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THE SPECTRAL SEQUENCE OF EILENBERG AND MOORE
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In previous articles [5], [61 we have examined those formal characteristics
of the category of topological spaces which make possible the constructions
of homotopy theory and, accordingly, of homology theory. These charac-
teristics are shared by many other categories, which thus admit their own
homotopy and homology theories: as to the latter we might say that, as
"extraordinary" homology eneralizes by changin coefficient objects, so a
further generalization occurs in changing the domain of homology theory.
Our primary purpose here is to exhibit the existence of such structure in

three cases" the category of spaces over a fixed space; the category of Hurewicz
fibrations over a fixed space; the category of spaces provided with a fixed
group of operators. We thus justify assertions made in the references cited
above. This is not however an empty generalization. We shall use t to ve
perspicuous derivations of two spectral sequences due to Eilenberg and Moore
[4]. One of these involves the homology of the pullback of a fibration, the
other the homology of the fiber bundle with a prescribed fiber associated to a
principal bundle.
These spectral sequences have been derived in a number of ways. The

original techniques of Eilenberg and VIoore use chain-complex arguments and
appear to ve results only for singular homology. Rector I8] derives the
pullback spectral sequence by cosimplicial methods which seem to be quite
different from those advanced here. The construction of L. Smith [101,
however, s quite similar to the one below, as is that of Steenrod and Rothen-
berg [8] for the associated bundle.
Smith (loc. cir.) remarks on the analogy between the pullback spectral

sequence and the Adams spectral sequence (cf. Ill). There seems to be no
doubt that they belong to a common domain whose boundaries however have
not yet been completely determined. The argument below, wlch uses stable
homotopy methods and is couched in terms of homology rather than cohomol-
ogy (thus avoiding finiteness restrictions after the fashion of Eilenberg and
Moore) reinforces this analogy.
In 1, 2 below we restate the axioms for abstract homotopy theory in an
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"unpointed" version and discuss the introduction of basepoints. These,
together with 3-7, which establish the relevant properties of the categories
in question, are more or less self-contained. For the remainder of the paper,
certain generalities concerning stable homotopy and homology theories in
the abstract case are assumed. For these [5] and [6] may serve as reference.

In 8-11 the "pulback" spectral sequence is derived and its convergence
discussed. The "associated-bundle" spectral sequence presents many analogies,
and is treated in somewhat more abbreviated fashion in 12-14.

1. Abstract homotopy theory
In [5], [6] we have introduced the notion of an hc-category as a framework

for abstract homotopy theory. The axioms given there were for pointed
categories, i.e., categories with a 0-object. It is convenient to have an un-
pointed version, which we adduce here with the terminological convention
that what was previously called an hc-category is now a pointed hc-category.
The latter often arise from the former by a process of introducing basepoints,
which we shall describe below.
A c-category is a category with an initial object 0 and a terminal object P,

provided with a subcategory Col , whose morphisms are called cofibrations,
such that:

(C1) Col contains all isomorphisms and all morphisms 0 --* A.

(C2) If a A -- A in Col and ft A
__
B in then the pushout dia-

gram (called a c-pushout)

(1.1)

exists in , and b e Col .
A a

B’ b
,)B

We shall occasionally use the notation B A u B’, and write morphisms
B -- C in the matrix form (u v) with (u v)f u, (u v)b v. The special
cases A 0, B P give respectively the coproduct B A - B the cofiber
B A/At.

((, Col ) is a pointed hc-category if 9 P; we then write 0 P 0,
and use the notation A /B for A B.

If ((t, Col Ct) is also a c-category a functor -- Ct is a c-functor if it pre-
serves cofibrations and c-pushouts. If , P are pointed, a pointed c-functor
preserves 0 as well.

If (, Col ) is a c-category a full subcategory ’ c is a c-subcategory if
(,, t 1 Col ) is a c-category and inclusion is a c-functor.
The primary example we shall have in mind below is the category 5 of
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topological spaces which are compactly generated and in which continuous
real-valued functions separate points. Morphisms are continuous maps, and
cofibrations are those for which the homotopy extension condition holds.
The full subcategory c 5 of spaces having the homotopy type of a CW-
complex is easily seen to be a c-subcategory.
An hc-category is a c-category (, Col () provided with a congruence ,

called homotopy, satisfying four additional axioms. The quotient category
(o (/__ is the homotopy category; a morphism in is a homotopy equivalence
if its image in [] is an isomorphism. The axioms are the following"

(HC 1 ) (Additivity) If f
__

f’ A --, X and g --- g’ B --, X then

(,f g _. (f’ g’ A + B --- X.(HC 2) (Homotopy extension) If

A a A a )A/A’

B’-, b )B ;BIB’
commutes, a and b being cofibrations, and g’ --- f’ then there exist g -- f,
g" - f" such that ga bg’, g"a g.

(HC 3) (Deformation-retraction) If in the c-pushout (1.1) the morphism
a is a homotopy equivalence then so also is b.

(HC 4) (Mapping cylinder) Any morphism in has a factorization gf
with g a homotopy equivalence and f a cofibration.

The fact that 5, supplied with the usual notions of cofibration and homotopy,
is an hc-category is a sequence of commonplaces of homotopy theory.
The notion of an hc-subcategory being defined in the obvious way, it is

clear that is an hc-subcategory of 5.

2. Relative homotopy; introducing basepoints
If a A’ -- A is a cofibration in an hc-category we may construct a c-push-

out

A’ a ;A

A ;A u4

A relative cylinder over a is a mapping cylinder factorization

(i0 i) a
Au,A Z,A ;A
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of (1 1) :A uaA-+A. If

A ua u Z’ A , A
is another we may construct the pushout

A ix ;Z,4

Z, ,ZA ZA
With this notation we have the following lemma.

LEMMA 2.1. (i)

(i i0) a

is a relative cylinder over a; (ii)

(uio u’i) (a a’)
A A ZoA Z A A

is a relative cylinder over a; (iii) if
jo j

BB ZvB B

is a relative cylinder over b B B and ’, f) a b then there is a

z:Z,A ZB
ch that z (io i (jo jx )f

If fo, fx A -- X we say that they are homotopic (tel a, or rel A’ if there is
an F:Z,A X with F(io i) 0 fx); ts implies of course that
f0 a fx a. From the lemma we conclude the following.

PaoeommN 2.2. Homotopy (rel a) is an equivalence relation on (A, X).
If g X Y and fo fx (rela) then gfo gfx (rela). lf b B’ -. B is a
cofibration and (g’, g) b a then fog f g (tel b).

Notice that f0 f (rel A’) implies f0 f. Conversely f0 fx is equivalent
to f0 fx (rel 0).
An essential property of relative homotopy is its behaor with respect to

pushouts.

PaOOmTO 2.3. If, in the c-pushout (1.1),

(Uo v ), (u v B X and Uo U (relA’)

then (Uo v (u v) (relB’).
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The characterization of (HC3) as a "deformation retraction" axiom is ex-
plained by the following observation. We say that a’A’ --, A is a strong
deformation retract if there is a retraction r’A -- A’, i.e., left inverse of a,
such that ar --_ la (rel A’).

PROPOSITION 2.4. If a A’ -- A is a cofibration and a homotopy equivalence
retract.

The proof proceeds just as in the standard topological context.
We may now "introduce basepoints" in an arbitrary he-category (. Col ,

"). The objects of " are the cofibrations x0 P --X in. If also y0 P- Y
is a cofibration then ’(x0, y0) consists of f" X- Y such thatfxo yo. Such
anfis a cofibration in " if it is one in . Homotopy in " is homotopy (rel P)
in . We write Col *, -" for the cofibrations and homotopies thus defined.

PROPOSITION 2.5. If (, Col , ---) is an hc-category then (’, Cof *, ---’)
is a pointed hc-category. Moreover, the forgetful functor " -+ and its
coadjoint X -- X+ X + P are hc-functors.
The category " may well be trivial; examples are easily supplied. How-

5"ever is certainly not trivial, and we shall introduce additional nontrivial
examples below. Notice that if is pointed then * .

If F’ -. ’ is an hc-functor we define F*" " -, by means of the
c-pushout

PROPOSITION 2.6.

FP_ ,Fx , FX

P

F" is a pointed hc-functor.

3. Spaces over a fixed base
By a "space over B" we mean a map pz X --, B in 5. These are the objects

of the category 5B. The morphisms are maps f X -- Y with prf p
we shall call them, as usual, fiber-maps over B. 5B has initial object 0 -- Band terminal object ps 1.
Afiber-homotopy over B is a fiber-map X X i -- Y, where X X [ is given the

structure of a space over B by pxz p: prx. A morphism a A --+ A is a

cofibration over B if it satisfies the following fiberhomotopy-extension condition"

aX {0}
A’X {0} ’A {0}

A’I-- ;AI

is a weak pushout in 5.
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Following the argument of Puppe [7] we obtain a condition for identifying
cofibrations over B.

LEMMA 3.1. a" A’ ---+ A is a cofibra$ion over B if and only if it is a homeo-
morphism of A’ onto a subspace of A and (making the implied idenffficaion)
there is a function p" A ----> I and a fiber-homotopy F" A X I ----> A stationary
on A such that

--1
p (0) A’, F0 1, Fp-[0,1) A’.

For a is a cofibration over B if and only if

A X {0} uA’ X I---*A X I

has a left inverse r in . The first statement follows at once. Now, sup-
posing A c A, set

pa max, (t pr r (a, ), F (a, ) pr,t r (a, ).

Conversely, given p and F we may define the retraction r by

r (a, ) (F (a, /pa), O) for a e A A’, <_ pa
(F(a, 1),- pa) fort_> pa.

To see that the map so defined is continuous at points of A’ {0} observe
that if a’ F (a’, O) U, U open in A, then, since I is compact, there is an
open V containing a’ such that F (V I) U.

Pursuing further Puppe’s reasoning, we arrive at the following statements.

LEMMA 3.2. If A’ A, C’ C are cofibraions over B hen so is

C’ A’ C A X C.A X u X

Let p, F be as in 3.1 and suppose that #, G play similar roles with respect
to C’ c C. Let

" {(0, 0, )1 -be a continuous function such that (r, s, 0) (0, s, t) 0 and o (r, s, 1 1
for r >_ s. Let r" A X C --+ I be given by r (a, c) (pa)(c) and define
H" (A sC) X I-+A XsCby

H (a’, c’, t) (a’, c’) for (a’,c’)A’ XC’
CoH (a, c, t) (F (a, o (rc, pa, t) G (c, (pa, (re, t) ) for (a, c) A’ X

CContinuity at points of (A X X I follows from the compactness of I as
in the proof of 3.1.

Since for A, 5, A X I A X s (B X I) it follows that A X I" Au XI
A X I is a cofibmtion over B whenever A’ A is.

LEMMA 3.3. IfA A is a cofibralion over B and also afiber-homotopy equiva-
lence then A’ is a strong fibered deformation retract of A.
From the homotopy extension condition it follows that it is a weak fibered
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deformation retract and thus that A {0} A’ I A I" u A’ I is a
fiber homotopy equivalence, as must also be A I A’u XIc:AXI.
Since this inclusion is a cofibration over B it has a retraction in 5, from which
the strong deformation retraction of A onto A is easily manufactured.
These lemmas provide the nontrivial part of the proof of the following

theorem.

THEOREM 3.4. (5, Col 5, ) is an hc-category, where Cof 5 is the class
of cofibrations over B and --_, is fiber homotopy.

Axiom C1 is trivial. For C2, if A A is a cofibration over B and A’ -- Cis a fiber map then the pushout A u C’ exists in and Puc, (p pc, makes
it a pushout in 5. Fiber homotopy extension for C’ --> (A u C’) is a formal
consequence of the construction.

Conditions HC1, 2 are immediate, while HC4 follows from the usual con-
struction of the mapping cylinder, with the observation that this construction
respects the structure of maps and spaces over B. Finally, HC3 follows, as in
the classical case 5, from 3.3.
As in 2 we may introduce "basepoints", in this case rather to be described

as "base-sections", and thus construct the pointed hc-category (5, Cof
--) whose objects are the diagrams

,x px
B ->X >B

with Px ax 1 and ax a cofibration over B.
If we writes for the full subcategory of px X ---> B in 5s with X e %V, this

is clearly an hc-subcategory provided B e %V. Similarly %V is an hc-subcate-
gory of 5.

4. Pullbacks and their adjoints
If w B -- C in we write

wIX=BXcX >X

B

for the pullback. If f X -- Y is a fiber-map over C then (wf) (b, x) (b, fx)
defines a fiber-map over B; this makes w 5c -- a functor.

In the other direction we have wi: 5, --* 5c given by w(X, px) (X, w).

PROPOSITION 4.1. W is adjoint to w.
The adjunction is given by

w 3c(w, X, Y);-:: 3(X, w’Y)

where wf (fpx), w-g prr g.
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PROPOSITION 4.2. W is an hc-functor.
As a coadjoint w: preserves pushouts, a fortiori c-pushouts. That it pre-

serves fiber-homotopy is obvious. The preservation of cofibrations is an im-
mediate consequence of 3.1.

PROPOSITION 4.3. W: also has an adjoint.

If X e 5n consider the set

where for B’ c B, a (B’) is the set of cross-sections of X over B’. E is pro-
vided with a mapp E --. B by sending a (w-lc) into c. E may be topologized
by the rule that if K is a compact Hausdorff space then K -- E is continu-
ous exactly when the map K X c B - X with (k, b) (k)b is con-
tinuous. Then X - E is adjoint to w.
We can now make the appropriate assertion about w.
PROPOSITION 4.4. If W B C then w 5 is an hc-functor.
Since w (X X I) (wX) X I it is clear that w perserves homotopy.

Lemma 3.1 provides for the preservation of cofibrations. The preservation of
c-pushouts follows of course from 4.3.
Moreover w" preserves initial and (unlike w) terminal objects and thus de-

fines w 5c -+ 5, again an hc-functor. Associated to w, on the other hand
we have the hc-functor wl 5 - 3c, coadjoint to w.

If w B --+ C in then w takes into c and w takes into e

both restrictions are hc-functors. No similar assertion, evidently, can be made
about w: (but see 6 below).

5. Fibrations over B
We shall denote by Fib the full subcategory of 5 consisting of p X - B

which are fibrations. We recall that this means that

Px Px

B B

is a weak pullback in 3, where the horizontal arrows stand for evaluation at 0,
or equivalently that there be a path-lifting-function (PLF) for X, i.e., a cross-
section of the canonical map X -- B Xn X.
We introduce into Fib. the same homotopy relation as that used in 5s, or

rather its restriction. But it is not asserted that Fibs is a c-subcategory of
A morphism a A’ ---) A in Fibs is a fiber-cofibration over B if it is a cofibra-

tion over B (so that we might as well assume it to be an inclusion) and, further,
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there exist PLF a’ for A’, a for A such that a extends a’, i.e., such that

B XsA’- B XA

A A

commutes.
It is of course intended that, provided with this notion of cofibration, Fibs

should be an hc-category. This is indeed the case. There is however a deli-
cate point in the proof which we introduce here as a lemma.

LEMMA 5.1 (L. Berkhout). Suppose

is a c-pushout in 5s, that A’, A, X’ are in Fibs, and that A -- A is a fer-
cofibration over B. Then any PLF for X extends to a PLF for X.

Let a’ be a PLF for A extending to a PLF a for A. Suppose that

p A--I and F A X I--A
are as in 3.1. Define B X s A -, [0, 2] by

(, a) 2 max,,x p(a(, a)t).

Then -1 (0) Bx Xs A. Further define B X s A -, B by

(a, a)t a(min (1, -t- (a, a))).

We may now attempt to construct a PLF for X by setting

(2.2a) (a, x) (a, x) for (a, x) e B Xs X,
(2.2b) (a, fa )t fF (a (a, a )t, t/ (a, a)

for (a,a) eBrXs (A A),t_< (a,a),

(2.2c) (a, fa)t ’ ( (a, a), fF ( (a, a) (a, a), 1 ) (t (, a)

for (a,a) eB XsA, (a,a).

Observe that if (a, a) _< C 1 then pa (, a) (a, a) <_ 1/2 so that

F(a(a, a)(a, a), 1) e A’
and 2.2c is defined.
The following statements are easily verified: for fixed (a, x) e B X s X,

(a,x) eX; (a,x)0 x; px(a,x) .



ABSTRACT HOMOTOP IN CATEGORIES OF FIBRATIONS 463

What remains is to show the continuity f or, what comes to the same thing,
that of the adjoint map (B X X) I --* X.

This continuity is clear on

(B*X. (X-X’)) XI’ (B*X (A A’)) XI.
X’Moreover each point of (B* X ) X (0, 1] has a neighborhood on which ;

is defined by 2.2a and 2.2c so that continuity is clear at such points as well.
XFor points in (B Xa ) X {0} finally, an argument analogous to that used

in the proof of 3.1 is adequate.

COROllARY 5.2. If A’ A is a fiber-cofibration over B then any PLF for A
extends to one for A.

We need only take f’ la, in the lemma.
We now define Col Fib to be the class of fiber-cofibrations over B.

TEOREM 5.3. (Fib, Col Fiba,---) is an he-category.

Axiom C1 follows from the corollary to the lemma, which is itself, in view of
3.4, essentially C2. Conditions HC1-3 follow immediately from 3.4, while
the lemma above comes into play once more to show that the mapping cylinder
remains in Fib, thus proving HC4.

If w B --* C then w takes Fibc into Fibs. Furthermore it preserves fiber-
cofibrations. For if a is a PLF for A e Fibc then a (, b, x)t (at, a (wa, x)t)
defines a PLF for wA, and the operation a --+ a clearly preserves extension of
PLF. Thus w Fib --* Fib is an hc-functor.
The coadjoint w: does not in general preserve fibrations except in the special

case in which w itself is a fibration. In this case it preserves fiber-cofibrations
as well, since if a C X c B --* B is a PLF then

aXX x
CXX (CXB) XX BXX X

associates to a PLF for X e Fibn a PLF for w! X e Fibc, and this association
preserves extension of PLF. Thus if w B -- C is a fibration then w Fibn --Fibc is an hc-functor.
We may of course apply 2.5, 2.6 in this case, to produce pointed hc-categories

(Fib, Cof Fib, --_,) and hc-functors w and, for w a fibration, w:.

6. -fibrations

If p X - B is a fibration, B is a CW-complex, and each fiber of p has the
homotopy type of a CW-complex then it is easy to see that X also has the
homotopy type of a CW-complex" this is clear when B is a cell, follows easily
when B is a sphere and generalizes by induction over the skeletons of B. The
same conclusion clearly holds if it is simply assumed that B has the homotopy
type of a CW-complex"

PROPOSITION 6.1. If p X -- B is a fibration such that B and each fiber is in
then X is in .
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The full subcategory of Fib, consisting of these will be denoted by q fib.
we call them -fibrations.
PROeOSTO 6.2. fib is an hc-subcategory of Fib..

It is asserted by 6.1 that fib it is not of course an hc-subcategory.
Since pullbacks preserve fibers we have the following.

PROPOSITION 6.3. If w B ---. C in then

w fibc -- fib and w fib --* 2 fib
are hc-functors.

Using 6.1 once again we have

PROPOSITION 6.4. If W B C is a -fibration then

w! fib --+ 42 fibc and w: fib --* fibc

are hc-functors.

7. G-spaces
By a "topological group" we shall, for the purposes of this paper, mean a

group in 5. Since the product in 3 is not the same as that in the category of all
topological spaces this may not agree with the more usual notion.
The categories of left and of right G-spaces, for G a topological group, are

defined in the usual way. We denote the former by o3. Homotopy in o,
denoted by , means equivariant homotopy. Cofibrations are defined by
an equivariant homotopy extension condition: A’ -- A in 3 is a G-cofibraion
if

A’ X {0} A’ x I

is a weak pushou in o:I, wigh I having, of course, he grivial operagion.
In o and relagive o hese nogions of eofibragion and homogopy ghe analogies

of Lemmas a.l-a hold, ghe proofs again following the same pattern. For ex-
ample:

LEMMA 7.1. A morphism A’ A in 05 is a G-cofibration if and only if it is a
homeomorphism of A onto a subspace of A and (making the implied identifica-
tion) there is an equivariant (i.e., invariant function p A I and an equi-
variant homotopy F A X I ---. A, stationary on A, such that p- (0) A,
F0 la,Fp-[0,1) A’.

Paralleling the argument of {}3 we rech this conclusion"

THEOREM 7.2. (05, Cof o5, ) is an hc-category. Similarly (5", Cof 05",
a__") is a pointed hc-category (we should perhaps write (5)’, but omit the paten-
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theses for brevity). The forgetful functors a5 -- 5, aS" -* 5" are hc-functors, as
are their adjoints X G X X, X G+ X. Thefull subcategories ad2, a"42" of
G-spaces in P are hc-subcategories of

If W is a right G-space and Y is a left G-space we write W Xo y for the
quotient-space of W X Y with respect to the relations (wg, y) (w, gy),
g G. Thus W X o p B is the orbit space of W under the operation of G.
Commutativity in

WX Y Pr" , W

W NaY qr

where the vertical arrows denote the identification maps, defines
qr W oY--)B.
For the purposes of this paper we shall say that W is a right principal G-

bundle if it is a principal bundle in the usual sense, i.e. has free G-operation
and local product structure in the neighborhood of each point of B and in addi-
tion has an equivariant PLF Iv B Xs W -- W. We remark that this addi-
tional condition is redundant if the local product structure is aumerable (Dold
[]).

PROPOSITION 7.3.

is an hc-functor

If W is a right principal G-bundle then

Y--* (qr W X Y-.B)

W X aS--, Fib.

For 13(a, r/(w, y))t r/(Iv (a, w), y) defines a PLF for W X Y, and this
construction respects extensions of PLF. The fiber-homotopy extension con-
dition for W X A’ c W X A, where A’ c A is a G-cofibration, follows from
3.1, 7.1. For if p A -- I, F A X I -- A are as in 7.1 we may define

: WXA--.I by /(w,a) pa
and

/ (WXOA) XI--*WXA by f((w,a),t) y(w,F(a,t)).

It remains only to show that W o preserves c-pushouts. A square in
5s (a fortiori in Fibs) is a pushout whenever for each set u U c B of some
open coveting of B, u applied to the square is a pushout. But u (W X o ),
when W splits over U, is isomorphic to the product with U.
The functor W X o preserves terminal objects and thus defines

WX- o5"Fib,

again an hc-functor.
fib ( fib).

If B e then also W X takes o (o’) into
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8. Homology in

We shall suppose from now on that we are supplied with a homology theory
h on * (a reduced homology theory) with values in (tb and satisfying
h (VX) II hX. If h -+ h’ is a morphism of such holomogy theories which
is an isomorphism at S then it is an isomorphism at all X (Dold [3] ).
We shall suppose further that h is multiplicative, i.e. that it is provided with

a natural transformation hX (R) hY -+ h (X Y) which gives to A hS the
structure of a graded ring with unit via hS (R) hS -+ h (S S) hS and
to each hX the structure of a unitary A-module via hS (R) hX -+ h (S X)=
hX, so that h factors canonically through rood (A). For simplicity (though
this is not essential) we shall suppose that the multiplication is commutative,
i.e. that

hX @ hY-------, hY @ hX

h(X $ Y)- ,h(Y $ X)

commutes, where the top row is x @ y --, (-1)y @ x aad the
bottom is the value of h on the transposition isomorphism X Y Y X.
For such a multiplicative homology theory hX (R) hY h (X Y) factors

canonically as
hX (R) hY hX (R), hY-- h(X Y),

and we have the small Ktinneth theorem.
PROPOSITION 8.1.

isomorphism.
IfhX is afiat A-module then hX (R) hY -+ h (X Y) is an

For Y ----) hX (R), hY and Y --, h (X % Y) are both homology theories.
Thus if X e "42 and hX is A-flat, and x is the diagonal map of X then

+" X+--, (X X X)+= X+ X+

gives to hX+ the structure of a commutative coalgebra over A. If f Y -+ X
in the composition

y+i+ y+ # y+ 1 f+ y+ X+
gives to hY+ the structure of a comodule over hX+.
Now if B e and s B -+ P the adjunction s -q s gives a natural trans-

formation O 1 --+ ss for X e B this is just the quotient of x -+ (px x, x).

LEMMA 8.2. If B "42 and hB+ is A-fiat, and s B --+ P, then hs factors
hcanonically as gB ---+ comod (hB+) v_ ab" where h, is a homology theory on

%V, and v is the forgetful functor.
We recall [5] that a homology theory on a pointed hc-category factors
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canonically through the stable homotopy category. We shall again denote by
hB the resulting functor h Stab ( -- comod (hB+).
Now comod (hB+) has a relative abelian structure (cf. for example [4])

vchose proper exact sequences are those which are split exact as sequences of
A-modules. The corresponding relative injectives are the extended comodules
hb+ @4 M, M e rood (A) and their retracts.
Thus if Y e " then h sY hs sY h(B+ Y) hB+ @ hY is a rela-

tive injective.
If X e the adjunction s s gives in addition to

X ss X
a morphism s: s.s: X --+ s: X such that (st Ox) 1.

LEMMA 8.3. If
x

" Zs s, X X s’s: X
is a cofibration triangle in Stab ()m then h x 0 and

O h x h s’st X h X’ O

is a proper short exact sequence for the relative abelian structure of comod (hB+).
9. Homology of pullbacks: 0h approximation

Let us suppose that w B --* C in and write s B --, P, C --* P so that
tw s. IfXecthenOx" X--, tt X so that

Up to identifications this map is essentially the inclusion of wX B X e X in
B X C. Thus it is easy to see that the compositions of s wt0 with the maps

a (B X w)++n t; X,
f B+ t;0x" B+ t;X-*B+ C+ t;X

are equal.
If hC+ is A-fiat then (B X w)+/i+ and t. #x are the maps which give to hB+

and hc X their structure as hC+-comodules. If hB+ is also A-fiat we may ac-
cordingly construct a commutative diagram

0
$

hs,. wt X h. wt X q
hB+ Dae+ he X

h(B+ t X) hB+ @heX

h(B+ (2+ t X) hB+ (R) t hC+ (R) t he X
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in which [:] denotes the cotensor product, so that the right-hand column is
exact, and in which the unmarked horizontal arrows represent the inverses of
the Ktinneth isomorphisms.
We shall refer to the state of affairs just described, viz. w B C in ,

s B ---> P, B -- C, hB+ and hC+ both A-flat, as the standard pullbactc situa-
tion. Inasmuch as all the functors and natural transformations we have used
are stable with respect to X we arrive at the following conclusion.

LEMMA 9.1. In the standard pullback situation q is a natural transformation
of the functors

h, w, hB+ U]c+ he Stab () -- comod (hB+).

If X tY, Y Stab 2" then : is an isomorphism.

It is sufficient to prove the latter assertion in the unstable case. If Y e

thenX C X Y,t X C+ Y,wX B X Y,s wX B+ Y.

10. The pullback spectral sequence
We suppose ourselves in the standard pullback situation.

X e Stab ()
If

we may construct a diagram

(10.1) x0 XlX_ X0 X

Y_ Y Y
with the following properties:

(i)
(ii)
X X,p >_ 0;x lx,p >_ 1;
Y tt X, p <_ 0; Ox, p <_ 0;

(iii) 2:-Y -X_, X X Y
is a cofibration triangle, all p.

For p 0, of course, this is done inductively.
If we set C h-X,, E h- and provide these comodules with the

homomorphisms coming in the obvious way from 10.1 they constitute an exact
couple in comod (hC+). If this is regarded as an exact couple of bigraded
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abelian groups (so that C h+ Xv, E h+ Y) it has morphisms of
the usual bidegrees.
From 8.3 we conclude that C 0, p _< 0, while C hc 2-tX for p > 0.

Since in the first derived couple

C --* C+ -+ E --* C_ --+ C
is exact it follows that E 0, p 0 while E hc X. Thus

0 -+ Co Eo E-, --E -+...

is exact. But, again by 8.3, it is split exact as a sequence of A-modules and,
according to 8.1, E is a relative injective.

LEMMA 10.2. (E1, d) is a relative injective resolution of hv X.

If we apply the functor w to 10.1 we get a similar diagram in Stabz (),
to which we may apply the same construction, getting an exact couple in
comod (hB+) which we denote by C h -w’X, E h -wY.
is is the pullbk t couple and its sociated spectral sequence is the
pullbk ectral sequee of Eilenberg and Moore.
The pufiback exact couple depends on a sequence of choic and is not func-

toHal. Its first derived couple however is.

PROPOSitiON 10.3.
X (C2C2E2C)

is a futor from Stbz () to the category of exit couples in comod (hB+).
Ts rults from standard arment which need not be repeted in ex-
to here. In outfine, if f X in Stb () there is a monism of
the corrponding diagrams 10.1 which at X0 is just f; this in turn leads to a
mohism of the exact couples. It suffices to show that if f 0 then the first
defiv mohism is 0.

CouosuY 10.4. The filtration of hs wX given by

(h wX) =im (h wX h, wX)

is functorial on Stbz ()a.
The term E of the pullback spectral sequence my be computed s fol-

OW8.

h+
PROPOSITION 10.5. Ea Cotora (hB+, hc X).

This is an immediate consequence of 9.1, 10.2. The "cotor" which ppers
here is a priori the relative derived functor of the cotensor product. However,
since we hve assumed that hB+ is A-flt this is isomorphic to the absolute
derived functor.
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1 1. Convergence in the pullback spectral sequence
In the presence of certain additional conditions we shall make an assertion

about convergence in the pullback spectral sequence of 10. We shall need
first some data about the reduced integral singular homology H of fibrations.

If B e 5 then to each X e Fib is associated the local coefficient system on B
defined by the homology groups of the fibers. We shall assume that B is arc-
wise connected so that these are all isomorphic, X will be called simple if the
local coefficient system is constant, so that they are canonically isomorphic.
In this case we denote the constant value by HFX. The property of being
simple is invariant under fiber-homotopy equivalence, so that it may be as-
serted in (Fib)[], and also under suspension in this homotopy category, so
that it is, finally, a property of objects in Stab (Fib)[]. The notation HFX
may also be used, then, for X in this stable homotopy category whenever X is
simple.

If B is simply connected then of course every X is simple. Further, any
pullback of a simple X is simple.

If X Stab (Fib) is simple the Serre spectral sequence for X (with
respect to reduced homology) begins withE H(B+, Ha F) and converges
strongly to Hs; X, where s B -- P (this is more familiar perhaps for X e Fib,
but the generalization is trivial).

:LEMMA 11.1 If X e Stab (Fib) is simple then Ha s X 0 for q < qo if
and only if Ha FX 0 for q < qo.

We now suppose
w

B--’--’* C P,
s tw in 2, and observe that if X e Stab ("42 fib)[] then the diagram 10.1
may be constructed entirely within that category.

LEMMA 11.2 If C is arcwise connected and simply connected and Hq t X 0,
q < qo thenfor q < qo n, (i) Hq t X. 0, (ii) Ha FX, 0, (iii) Hq s siX,, O.

The first assertion follows inductively from the exactness of the H-homology
sequence of

together with the Kiinneth theorem for t Y. B+ t X., which shows that
t Xn and t; Yn have the same homology in the two lowest degrees in which it
does not vanish. The remaining two assertions are immediate consequences
of 11.1.
Now suppose that h is, once more, a multiplicative homology theory on "such that hB+, hC+ are +/- hS fiat, so that we are in the standard pullback

situation. We shall say that h is connective if ha S O, q 0 (the generaliza-
tion q q0 is empty). This implies of course ha X O, q 0 for all X e ’,
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THEOREM 11.3. In the standard pullbac situation let h be connective and
ppose that C is simply connected. Then, for any X Stab ( fib),

(i) the filtration of h s wX is finite for any n,
(ii) for each p, q and suiently large r,

wr+l

(iii) (h+q s w’X)/-q(hq s w’X)

Quite generally, of course, h, s wX h, s wX; in rtue of Lemma 11.2
and the coectivity of h we conclude that -h s w’X 0 for large p.
Assertion (ii) results from the fact that if hq t; X O, q < qo then Eq 0
except for --q/2 + qo P O, which is again a consequence of 11.2, since

hq s w’X Cq Eq C hq_ s w’X_
is exact.

12. Homology in

If G is a group in with unit u P . G and multiplication

’GXGG
then for any multiplicative homology theory h, hu+ hS hG+ and the com-
position

h+
hG+ @ hG+ h (G+ G+) hG+

ve to hG+ the structure of a A-algebra. If Y is a right G-space with opera-
tion" YX GYthen

hY+ hG+ h Y+ G+) h+
h

makes hY+ a right hG+-module.
If Y e a* the adjunction of the forgetful functor with G+ % ves

r’G+ YY;

this map is also characterized by the fact that its composition with G X Y
G+ Y is the operation of G on Y. Thus we have

hG+ @ hY h(G+ % Y) hY,

giving hY the structure of a left hG+-module. In view of the evident behavior
of this stcture with respect to homotopy and suspension we conclude the
following.

LEMMA 12.1. The composition

h
Stab (q’)= " ab
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factors canonically as

qh
Stab (a’) Mod (hG+) ab’*,

where the unmarked arrows stand for forgetful functors and h is a homology
theory.

Now mod (hG+) has a relative abelian structure in which the proper exact
sequences are those which are split exact as sequences of h-modules. The cor-
responding projectives are the extended modules HG+ (R) , M and their retracts.

LEMMA 12.2. If hG+ is fiat as a A-module and

G+ Y---.Y Y y (G+ Y)

is a cofibration triangle in Stab (o") then h (G+ Y) is a relative projective,
hy 0 and 0 h-Y h(G+ Y) hY 0 is a relative srt exact
sequence in Mod (hG+).

(Compare 8.2. )
If W B is a right principal G-bundle with B and Y a" then the

two compositions

w+ Y X
W+ G+ Y W+ Y s7 (WXY),

W+ r
where w is the operation of G on W, s B P and X is the identification map
are easily seen to be equal. Thus we may construct a commutative diaam

hE+ @ hG+ @ Gar h(E+ Y)

lh(w+ Y)- h(W+ ’r)

hE+ (R) A Ghr h(E+ Y)

hE+ (R) Gar r -;hs(W XY)
hG+

LEMMA 12.3. b is a natural transformation of the functors
Oh OhE+ @o+ -, hsl (W X Stab (o’)m --* ab.

If hG+ is A-fiat and Y G+ Z then br is an isomorphism.

(Compare 9.1.)
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13. The associated-bundle spectral sequence
We assume that W is a principal right G-bundle and that h is a multiplica-

tive homology theory such that hG+ is A-fiat.
construct a diagram

(13.1)

If Y e Stab (a’) we may

Z_ Zo Z

Y-1 y-1 Yo yo y1 y

2:Z_ Z_

with the following properties’

Yz Y,p_< 0;yz lr,p_< -1;
Zz- G+ Y,--- r,p >_0;

(i)
(ii)
(iii) Z -* Y -* Y+ --,Z is a cofibration triangle, all p.

We set C ah-(’+)Yz, E ah-Z and prode these modules th
the mohisms coming from 13.1; they constitute an exact couple inM (hG+).
From 12.2 we see that C h-(+)Y, p < O, C O, p 0 so that E 0,
pO,E= %Y.

LEMMA 13.1. (E, d) is a relate projective resolution of hY.
If we apply the functor s (W X o to the diaam 13.1 we got a silar

diagram in Stab (W’) to wch we may apply the same construction; the
result is the asociated-bundle exact couple. We denote i terms by

hs(WXZ)C, h+q+, s (W X Y,), "Eq
LEMMA 13.2.

Y (CCE=C)
is a fuWr from Stab= (a") the category of exit couples of grd &eln
groups.

Cooaav 13.3. The filtration of hs (W X o y) given by

(; (W X o y) ker (hs7 (W X a y) hs; (W X a y+,)

is funcrial.
The term E of the associated bundle spectral sequence is easily computed.

PRoeosmio 13.4. aa+Eq ,or (hW+, ahY).

This follows at once from 12.3, 13.1. The "Tor" which appears here is the
relative derived functor of the tensor product hW+ + -.
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14. Convergence in the associated-bundle spectral sequence
In the situation of 13 we may, without further hypothesis, make the fol-

lowing assertion regarding convergence of the associated-bundle spectral se-
quence

THEOREM 14.1.

E colimE @(hs;(W o Y))/-(hs;(W o y));

,- (ks; (W o y) 0; V (ks; (W o r) hs; (W o y)).

For if we use the Atiyah-Hirzebruch-Serre spectral sequence to compute the
homomorphism hs (W X o y) ._._> hs (W X o y+) we observe that (by 12.2)
the homomorphism of the homology of the fibers is 0, so that the homomorphism
of spectral sequences is 0 at E. Thus hs (W

( C --, C+._--* 0.decreases the Serre filtration by r, and colim
The theorem then follows by purely formal arguments.
But we may further observe, by applying integral singular homology to

13.1, that ifH Y 0, q < q0 thenH Y 0, q < q0 -{- p. From the Atiyah-
Hirzebruch-Serre spectral sequence it follows then that H s7 (W o y) 0,
q < qo-p.
THEOREM 14.2. If h is a connective homology theory hen {E} is a "firs$

quadrant" spectral sequence, i.e. E 0 for p < 0 or q < qo and the canonical
filtration of each h,, s; (W X o y) is finite.
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