . p
with px ox = 15 and ox a cofibration over B.

If we write ‘Wj for the full subcategory of px : X — B in 35 with X ¢ ‘W, this
i8 clearly an hc-subcategory provided B ¢ W. Similarly W3 is an hc-subcate-
gory of 3% .

4. Pullbacks and their adjoints
If w: B— Cin J we write

w'X = B XX s X
Duwlx [ X
w
B—(C

for the pullback. If f: X — Y is a fiber-map over C then (w!f) (b, z) = (b, fx)
defines a fiber-map over B; this makes w' : 3¢ — Jp a functor.
In the other direction we have w;: 3z — 3¢ given by wi(X, px) = (X, wps).

ProrosiTiON 4.1. w! is adjoint to w:.
The adjunction is given by

w3 X, YY)~ 3s(X, wY)
where wf = (fpx), w'g = preg.
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PROPOSITION 4.2. wi %s an he-functor.

As a coadjoint w; preserves pushouts, a fortiori c-pushouts. That it pre-
serves fiber-homotopy is obvious. The preservation of cofibrations is an im-
mediate consequence of 3.1,

ProrosiTioN 4.3. w!' also has an adjoint.

If X € 35 consider the set
E = Jecc o (w™e)

where for B’ C B, o (B’) is the set of cross-sections of X over B’. FE is pro-
vided with a map px : E — B by sending ¢ (w™'¢) into c. E may be topologized
by the rule that if K is a compact Hausdorff space then ¢ : K — FE is continu-
ous exactly when the map ¢ : K X¢ B — X with ¢(k, b) = (¢k)b is con-
tinuous. Then X — E is adjoint to w'.

We can now make the appropriate assertion about w'.

ProrosiTioN 4.4. If w : B — C then w' : 3¢ — 33 s an he-functor.

Since w!'(X X I) = (w'X) X I it is clear that w' perserves homotopy.
Lemma 3.1 provides for the preservation of cofibrations. The preservation of
c-pushouts follows of course from 4.3.

Moreover w' preserves initial and (unlike w;) terminal objects and thus de-
fines w' : 3¢ — 5, again an he-functor. Associated to w:, on the other hand
we have the he-functor w, : 33 — 3¢, coadjoint to w'.

If w : B — C in W then w, takes W5 into W¢ and wy takes W3 into W ;
both restrictions are hc-functors. No similar assertion, evidently, can be made
about w' (but see §6 below).

5. Fibrations over B

We shall denote by Fibg the full subcategory of 35 consisting of px : X — B
which are fibrations. We recall that this means that

' X

I
Dx Px

B —— B

is a weak pullback in 3, where the horizontal arrows stand for evaluation at 0,
or equivalently that there be a path-lifting-function (PLF) for X, i.e., a cross-
section of the canonical map X’ — B’ X5 X.
We introduce into Fibp the same homotopy relation as that used in 3z, or
rather its restriction. But it is not asserted that Fibj is a c-subcategory of Js .
A morphism a : A’ — A in Fibp is a fiber-cofibration over B if it is a cofibra-
tion over B (so that we might as well assume it to be an inclusion) and, further,
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there exist PLF o’ for A’, a for A such that a extends &', i.e., such that
BI X B A, —_— BI X B A

’

a a

AII AI

commutes.

It is of course intended that, provided with this notion of cofibration, Fibs
should be an hc-category. This is indeed the case. There is however a deli-
cate point in the proof which we introduce here as a lemma.

Lemma 5.1 (L. Berkhout). Suppose

4 —— A

1T

X — X

s a c-pushout in 3z, that A’, A, X’ are in Fibg, and that A’ — A s a fiber-
cofibration over B. Then any PLF ¢’ for X' extends to a PLF for X.

Let a’ be a PLF for A’ extending to a PLF a for A. Suppose that
p:A—1I and F:AXI—A
are as in 3.1. Define 5 : B* X5 A — [0, 2] by
p(o, a) = 2 maxes p(a(o, a)t).
Then 5 (0) = B" X5 A’. Further define ® : B Xz A — B! by
®(0, a)t = o(min (1, ¢ + p(s, @))).
We may now attempt to construct a PLF ¢ for X by setting
(2.2a) t(o,2') = t'(o,2') for (¢,2') e B X5 X,
(2.2b) t(o, fa)t = fF (a(o, a)t, t/4(o, @))
for (¢, a) e B X5 (4 — A"), t < p(0, a),
(2.2¢) (o, fa)t = ¥'(®(o, a), fF(a(o, @)b (o, @), 1)) (t — B(o, a))
for (s, a) e B' X5 A, t > p(a, a).
Observe that if p(s, @) < ¢t C 1 then pa(o, a)p(s, a) <  so that

F(Q(O', a’)ﬁ(”: a’); 1) e A’
and 2.2c is defined.
The following statements are easily verified: for fixed (o, ) ¢ B’ X5 X,

t(o,z) eX"; t(o,2)0 =2; pri(s,z) =o.
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What remains is to show the continuity of ¢ or, what comes to the same thing,
that of the adjoint map (B' X5 X) X I — X.
This continuity is clear on

B Xe X —X))XI~ (B Xs(4—-4")) X1

Moreover each point of (B’ X5 X’) X (0, 1] has a neighborhood on which g
is defined by 2.2a and 2.2¢ so that continuity is clear at such points as well.
For points in (B’ X X’) X {0}, finally, an argument analogous to that used
in the proof of 3.1 is adequate.

CoroLLARY 5.2. If A’ C A s a fiber-cofibration over B then any PLF for A’
extends to one for A.

We need only take f/ = 1, in the lemma.
We now define Cof Fibz to be the class of fiber-cofibrations over B,

Tueorem 5.3. (Fibg, Cof Fibp, ~5) 7s an hc-category.

Axiom C1 follows from the corollary to the lemma, which is itself, in view of
3.4, essentially C2. Conditions HC1-3 follow immediately from 3.4, while
the lemma above comes into play once more to show that the mapping cylinder
remains in Fibg, thus proving HC4.

If w : B — C then w' takes Fib¢ into Fibs. Furthermore it preserves fiber-
cofibrations. For if a is a PLF for A € Fibe then @ (o, b, )t = (ot, a(wo, 2)t)
defines a PLF for w'd, and the operation a — & clearly preserves extension of
PLF. Thus w': Fibe — Fibp is an he-functor.

The coadjoint w; does not in general preserve fibrations except in the special
case in which w itself is a fibration. In this case it preserves fiber-cofibrations
as well, since if a : ¢' X¢ B — B’ is a PLF then

I 1 a Xz X I z I
C'XeX =(C X¢B)Xg X— B Xg X—X
associates to a PLF ¢ for X ¢ Fibp a PLF for w: X ¢ Fib¢, and this association
preserves extension of PLF. Thusif w : B — C is a fibration then w; : Fibg —

Fib¢ is an he-functor.

We may of course apply 2.5, 2.6 in this case, to produce pointed hc-categories

(Fiby , Cof Fiby , ~%) and hc-functors w' and, for w a fibration, wy .

6. “W-fibrations

If p : X — Bis a fibration, B is a CW-complex, and each fiber of p has the
homotopy type of a CW-complex then it is easy to see that X also has the
homotopy type of a CW-complex: this is clear when B is a cell, follows easily
when B is a sphere and generalizes by induction over the skeletons of B. The
same conclusion clearly holds if it is simply assumed that B has the homotopy
type of a CW-complex:

Prorosrrion 6.1. If p : X — B s a fibration such that B and each fiber is in
W then X is in W.
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The full subcategory of Fibs consisting of these will be denoted by W fibg ;
we call them W-fibrations.

ProrosiTioN 6.2. ‘W fibg 7s an he-subcategory of Fibg .

It is asserted by 6.1 that W fibg C Wjp ; it is not of course an hc-subcategory.
Since pullbacks preserve fibers we have the following,.

ProposrTion 6.3. Ifw : B — C in W then

w' 1 W fibg — W fiby and w': W fiby — W fibs
are he-functors.

Using 6.1 once again we have
ProposiTioN 6.4. If w : B — C is a “W-fibration then
wr ;W fibg — W fibe and w; : W fiby — W fibe

are he-functors.

7. G-spaces

By a “topological group” we shall, for the purposes of this paper, mean a
group in 3. Since the product in 3 is not the same as that in the category of all
topological spaces this may not agree with the more usual notion.

The categories of left and of right G-spaces, for G a topological group, are
defined in the usual way. We denote the former by 3. Homotopy in ¢3,
denoted by ¢=~, means equivariant homotopy. Cofibrations are defined by
an equivariant homotopy extension condition: A4’ — A in ¢3 is a G-cofibration
if

A’ X {0} — A" X I

|

A X {0} A XI

is a weak pushout in ¢3, with I having, of course, the trivial operation.

In 3 and relative to these notions of cofibration and homotopy the analogies
of Lemmas 3.1-3 hold, the proofs again following the same pattern. For ex-
ample:

LEmmA 7.1. A morphism A’ — A in 43 is a G-cofibration if and only if it is a
homeomorphism of A’ onto a subspace of A and (making the tmplied identifica-
tion) there is an equivariant (i.e., tnwariant) function p : A — I and an egqui-
variant homotopy F : A X I — A, stationary on A’, such that p*(0) = A’,
Fo = 14 5 F1 p_l[O, 1) cC A'.

Paralleling the argument of §3 we resch this conclusion:

TueorREM 7.2. (3, Cof 4¢3, ¢=2) 15 an hc-category. Similarly (¢3°, Cof ¢3°,
e=2") 18 a pointed he-category (we should perhaps write (¢3)°, but omit the paren-
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theses for brevity). The forgetful functors ¢3 — 3, ¢3° — 3° are hc-functors, as
are their adjoints X — G X X, X — G % X. The full subcategories ¢W, ¢W* of
G-spaces in W are he-subcategories of ¢3, ¢3°.

If W is a right G-space and Y is a left G-space we write W X° Y for the
quotient-space of W X Y with respect to the relations (wg, y¥) ~ (w, gy),
g €G. Thus W X° P = B is the orbit space of W under the operation of G.
Commutativity in

wWXY-P",w

1 ]

W x*Y—— B,

where the vertical arrows denote the identification maps, defines
gr: W X°Y —>B.

For the purposes of this paper we shall say that W is a right principal G-
bundle if it is a principal bundle in the usual sense, i.e. has free G-operation
and local product structure in the neighborhood of each point of B and in addi-
tion has an equivariant PLF w : B’ Xz W — W'. We remark that this addi-
tional condition is redundant if the local product structure is numerable (Dold

[21).
ProposiTiON 7.3. If W is a right principal G-bundle then

Y— (qgr: WX°Y—B)
18 an he-functor
W XG - 05 bad Fibs.

For v(o, n(w, y))t = n(w (e, w), y) defines a PLF for W X° Y, and this
construction respects extensions of PLF. The fiber-homotopy extension con-
dition for W X A’ € W X° A, where A’ C A is a G-cofibration, follows from
3.1,7.1. Forifp: A—I,F:A XI— Aareasin7.1 we may define

p:WX°A—I by mwa)=pa
and

F: WXCA)XI->WX*A by F@a(w,a)t) =nw, Fa,t)).

It remains only to show that W X¢ — preserves c-pushouts. A square in
35 (a fortiori in Fibg) is a pushout whenever for each set v : U C B of some
open covering of B, u' applied to the square is a pushout. But ' (W X% =),
when W splits over U, is isomorphic to the product with U.

The functor W X — preserves terminal objects and thus defines

W X® — : 3 — Fiby,

again an hefunctor. If B e W then also W X°¢ — takes ¢W (¢W°) into
W fibp (W ﬁb;).
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8. Homology in w3

We shall suppose from now on that we are supplied with a homology theory
h on W* (a reduced homology theory) with values in @b” and satisfying
h(VX.) = [« hXa. If h— k' is a morphism of such holomogy theories which
is an isomorphism at S° then it is an isomorphism at all X (Dold [3]).
We shall suppose further that 4 is multiplicative, i.e. that it is provided with
a natural transformation hX ® hY — h(X # Y) which gives to A = hS’ the
structure of a graded ring with unit via hS’ ® AS* — h(S" ¥ S°) = S’ and
to each AX the structure of a unitary A-module via hS° ® hX = h(S* ¥ X)=
hX, so that h factors canonically through mod (A). For simplicity (though
this is not essential) we shall suppose that the multiplication is commutative,
i.e. that
hX ® hY

hY ® hX

X % Y)—— h(Y % X)
commutes, where the top row is £ ® y — (—1)***®% ® z and the
bottom is the value of % on the transposition isomorphism X # Y~ Y % X.
For such a multiplicative homology theory hX ® AY — h(X ¥ Y) factors
canonically as
hX ® hY > hX @y hY - h(X % 1),
and we have the small Kiinneth theorem.

ProrosiTion 8.1.  If hX is a flat A-module then hX @, hY — h(X ¥ Y)isan
1somorphism.

ForY - hX ®yhY and Y — h(X % Y) are both homology theories.
Thus if X ¢ W and X is A-flat, and x is the diagonal map of X then
Xt X XxX)t=Xtx Xt

gives to hX " the structure of a commutative coalgebra over A. Iff: YV — X
in W the composition

+
v Oy gy AT ey
gives to Y™ the structure of a comodule over hX™.

Now if B ¢ W and s : B — P the adjunction s; —I s' gives a natural trans-
formation 8 : 1 — s's; ; for X ¢ W3 this is just the quotient of ¢ — (px , z).
If further hB" is A-flat then s; 0x: st X — s s'ss X = BY % st X gives to hs; X
the structure of a AB*-comodule.

Lemva 8.2. If B ¢ W and hB* is A-flat, and s : B — P, then hs; factors

canonically as Wy s, comod (hB") -2 @b® where ha is a homology theory on
Wy and v is the forgetful functor.
We recall [5] that a homology theory on a pointed hc-category factors
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canonically through the stable homotopy category. We shall again denote by
ks the resulting functor ks : Stabs (W3)™ — comod (hB™).

Now comod (hB™) has a relative abelian structure (cf. for example [4])
whose proper exact sequences are those which are split exact as sequences of
A-modules. The corresponding relative injectives are the extended comodules
hbt ®s M, M e mod (A) and their retracts.

Thusif ¥ ¢ W* then s 8'Y = hs; 8'Y = k(BT ¥ Y) = hBt @, hY isarela-
tive injective.

If X ¢ W5 the adjunction s; — s' gives in addition to

0x : X —s'ss X
a morphism u : & s's; X — s X such that u(s; 0x) = 1.
Lemma 8.3. If
. x L]
ST X > X' — X —sls X

is & cofibration triangle in Stabs (W3 )T then hs z = 0 and

Oﬁhax—»hgs's; X—)hBEX'-—>0
is a proper short exact sequence for the relative abelian structure of comod (hB*)

9. Homology of pullbacks: 0 approximation

Let us suppose that w : B— C'in ‘W and writes : B— P, : C — P so that

tw=s If X eWcthen 6 : X — t' X so that
s wox st wX —>s wth X =8 st X =B %4 X.

Up to identifications this map is essentially the inclusion of w'X = B X¢X in
B X C. Thus it is easy to see that the compositions of s w'd, with the maps
a= (BXw)' s %t X,

B=B"%t66::B " ¥ X—>B" ¥C" %4 X

are equal.

If AC* is A-flat then (B X w)*s% and # 0x are the maps which give to AB*
and h¢ X their structure as hC*-comodules. If hB" is also A-flat we may ac-
cordingly construct a commutative diagram

0
A

hsi w! X = hyw! X —22 bBY Qe+ he X

hs w!0x

h(B* % 1 X) hB* ® yhe X

ha — hB

BB % CT % i X) —— hB" ®@,hCT @, he X
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in which O denotes the cotensor product, so that the right-hand column is
exact, and in which the unmarked horizontal arrows represent the inverses of
the Kiinneth isomorphisms.

We shall refer to the state of affairs just described, viz. w ¢+ B — C in W,
s: B—P,t: B—C, hB" and hC" both A-flat, as the standard pullback situa-
tion. Inasmuch as all the functors and natural transformations we have used
are stable with respect to X we arrive at the following conclusion.

Lemma 9.1. In the standard pullback situation ¢ is a natural transformation
of the functors

hs w', kBT Oae+ ke : Staby (Wg)” — comod (hBY).
If X = 'Y, Y e Stabz W'D then ox is an isomorphism.

It is sufficient to prove the latter assertion in the unstable case. If Y ¢ W*
then X =CX YV, 8 X =C" %Y, wX =BXY,swX =B"%7Y.

10. The pullback spectral sequence
We suppose ourselves in the standard pullback situation. If
X e Staby (W5)"

we may construct a diagram

=7y, Y, 7Y,

(101) o—— X, . x,-2 X
lﬁ_l J ) j 1

Y. Yo Y,

with the following properties:
i) Xp,=X,p202,=1x,p 2 1;
(i) Y, =14 X,,p <0;8 =06x,p <0;

z x £
(iii) Y, 2 X, —— X, Y,

is a cofibration triangle, all p.

For p < 0, of course, this is done inductively.

If we set Cp = h2°X,, B3 = he 277 and provide these comodules with the
homomorphisms coming in the obvious way from 10.1 they constitute an exact
couple in comod (hC™). If this is regarded as an exact couple of bigraded
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abelian groups (80 that Chg = hprq Xp, Epg = hpiq ¥p) it has morphisms of
the usual bidegrees.

From 8.3 we conclude that C5 = 0, p < 0, while C} = h¢ Z?X forp > 0.
Since in the first derived couple

€y — Con— By — Cyy — €5
is exact it follows that E3 = 0, p s 0 while B = h¢ X. Thus
0>Cy—Ey—Ey—EYy— .-

is exact. But, again by 8.3, it is split exact as a sequence of A-modules and,
according to 8.1, E} is a relative injective.

Lemma 10.2. (E', d') is a relative injective resolution of he X.

If we apply the functor w! to 10.1 we get a similar diagram in Stabz (W3 )",
to which we may apply the same construction, getting an exact couple in
comod (hB") which we denote by “C} = hs Z?w'X,, “Ep = hs Z"*w'Y,.
This is the pullback exact couple and its associated spectral sequence is the
pullback spectral sequence of Eilenberg and Moore.

The pullback exact couple depends on a sequence of choices and is not fune-
torial. Its first derived couple however is.

ProrosiTiON 10.3.
XH (woﬂ __)wC2__) wE2 N wC2)

i8 @ functor from Stabs (We )" to the category of exact couples in comod (hB*).

This results from a standard argument which need not be repeated in ex-
tenso here. In outline, if f : X — X in Stabz (W&)" there is a morphism of
the corresponding diagrams 10.1 which at X is just f; this in turn leads to a
morphism of the exact couples. It suffices to show that if f = 0 then the first
derived morphism is 0.

CoroLLARY 10.4. The filtration of hg w'X given by
& (hp w'X) = im (hs w'X, — hs w'X)

18 functorial on Staby (W)~
The term “E* of the pullback spectral sequence may be computed as fol-
owS.

ProposrTion 10.5. “E%, = Cotorsl" (B, he X).

This is an immediate consequence of 9.1, 10.2. The “cotor” which appears
here is a prior: the relative derived functor of the cotensor product. However,
since we have assumed that AB* is A-flat this is isomorphic to the absolute
derived functor.
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11. Convergence in the pullback spectral sequence

In the presence of certain additional conditions we shall make an assertion
about convergence in the pullback spectral sequence of §10. We shall need
first some data about the reduced integral singular homology H of fibrations.

If B €3 then to each X e Fibj is associated the local coefficient system on B
defined by the homology groups of the fibers. We shall assume that B is arc-
wise connected so that these are all isomorphic, X will be called sémple if the
local coefficient system is constant, so that they are canonically isomorphie.
In this case we denote the constant value by HFX. The property of being
simple is invariant under fiber-homotopy equivalence, so that it may be as-
serted in (Fib3)", and also under suspension in this homotopy category, so
that it is, finally, a property of objects in Staby (Fibs)™. The notation HFX
may also be used, then, for X in this stable homotopy category whenever X is
simple.

If B is simply connected then of course every X is simple. Further, any
pullback of a simple X is simple.

If X e Stabz (Fibj)" is simple the Serre spectral sequence for X (with
respect to reduced homology ) begins with B3, = H,(B", H, F) and converges
strongly to Hs; X, where s : B— P (this is more familiar perhaps for X ¢ Fiby,
but the generalization is trivial).

Lemma 11,1 If X e Stabs (Fib3)" 4s simple then H, st X = 0 for ¢ < qo of
and only if Hy FX = 0 forq < ¢o.

We now suppose
w t
B— (C— P,

s = tw in W, and observe that if X e Stabz (W fibe )Y then the diagram 10.1
may be constructed entirely within that category.

Lemma 11.2  If C s arcwise connected and simply connected and Hy t§ X = 0,
g < qothenforq < go—mn, (i) Hoti Xn = 0, (i) H,FX, = 0, (iii) H, & s'X,, = 0.

The first assertion follows inductively from the exactness of the H-homology
sequence of
87—l Xoy— 8 Xn—ot Va

together with the Kiinneth theorem for #; ¥, = B™ % t; X,,, which shows that
t X, and ¢, Y, have the same homology in the two lowest degrees in which it
does not vanish. The remaining two assertions are immediate consequences
of 11.1.

Now suppose that % is, once more, a multiplicative homology theory on Ww"
such that hB*, hC* are A = hS® flat, so that we are in the standard pullback
gituation. We shall say that h is connective if h, S° = 0, ¢ < O (the generaliza-
tion ¢ < gois empty). This implies of course h, X = 0, ¢ < 0 for all X ¢ W".
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TreOREM 11.3. In the standard pullback situation let h be comnective and
suppose that C is simply connected. Then, for any X e Stabs (W fiby )™,

(i) the filtration ® of h, s, w'X is finite for any n,
(i) for each p, q and sufficiently large r,
wE;Jq = WE;;ZI = = wE:q’
(i) D (hpyq 8 WX ) /D" U (hprg 8y WX) & “Eopy.
Quite generally, of course, ®'h, s} w'X = h, 8, w'X; in virtue of Lemma 11.2
and the connectivity of A we conclude that & 74, s, w'X = 0 for large p.

Assertion (i) results from the fact that if h, t; X = 0, ¢ < go then B3, = 0
except for —¢/2 4+ g < p < 0, which is again a consequence of 11.2, since

Pt 81 WXy = Cpg— Epg— Cp = hprgs 8 w'Xps
is exact.
12. Homology in ¢w°
If G is a group in ‘W with unit » : P — G and multiplication
v:G@XG—G

then for any multiplicative homology theory A, hu™ : hS* — hG™ and the com-
position
-+ hu”
"G @4 hGT — h(GT ¥ Gt) ——— KGT

give to hG" the structure of a A-algebra. If Y is a right G-space with opera-
tionn : ¥ X G — Y then

h+
WYt @ WG — h(YH ¥ @) —, hY

makes AY ™ a right AG*-module.
If Y e ¢W" the adjunction of the forgetful functor with Gt ¥ — gives

i G XY 7Y,

this map is also characterized by the fact that its composition with G X ¥ —
GT % Y is the operation of G on Y. Thus we have

Gt @4 hY — h(GT % Y) — hY,

giving hY the structure of a left h(G'-module. In view of the evident behavior
of this structure with respect to homotopy and suspension we conclude the
following.

Lemma 12.1.  The composition

. . h 0
Stabs (¢W' ) — W' —— @b
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Sactors canonically as
q

h
Stabz (¢W')" —— Mod (RGT) — @b~,

where the unmarked arrows stand for forgetful functors and °h is a homology
theory.

Now mod (RG™") has a relative abelian structure in which the proper exact
sequences are those which are split exact as sequences of A-modules. The cor-
responding projectives are the extended modules HG* ® » M and their retracts.

Lemma 12.2. If kG is flat as a A-module and

G ¥ Y=Y 2 V2@ % Y)

i8 a cofibration triangle in Stabz (¢W' )" then °h (G % Y') is a relative projective,
°hy = 0 and 0 — K=Y’ — (G % Y) — °hY — 0 4s a relative short exact
sequence in Mod (RG™).

(Compare 8.2.)
If W — B is a right principal G-bundle with B ¢ W and Y € W’ then the
two compositions
wt %Y .
WG 8 Y ——3 W% Y —s (WX°Y),
Wt % vy
where w is the operation of G on W, s : B — P and X\ is the identification map
are easily seen to be equal. Thus we may construct a commutative diagram

RET @, hGT @4 Gov———h(ET % GT ¥ V)

hw™ % V) — (W' % vy)
hE* @, Ghy JW(EX % Y)
o)
hEY ®  Giy Lis hel(W X°F)
rGT
|
0

Lemma 12.3. ¢ is a natural transformation of the functors
RET ®ne+ °h —, hsi (W X¢ —) : Stabz (¢W")" — ab™.
If hG is A-flat and Y = G % Z then Yy is an isomorphism.
(Compare 9.1.)
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13. The associated-bundle spectral sequence

We assume that W is a principal right G-bundle and that 4 is a multiplica-
tive homology theory such that AG" is A-flat. If ¥ ¢ Stabs (¢W")" we may
construct a diagram

Z, Z Z
17-11 o h

(131) .- Yo 2Ly, % \JYl L
G (7 3
7, 57 A

with the following properties:

@ Y,=Y,p <054 =1r,p < 1
(i) Z, =@ ’“Ymgp=7!'p;p_>.0;
(i) Z,—Y,— Ypu — ZZ,is a cofibration triangle, all p.

Weset Cp = k=~ %"™Y .., B} = °hZ7Z, and provide these modules with
the morphisms coming from 13.1; they constitute an exact couple in Mod (RG™).
From 12.2 we see that C% = %=~ %Y, p < 0,C% = 0,p > 050 that E> = 0,
p = 0, E; = Y.

Lemma 13.1.  (E', d') is a relative projective resolution of °hY .

If we apply the functor s; (W X¢ —) to the diagram 13.1 we get a similar
diagram in Stabz (W°)™ to which we may apply the same construction; the
result is the associated-bundle exact couple. We denote its terms by

Wci)q = hp+q+1 3.1 (W xo Yp+1), WEiw = hp+¢ 8: (W XG Zp)-
Lemma 13.2.
Y — (W‘02 — WC2 — WE2 — Wcﬂ)

18 a functor from Stabs (W' )" to the category of exact couples of graded abelian
groups.

COROLLARY 13.3. The filtration of hs; (W X Y) given by
VP (hsy (W X® Y)) = ker (hs;(W X®Y) — hsi (W X Yyput))
18 functorial.
The term " E? of the associated bundle spectral sequence is easily computed.
"Ep = Toryy (WW™, 6hY).

This follows at once from 12.3, 13.1. The “Tor” which appears here is the
relative derived functor of the tensor product AW ™' ®je+ —.

ProrosiTION 13.4.
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14. Convergence in the associated-bundle spectral sequence

In the situation of §13 we may, without further hypothesis, make the fol-
lowing assertion regarding convergence of the associated-bundle spectral se-
quence {"E'}.

TaBOREM 14.1.
VEYq = colim, Epy ~ ¥° (hsy (W X° 1))/ ¥ (hs; (W X° Y));
T (hsi(W X°Y)) = 0; U, ¥ (hsi (W X°Y)) = hsi (W X°Y)).

For if we use the Atiyah-Hirzebruch-Serre spectral sequence to compute the
homomorphism hs; (W X ¢ Y,) — hs] (W X ¢ Y1) we observe that (by 12.2)
the homomorphism of the homology of the fibers is 0, so that the homomorphism
of spectral sequences is 0 at E*. Thus hs (W X Y,) — hsi(W X Vo)
decreases the Serre filtration by 7, and colim (¥ C5, WC PHlg—1—> ) = 0.
The theorem then follows by purely formal arguments.

But we may further observe, by applying integral singular homology to
13.1, thatif H, Y = 0,9 < gothen H, Y, = 0,¢ < go + p. From the Atiyah-
Hirzebruch-Serre spectral sequence it follows then that H, s; (W X¢Y,) = 0,
g < @+ p.

TueoreM 14.2. If h is a connective homology theory then {¥E'} is a “first
quadrant” spectral sequence, i.e. B3, = 0 for p < 0 or ¢ < qo, and the canonical
filtration of each h, si (W X ¢ Y) 1s finite.
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