ON ANALYTIC STRUCTURE IN THE MAXIMAL IDEAL SPACE OF $H_{\infty}\left(D^{n}\right)$

BY
 Wayne Cutrer ${ }^{1}$

Let $H_{\infty}\left(D^{n}\right)$ denote the complex Banach algebra of bounded holomorphic functions on the open unit polydisc

$$
D^{n}=\left\{\left(z_{1}, \cdots, z_{n}\right) \in \mathbf{C}^{n}:\left|z_{1}\right|<1, \cdots,\left|z_{n}\right|<1\right\}
$$

The map $\left(z_{1}, \cdots, z_{n}\right) \rightarrow f\left(z_{1}, \cdots, z_{n}\right)$ imbeds D^{n} as an open subset of the maximal ideal space of $H_{\infty}\left(D^{n}\right)$; so we let $M\left(H_{\infty}\left(D^{n}\right)\right)$ denote the closure of D^{n} in this space. By an analytic map into $M\left(H_{\infty}\left(D^{n}\right)\right)$ we mean a function

$$
F: D^{m} \rightarrow M\left(H_{\infty}\left(D^{n}\right)\right)
$$

such that $\hat{f} \circ F$ is analytic in D^{m} for every f in $H_{\infty}\left(D^{n}\right)$, where \hat{f} is the Gelfand extension of f to $M\left(H_{\infty}\left(D^{n}\right)\right)$. The image of F is called an analytic set in $M\left(H_{\infty}\left(D^{n}\right)\right)$. If F is one-one, then $F\left(D^{n}\right)$ is a m-dimensional analytic polydisc.

In this paper we construct various dimensional analytic polydises in $M\left(H_{\infty}\left(D^{n}\right)\right)$ as limits of analytic maps into D^{n} and compare these in a natural way with the analytic structure in $M\left(H_{\infty}(D)\right)^{n}$, the n-fold Cartesian product of $M\left(H_{\infty}(D)\right)$. We also show that only points belonging to the closure of zero sets of functions in $H_{\infty}\left(D^{n}\right)$ can belong to analytic sets obtained in this manner.

The maximal ideal space of the algebra $H_{\infty}(D)$ has been extensively studied, beginning with I. J. Schark [13], and continuing with D. Newman [12], A. Gleason and H. Whitney [5], L. Carleson [3, 4], A. Kerr-Lawson [11], K. Hoffman [8, 10], and others. In the paper of I. J. Schark, it was shown that there exist non-trivial analytic mappings from D into $M\left(H_{\infty}(D)\right) \backslash D$. Angus Kerr-Lawson [11] extended the Schark idea and showed that "nontangential" and "oricycular" points in $M\left(H_{\infty}(D)\right)$ lie in non-trivial analytic sets. By an algebraic argument, K. Hoffman [8] showed that each non-trivial Gleason part in $M\left(H_{\infty}(D)\right)$ is a 1-dimensional analytic disc. Shortly thereafter Professor Hoffman [10] gave a "geometric" method for obtaining the coordinate maps for the analytic discs in $M\left(H_{\infty}(D)\right)$.

The natural inductive vehicle for generalization to higher dimensional polydiscs is the topological tensor product $\otimes_{\lambda}{ }_{\lambda} H_{\infty}(D)$, where $\otimes_{\lambda}{ }^{n}$ is the completion of the algebraic tensor product \otimes^{n} in the uniform norm. However, it is now well known (see [1]) that $\otimes_{\lambda}^{n} H_{\infty}(D) \neq H_{\infty}\left(D^{n}\right)$. Hence, the lifting of 1 -dimensional results becomes more than routine.

[^0]
I. Preliminaries

$M\left(H_{\infty}\left(D^{n}\right)\right)$ is a compact Hausdorff space with topology as follows: a net $\left\{\varphi_{\alpha}\right\}$ converges to φ_{0} if and only if $\varphi_{\alpha}(f)$ converges to $\varphi_{0}(f)$ for all f in $H_{\infty}\left(D^{n}\right)$. If $\varphi \in M\left(H_{\infty}\left(D^{n}\right)\right)$, then the Gleason part containing φ, denoted $P(\varphi)$, is defined as

$$
P(\varphi)=\left\{\psi \in M\left(H_{\infty}\left(D^{n}\right)\right): \rho(\varphi, \psi)<1\right\}
$$

where

$$
\rho(\varphi, \psi)=\sup \left\{|\hat{f}(\psi)|: f \in H_{\infty}\left(D^{n}\right),|f| \leq 1, \hat{f}(\varphi)=0\right\}
$$

is the pseudo-hyperbolic distance from φ to ψ. This defines an equivalence relation on $M\left(H_{\infty}\left(D^{n}\right)\right)$. Parts are important in the investigation of analytic structure since any analytic set through φ is contained in the Gleason part $P(\varphi)$ (see [2, p. 130]).

Using the Schwarz inequality it is easy to show that ρ restricted to D^{n} has the following useful formula.

Lemma 1.1. For $\left(z_{1}, \cdots, z_{n}\right),\left(w_{1}, \cdots, w_{n}\right) \in D^{n}$,

$$
\rho\left(\left(z_{1}, \cdots, z_{n}\right),\left(w_{1}, \cdots, w_{n}\right)\right)=\max _{1 \leq k \leq n}\left\{\left|\frac{z_{k}-w_{k}}{1-\bar{z}_{k} w_{k}}\right|\right\}
$$

Another application of the Schwarz inequality, in combination with the preceding lemma, gives a generalization of Pick's theorem to higher dimensions (see [7, p. 239]).

Theorem 1.2 (Pick). If $f \in H_{\infty}\left(D^{n}\right)$ with $|f| \leq 1$, then

$$
\rho\left(f\left(z_{1}, \cdots, z_{n}\right), f\left(w_{1}, \cdots, w_{n}\right)\right) \leq \rho\left(\left(z_{1}, \cdots, z_{n}\right),\left(w_{1}, \cdots, w_{n}\right)\right)
$$

for all $\left(z_{1}, \cdots, z_{n}\right),\left(w_{1}, \cdots, w_{n}\right) \in D^{n}$.
We shall often use the resulting corollary.
Corollary 1.3. Let $\left\{\alpha_{\lambda}\right\}$ and $\left\{\beta_{\lambda}\right\}$ be nets in D^{n} indexed by the same set and converging in $M\left(H_{\infty}\left(D^{n}\right)\right)$ to φ and ψ respectively. If $\rho\left(\alpha_{\lambda}, \beta_{\lambda}\right) \rightarrow 0$, then $\varphi=\psi$.

Proof. $\left|f\left(\alpha_{\lambda}\right)-f\left(\beta_{\lambda}\right)\right| \leq 2 \rho\left(f\left(\alpha_{\lambda}\right), f\left(\beta_{\lambda}\right)\right)$.
In [10] the problem of determining which subsets of $M\left(H_{\infty}(D)\right)$ support analytic structure is shown to be directly related to the concept of an interpolating sequence. A countable subset, $\left\{\alpha_{n}\right\}_{1}^{\infty}$, of D is called an interpolating sequence if there exists $\delta>0$ such that

$$
\prod_{k \neq n}\left|\frac{\alpha_{k}-\alpha_{n}}{1-\alpha_{k} \bar{\alpha}_{n}}\right|=\prod_{k \neq n} \rho\left(\alpha_{k}, \alpha_{n}\right) \geq \delta
$$

for all k. In particular, an interpolating sequence is a Blaschke sequence (See [9, p. 197].)

Theorem 1.4 (Hoffman [10]). For $\alpha \in D$, let $L_{\alpha}(z)=(z+\alpha) /(1+\bar{\alpha} z)$. As a net $\left\{\alpha_{i}\right\}$ in D converges to a point φ in $M\left(H_{\infty}(D)\right)$ the corresponding maps $L_{\alpha_{i}}$ converge in $M\left(H_{\infty}(D)\right)^{D}$ to a map L_{φ}, which is analytic, and maps D onto the part $P(\varphi) . \quad P(\varphi)$ is non-trivial if and only if φ belongs to the closure of an interpolating sequence. In this case L_{φ} is one-one and $\rho(z, w)=$ $\rho\left(L_{\varphi}(z), L_{\varphi}(w)\right)$. Finally if $\varphi \in M\left(H_{\infty}(D)\right)$ is a point of a non-trivial part and S and T are subsets of D such that φ is an accumulation point of both, then

$$
\inf [\rho(s, t): s \in S, t \in T]=0
$$

We shall need the following results on interpolating sequences. The first is a special case of a more general result on Banach algebras (see [9, p. 205]). A more direct proof is indicated in [10, p. 89].

Theorem 1.5. Let $S=\left\{\alpha_{n}\right\}_{1}^{\infty} \subset D$ be an interpolating sequence for $H_{\infty}(D)$. Then the closure of S in $M\left(H_{\infty}(D)\right)$ is homeomorphic to the Čech compactification of the natural numbers.

Theorem 1.6 (Hayman [6]). Let $\left\{\alpha_{n}\right\}_{1}^{\infty}$ be an interpolating sequence for $H_{\infty}(D)$. Then there exists a sequence of functions $\left\{f_{j}\right\}_{1}^{\infty}$ in $H_{\infty}(D)$ and a constant $c>0$ such that $f_{j}\left(\alpha_{n}\right)=\delta_{j}^{n}$ (Kronecker delta) and $\sum_{j=1}^{\infty}\left|f_{j}(z)\right|<c$ for all $z \in D$.

By $\otimes_{\lambda}^{n} H_{\infty}(D)$ we denote the smallest closed subalgebra of $H_{\infty}\left(D^{n}\right)$ which contains all functions of the form $F\left(z_{1}, \cdots, z_{n}\right)=f\left(z_{j}\right)$ for some j and some choice of f in $H_{\infty}(D)$. Since the maximal ideal space of $\otimes_{\lambda}^{n} H_{\infty}(D)$ is $M\left(H_{\infty}(D)\right)^{n}$, there is a natural continuous map

$$
\pi: M\left(H_{\infty}\left(D^{n}\right)\right) \rightarrow M\left(H_{\infty}(D)\right)^{n}
$$

defined by $\pi(\varphi)=\varphi$ restricted to $\otimes_{\lambda k=1}^{n} H_{\infty}(D)$. It is easy to see that parts in $M\left(H_{\infty}(D)\right)^{n}$ are products of parts from $M\left(H_{\infty}(D)\right)$, and if $\psi \in P(\varphi)$, then $\pi(\psi) \in P(\pi(\varphi))$. We shall use the π map to relate $M\left(H_{\infty}\left(D^{n}\right)\right)$ and $M\left(H_{\infty}(D)\right)^{n}$.

II. Analytic Structure over $D^{k-1} \times M\left(H_{\infty}(D)\right) \times D^{n-k}$

Following the lead of Hoffman, it is natural to search for analytic maps into $M\left(H_{\infty}\left(D^{n}\right)\right)$ as limits of analytic maps into D^{n}. Since the family of analytic functions on D^{n} is closed under bounded pointwise convergence, the set of all analytic maps from D^{n} into $M\left(H_{\infty}\left(D^{n}\right)\right)$ is a closed subset of $M\left(H_{\infty}\left(D^{n}\right)\right)^{D^{n}}$; therefore, any map obtained as a limit of such mappings is analytic.

In this section we completely settle the question of analytic structure over $D^{k-1} \times M\left(H_{\infty}(D)\right) \times D^{n-k}, 1 \leq k \leq n$, with the aid of the following theorem.

Theorem 2.1. π is one-one over $D^{k-1} \times M\left(H_{\infty}(D)\right) \times D^{n-k}, 1 \leq k \leq n$.
Proof. Let $\varphi \in M\left(H_{\infty}\left(D^{n}\right)\right)$ and

$$
\pi(\varphi)=\left(z_{0}, m, z_{0}^{\prime}\right) \epsilon D^{k-1} \times M\left(H_{\infty}(D)\right) \times D^{n-k}
$$

Let $\left\{\alpha_{\lambda}\right\} \rightarrow m$. It suffices to show that

$$
\left\{\left(z_{0}, \alpha_{\lambda}, z_{0}^{\prime}\right)\right\} \rightarrow \varphi
$$

Let $\left\{\left(z_{0}, \alpha_{j}, z_{0}^{\prime}\right)\right\}, j \in A$, be a converging subnet of $\left\{\left(z_{0}, \alpha_{\lambda}, z_{0}^{\prime}\right)\right\}$ and choose

$$
\left\{\left(\left(w_{1}\right)_{i},\left(w_{2}\right)_{i}, \cdots,\left(w_{n}\right)_{i}\right)\right\}, \quad i \in B
$$

converging to φ. By considering the product ordering on $\Omega=A \times B$, we can assume that we have a common indexing set. Then $\left\{\left(w_{k}\right)_{\delta}\right\} \rightarrow m$ and $\left\{\alpha_{\delta}\right\} \rightarrow m$ for $\delta \in \Omega$. Let $f \in H_{\infty}\left(D^{n}\right)$ with $\|f\| \leq 1$, and assume that $\varepsilon>0$. Then there exists $\delta_{0} \in \Omega$ such that $\delta \geq \delta_{0}$ implies

$$
\begin{gathered}
\rho\left(\left(\left(w_{1}\right)_{\delta}, \cdots,\left(w_{k-1}\right)_{\delta}\right), z_{0}\right)<\varepsilon / 6 \\
\rho\left(\left(\left(w_{k+1}\right)_{\delta}, \cdots,\left(w_{n}\right)_{\delta}\right), z_{0}^{\prime}\right)<\varepsilon / 6 \\
\left|f\left(z,\left(w_{k}\right)_{\delta}, z_{0}^{\prime}\right)-m\left(f\left(z_{0}, \cdot, z_{0}^{\prime}\right)\right)\right|<\varepsilon / 6
\end{gathered}
$$

and

$$
\left|m\left(f\left(z_{0}, \cdot, z_{0}^{\prime}\right)\right)-f\left(z_{0}, \alpha_{\lambda}, z_{0}^{\prime}\right)\right|<\varepsilon / 3
$$

It follows that for $\delta \geq \delta_{0}$,

$$
\begin{aligned}
& \left|f\left(\left(w_{1}\right)_{\delta}, \cdots,\left(w_{n}\right)_{\delta}\right)-f\left(z_{0}, \alpha_{\delta}, z_{0}^{\prime}\right)\right| \\
& \quad \leq 2 \rho\left(f\left(\left(w_{1}\right)_{\delta}, \cdots,\left(w_{n}\right)_{\delta}\right)_{,} f\left(z_{0},\left(w_{k}\right)_{\delta}, z_{0}^{\prime}\right)\right)+2 \varepsilon / 3 \\
& \quad \leq 2 \rho\left(\left(\left(w_{1}\right)_{\delta}, \cdots,\left(w_{k-1}\right)_{\delta},\left(w_{k+1}\right)_{\delta}, \cdots,\left(w_{n}\right)_{\delta}\right),\left(z_{0}, z_{0}^{\prime}\right)\right)+2 \varepsilon / 3 \\
& \quad<\varepsilon
\end{aligned}
$$

by Theorem 1.2. Thus each converging subnet of $\left\{\left(z_{0}, \alpha_{\lambda}, z_{0}^{\prime}\right)\right\}$ converges to φ; therefore,

$$
\left\{\left(z_{0}, \alpha_{\lambda}, z_{0}^{\prime}\right)\right\} \rightarrow \varphi
$$

and π is one-one over $D^{k-1} \times M\left(H_{\infty}(D)\right) \times D^{n-k}$.
Corollary 2.2. Each $f \in H_{\infty}\left(D^{n}\right)$ has a bounded continuous extension to

$$
D^{k-1} \times M\left(H_{\infty}(D)\right) \times D^{n-k}
$$

Corollary 2.3. Let $\varphi \in M\left(H_{\infty}\left(D^{n}\right)\right)$ and

$$
\pi(\varphi)=\left(z_{0}, m, z_{0}^{\prime}\right) \epsilon D^{k-1} \times M\left(H_{\infty}(D)\right) \times D^{n-k}
$$

Then $P(\varphi)$ is an n-dimensional ($(n-1)$-dimensional) analytic polydisc whenever $P(m)$ is non-trivial (trivial).

Proof. Assume $P(m)$ is non-trivial and let $\left\{\alpha_{\lambda}\right\} \rightarrow m$. Then

$$
\left\{\left(z_{0}, \alpha_{\lambda}, z_{0}^{\prime}\right)\right\} \rightarrow \varphi
$$

by Theorem 2.1. Define $L_{\lambda}: D^{k-1} \times D \times D^{n-k} \rightarrow D^{n}$ by

$$
L_{\lambda}\left(z, w, z^{\prime}\right)=\left(L_{z_{0}}(z), L_{\alpha_{\lambda}}(w), L_{z_{0}}\left(z^{\prime}\right)\right)
$$

where

$$
L_{z_{0}}(z): D^{k-1} \rightarrow D^{k-1} \quad \text { and } \quad L_{z_{0}}\left(z^{\prime}\right): D^{n-k} \rightarrow D^{n-k}
$$

are defined in each coordinate by the maps of Theorem 1.4. Since π is oneone over

$$
D^{k-1} \times M\left(H_{\infty}(D)\right) \times D^{n-k}
$$

it follows that $L_{\lambda} \rightarrow L_{\varphi}: D^{n} \rightarrow M\left(H_{\infty}\left(D^{n}\right)\right)$, where L_{φ} is analytic,

$$
L_{\varphi}\left(D^{n} \subset P(\varphi)\right.
$$

and L_{φ} is one-one since $\otimes_{\lambda}^{n} H_{\infty}(D)$ separates points on $L_{\varphi}\left(D^{n}\right)$. If $\psi \in P(\varphi)$ and $\pi(\psi)=\left(w_{0}, m^{*}, w_{0}^{\prime}\right)$, then $m^{*} \in P(m)$ and

$$
\left(w_{0}, w_{0}^{\prime}\right) \in D^{k-1} \times D^{n-k}
$$

By Theorem 1.4 there exist $\left(z, z^{\prime}\right) \in D^{k-1} \times D^{n-k}$ and $w^{*} \epsilon D$ such that $L_{z_{0}}(z)=w_{0}, L_{z_{0}}{ }^{\prime}\left(z^{\prime}\right)=w_{0}^{\prime}$ and $L_{\alpha_{\lambda}}\left(w^{*}\right) \rightarrow m^{*}$. Hence, $L_{\varphi}\left(z, w^{*}, z^{\prime}\right)=\psi$ since π is one-one. Thus L_{φ} is onto $P(\varphi)$. In the case $P(m)$ is trivial, repeat the argument using α_{λ} in the k-th coordinate of L_{λ}.

We remark here that the L_{φ} maps in the preceding corollary are homeomorphisms into the metric topology of $M\left(H_{\infty}\left(D^{n}\right)\right)$. From this fact it can be shown that $M\left(H_{\infty}\left(D^{n}\right)\right) \backslash D^{n}$ contains homeomorphic copies of $M\left(H_{\infty}\left(D^{k}\right)\right)$, $k \leq n$.

III. Analytic structure over non-trivial parts

In this section we show that in general there is analytic structure over nontrivial parts in $M\left(H_{\infty}(D)\right)^{n}$. In particular, it is shown that π is not one-one over non-trivial parts in $M\left(H_{\infty}(D)\right)^{n}$. This results in a sheeting of analytic sets over these parts.

Theorem 3.1. Let $\varphi \in M\left(H_{\infty}\left(D^{n}\right)\right)$ and $\pi(\varphi)=\left(m_{1}, \cdots, m_{n}\right)$ where k of the parts $P\left(m_{1}\right), \cdots, P\left(m_{n}\right)$ are non-trivial. Then $P(\varphi)$ contains a k-dimensional analytic polydisc.

Proof. Let $\left\{\left(\left(\alpha_{1}\right)_{\lambda},\left(\alpha_{2}\right)_{\lambda}, \cdots,\left(\alpha_{n}\right)_{\lambda}\right)\right\} \rightarrow \varphi$ and suppose $P\left(m_{1}\right)$, $P\left(m_{2}\right), \cdots, P\left(m_{k}\right)$ are non-trivial. Define

$$
L_{\lambda}\left(z_{1}, \cdots, z_{k}\right)=\left(L_{\left(\alpha_{1}\right)_{\lambda}}\left(z_{1}\right), \cdots, L_{\left(\alpha_{k}\right)_{\lambda}}\left(z_{k}\right)\right)
$$

where $L_{\left(\alpha_{j}\right)_{\lambda}} \rightarrow L_{m_{j}}$ as discussed in Theorem 1.4. By choosing an appropriate subnet, there exists

$$
L_{\varphi}: D^{k} \rightarrow P(\varphi)
$$

with L_{φ} analytic and $L_{\varphi}=\lim _{\lambda} L_{\lambda}$. We see that L_{φ} is one-one by considering the tensor algebra $\otimes_{\lambda}^{n} H_{\infty}(D)$ on $L_{\varphi}\left(D^{k}\right)$.

Theorem 3.2. Let $\varphi \in M\left(H_{\infty}\left(D^{n}\right)\right)$ and $\pi(\varphi)=\left(m_{1}, m_{2}, \cdots, m_{n}\right)$ where each part $P\left(m_{k}\right)$ is non-trivial. Then if $m_{k} \in \operatorname{cl}\left\{\left(\alpha_{k}\right)_{n}\right\}_{n=1}^{\infty}$, with each sequence
$\left\{\left(\alpha_{k}\right)_{n}\right\}_{1}^{\infty}$ interpolating, it follows that φ belongs to the closure of

$$
\left\{\left(\left(\alpha_{1}\right)_{l_{1}}, \cdots,\left(\alpha_{n}\right)_{l_{2}}\right)\right\}
$$

where $\left(l_{1}, \cdots, l_{n}\right) \in Z_{+}^{n}$ and Z_{+}denotes the set of all nonnegative integers.
Proof. Let

$$
\left\{\left(\left(\gamma_{1}\right)_{\lambda}, \cdots,\left(\gamma_{n}\right)_{\lambda}\right)\right\} \rightarrow \varphi
$$

Then $\left\{\left(\gamma_{k}\right)_{\lambda}\right\} \rightarrow m_{k}$ and $m_{k} \in \operatorname{cl}\left\{\left(\alpha_{k}\right)_{n}\right\}_{1}^{\infty}$ with $\left\{\left(\alpha_{k}\right)_{n}\right\}_{1}^{\infty}$ interpolating. By Theorem 1.4 we can choose a subnet $\left\{\left(\alpha_{k}\right)_{\lambda}\right\} \rightarrow m_{k}$ such that $\rho\left(\left(\alpha_{k}\right)_{\lambda}, \quad\left(\gamma_{k}\right)_{\lambda}\right) \rightarrow 0$ for each k. Then
$\rho\left(\left(\left(\alpha_{1}\right)_{\lambda}, \cdots,\left(\alpha_{n}\right)_{\lambda}\right),\left(\left(\gamma_{1}\right)_{\lambda}, \cdots,\left(\gamma_{n}\right)_{\lambda}\right)\right)=\max _{k} \rho\left(\left(\alpha_{k}\right)_{\lambda},\left(\gamma_{k}\right)_{\lambda}\right) \rightarrow 0$.
Hence, $\left\{\left(\left(\alpha_{1}\right)_{\lambda},\left(\alpha_{2}\right)_{\lambda}, \cdots,\left(\alpha_{n}\right)_{\lambda}\right\} \rightarrow \varphi\right.$ by Corollary 1.3.
In order to show that π is not one-one over ($m_{1}, m_{2}, \cdots, m_{n}$) where at least two parts $P\left(m_{1}\right), P\left(m_{2}\right), \cdots, P\left(m_{n}\right)$ are non-trivial, we turn our attention to sets of the form

$$
\left\{\left(\left(\alpha_{1}\right)_{l_{1}},\left(\alpha_{2}\right)_{l_{2}}, \cdots,\left(\alpha_{n}\right)_{l_{n}}\right)\right\}
$$

where $\left(l_{1}, l_{2}, \cdots, l_{n}\right) \in Z_{+}^{n}$ and each sequence $\left\{\left(\alpha_{k}\right)_{n}\right\}_{n=1}^{\infty}$ is interpolating. The following theorem is a higher dimensional analogue of Theorem 1.5.

Theorem 3.3. If $\left\{\left(\alpha_{k}\right)_{l}\right\}_{l=1}^{\infty}$ is an interpolating sequence in D for each $k=1, \cdots, n$, then the closure of $\left\{\left(\left(\alpha_{1}\right)_{l_{1}},\left(\alpha_{2}\right)_{l_{2}}, \cdots,\left(\alpha_{n}\right)_{l_{n}}\right)\right\}$ in $M\left(H_{\infty}\left(D^{n}\right)\right)$ is homeomorphic to the Cech compactification of Z_{+}^{n}.

Proof. It suffices to show that disjoint subsets of

$$
\left\{\left(\left(\alpha_{1}\right)_{l_{1}},\left(\alpha_{2}\right)_{l_{2}}, \cdots,\left(\alpha_{n}\right)_{l_{n}}\right)\right\}
$$

have disjoint closures in $M\left(H_{\infty}\left(D^{n}\right)\right)$. To show this let S be any subset of

$$
\left\{\left(\left(\alpha_{1}\right)_{l_{1}},\left(\alpha_{2}\right)_{l_{2}}, \cdots,\left(\alpha_{n}\right)_{l_{n}}\right)\right\}
$$

By Theorem 1.6 there exist sequences $\left\{\left(f_{k}\right)_{n}\right\}_{n=1}^{\infty}$ in $H_{\infty}(D)$ such that $\left(f_{k}\right)_{n}\left(\alpha_{j}\right)=\delta_{j}^{n}$ for each $k=1, \cdots, n$ and $\sum_{n=1}^{\infty}\left|\left(f_{k}\right)_{n}(z)\right|<c_{k}$ for all $z \epsilon D$. Now if $\mu: Z_{+}^{n} \rightarrow \mathbf{C}$ is any bounded function, then

$$
f\left(z_{1}, \cdots, z_{n}\right)=\sum_{l \in z_{n}+\mu} \mu(l)\left(f_{1}\right)_{l_{1}}\left(z_{1}\right) \cdots\left(f_{n}\right)_{l_{n}}\left(z_{n}\right)
$$

belongs to $H_{\infty}\left(D^{n}\right)$ since bounded pointwise convergence gives uniform convergence on compact subsets of D^{n}. But

$$
f\left(\left(\alpha_{1}\right)_{l_{1}}, \cdots,\left(\alpha_{n}\right)_{l_{n}}\right)=\mu\left(l_{1}, \cdots, l_{n}\right)
$$

Therefore by a suitable choice of μ, f is 0 on S and 1 on the complement of S. Hence, S and $\left\{\left(\left(\alpha_{1}\right)_{l_{1}}, \cdots,\left(\alpha_{n}\right)_{l_{n}}\right)\right\} \backslash S$ have disjoint closures in $M\left(H_{\infty}\left(D^{n}\right)\right)$.

Corollary 3.4. Let $\left(m_{1}, \cdots, m_{n}\right) \in M\left(H_{\infty}(D)\right)^{n}$ with at least two parts $P\left(m_{1}\right), \cdots, P\left(m_{n}\right)$ non-trivial and outside of D. Then π is not one-one $\operatorname{over}\left(m_{1}, \cdots, m_{n}\right)$.

Proof. Suppose $P\left(m_{1}\right)$ and $P\left(m_{2}\right)$ are non-trivial with $m_{1} \in \operatorname{cl}\left\{\alpha_{n}\right\}_{1}^{\infty}$, $m_{2} \in \operatorname{cl}\left\{\beta_{n}\right\}_{1}^{\infty}$ where both sequences are interpolating. Let $\left\{\alpha_{n_{\lambda}}\right\} \rightarrow m_{1}$ with $\lambda \in \Gamma$ and $\left\{\beta_{m_{\gamma}}\right\} \rightarrow m_{2}$ with $\gamma \in \Lambda$. It suffices to show that $\left\{\left(\alpha_{n_{\lambda}}, \beta_{m_{\gamma}}\right)\right\}$, $(\lambda, \gamma) \in \Gamma \times \Lambda$, does not converge in $M\left(H_{\infty}\left(D^{2}\right)\right)$. Since

$$
\operatorname{cl}\left\{\alpha_{n}\right\}_{1}^{\infty} \cong \beta N, \quad \operatorname{cl}\left\{\beta_{n}\right\}_{1}^{\infty} \cong \beta N
$$

by Theorem 1.5, and $\operatorname{cl}\left\{\left(\alpha_{n}, \beta_{m}\right)\right\}_{N \times N} \cong \beta(N \times N)$ by Theorem 3.3, this amounts to showing that $\left\{\left(n_{\lambda}, m_{\gamma}\right)\right\},(\lambda, \gamma) \in \Gamma \times \Lambda$, does not converge in $\beta(N \times N)$. To see this it suffices to exhibit two subnets of $\left\{\left(n_{\lambda}, m_{\gamma}\right)\right\}$ which have disjoint closures in $\beta(N \times N)$. For the subnets take

$$
S=\left\{\left(n_{\lambda}, m_{\gamma}\right):(\lambda, \gamma) \in \Gamma \times \Lambda \text { but } n_{\lambda}>m_{\gamma}\right\}
$$

and

$$
T=\left\{\left(n_{\lambda}, m_{\gamma}\right):(\lambda, \gamma) \in \Gamma \times \Lambda \text { but } n_{\lambda}<m_{\gamma}\right\}
$$

Then $T \cap S=\emptyset$, and hence S and T have disjoint closures in $\beta(N \times N)$. But the limit of any converging subnet of $\left\{\left[\alpha_{n_{\lambda}}, \beta_{m_{\gamma}}\right)\right\}$ maps under π to (m_{1}, m_{2}).

Theorem 3.1 showed that we always have analytic structure over nontrivial parts in $M\left(H_{\infty}(D)\right)^{n}$. The preceding corollary shows that for parts $Q=P\left(m_{1}\right) \times \cdots \times P\left(m_{n}\right)$ of dimension $k \geq 2$, where at least two nontrivial parts are outside of D, there are many analytic polydiscs P of dimension k with $\pi(P)=Q$. It is a conjecture that these analytic polydiscs are actually parts in $M\left(H_{\infty}\left(D^{n}\right)\right)$.

The following theorem will show that in general π is not one-one over onedimensional parts in $M\left(H_{\infty}(D)\right)^{n}$.

Theorem 3.5. Let $\varphi \in M\left(H_{\infty}\left(D^{n}\right)\right)$ with φ belonging to the closure of the sequence $\left\{\left(\alpha_{1}\right)_{l}, \cdots,\left(\alpha_{n}\right)_{l}\right\}_{l=1}^{\infty}$ where at least one of the sequences $\left\{\left(\alpha_{i}\right)_{l}\right\}_{l=1}^{\infty}$ is interpolating in D. Then $P(\varphi)$ contains an n-dimensional analytic polydisc.

Proof. Let $\left\{\left(\left(\alpha_{1}\right)_{\lambda}, \cdots,\left(\alpha_{n}\right)_{\lambda}\right)\right\} \rightarrow \varphi$ and suppose $\left\{\left(\alpha_{1}\right)_{l}\right\}_{l=1}^{\infty}$ is interpolating. Define $L_{\lambda}: D^{n} \rightarrow D^{n}$ by

$$
\begin{aligned}
L_{\lambda}\left(z_{1}, \cdots, z_{n}\right) & =\left(L_{\left(\alpha_{1}\right)_{\lambda}}\left(z_{1}\right), \cdots, L_{\left(\alpha_{n}\right)_{\lambda}}\left(z_{n}\right)\right) \\
& =\left(\frac{z_{1}+\left(\alpha_{1}\right)_{\lambda}}{1+\overline{\left(\alpha_{1}\right)_{\lambda}} z_{1}}, \cdots, \frac{z_{n}+\left(\alpha_{n}\right)_{\lambda}}{1+\overline{\left(\alpha_{n}\right)_{\lambda}} z_{n}}\right)
\end{aligned}
$$

We can assume that Γ is such that

$$
L_{\lambda} \rightarrow L_{\varphi}: D^{n} \rightarrow M\left(H_{\infty}\left(D^{n}\right)\right)
$$

Then $L_{\varphi}=\lim _{\lambda} L_{\lambda}$ is analytic with $L_{\varphi}\left(D^{n}\right) \subset P(\varphi)$ It is clear that L_{φ} is one-one in the first coordinate because the tensor algebra separates points in this coordinate. Thus fix $z_{1}=w$. Then it is easy to check that $L_{\left(\alpha_{1}\right) l}(w)$ is interpolating and by Theorem 1.6 , there exists a sequence $\left\{f_{l}\right\}_{1}^{\infty}$ in $H_{\infty}(D)$ such that

$$
f_{l}\left(L_{\left(\alpha_{1}\right)_{m}}(w)\right)=\delta_{l}^{m} \quad \text { and } \quad \sum_{l=1}^{\infty}\left|f_{l}(z)\right|<c
$$

for all $z \epsilon D$. Define

$$
h_{k}\left(z_{1}, \cdots, z_{n}\right)=\sum_{l=1}^{\infty} f_{l}\left(z_{1}\right)\left(\frac{z_{k}-\left(\alpha_{k}\right)_{l}}{1-\overline{\left(\alpha_{k}\right)_{l}} z_{k}}\right)
$$

Then $h_{k} \in H_{\infty}\left(D^{n}\right)$ and

$$
h_{k}\left(L_{\left(\alpha_{1}\right)_{\lambda}}(w), \cdots, L_{\left(\alpha_{k}\right) \lambda}\left(z_{k}\right), \cdots, L_{\left(\alpha_{n}\right)_{\lambda}}\left(z_{n}\right)\right)=\frac{L_{\left(\alpha_{k}\right)_{\lambda}}\left(z_{k}\right)-\left(\alpha_{k}\right)_{\lambda}}{1-\overline{\left(\alpha_{k}\right)_{\lambda}} L_{\left(\alpha_{k}\right)_{\lambda}}\left(z_{k}\right)}=z_{k}
$$

Hence, L_{φ} is one-one.
Suppose $P(\psi)$ is trivial, $\psi \in \operatorname{cl}\left\{\beta_{m}\right\}_{1}^{\infty}$, and $\left\{\beta_{\lambda}\right\} \rightarrow \psi$. If $\left\{\alpha_{m}\right\}_{1}^{\infty}$ is any interpolating sequence, then $\left\{\left(\alpha_{\lambda}, \beta_{\lambda}, \beta_{\lambda} \cdots, \beta_{\lambda}\right)\right\}$ is a subnet of $\left\{\left(\alpha_{m}, \beta_{m}, \cdots, \beta_{m}\right)\right\}_{1}^{\infty}$. Let Φ be any cluster point of $\left\{\left(\alpha_{m}, \beta_{m}, \cdots, \beta_{m}\right)\right\}$. Then the previous theorem applies to show that $P(\Phi)$ contains a n-dimensional polydisc. In particular, the map

$$
\left(z_{2}, \cdots, z_{n}\right) \rightarrow \lim _{\lambda}\left(\alpha_{\lambda}, L_{\beta_{\lambda}}\left(z_{2}\right), \cdots, L_{\beta_{\lambda}}\left(z_{n}\right)\right)
$$

is one-one and $\pi\left(\lim _{\lambda}\left(\alpha_{\lambda}, L_{\beta_{\lambda}}\left(z_{2}\right), \cdots, L_{\beta_{\lambda}}\left(z_{n}\right)\right)=(\varphi, \psi, \psi, \cdots, \psi)\right.$, where $\left\{\alpha_{\lambda}\right\} \rightarrow \varphi$. Thus π is in general not one-one over one-dimensional parts in $M\left(H_{\infty}(D)\right)^{n}$, and in this particular example π collapses an n-dimensional analytic polydisc onto a one-dimensional analytic disc. In fact, since every neighborhood of ψ contains a disc whose hyperbolic radius can be made arbitrarily large (see [11, p. 754]), it is not difficult to see that there is a sheeting of n-dimensional analytic polydiscs over this one-dimensional part.

IV. Analytic structure over trivial parts

In this section we give a condition for analyticity in $M\left(H_{\infty}\left(D^{n}\right)\right)$ which permits the construction of a one-dimensional analytic disc whose projection under π is a point in $M\left(H_{\infty}(D)\right)^{n}$.

Theorem 4.1. If $\left\{\beta_{n}\right\}_{1}^{\infty}$ is a sequence in D and $\beta_{n} \rightarrow e^{i \theta}, \theta \neq \pm \pi / 2$, then every φ belonging to the closure of

$$
\left\{\left(\left(\alpha_{1}\right)_{l}, \cdots, \beta_{l}, \cdots, \bar{\beta}_{l}, \cdots,\left(\alpha_{n}\right)_{l}\right)\right\}_{l=1}^{\infty}
$$

belongs to a one-dimensional analytic disc.
Proof. Assume that the sequences $\left\{\beta_{l}\right\}_{1}^{\infty}$ and $\left\{\bar{\beta}_{l}\right\}_{1}^{\infty}$ are in the u and v coordinate positions respectively. Let

$$
\left\{\left(\left(\alpha_{1}\right)_{\lambda}, \cdots, \beta_{\lambda}, \cdots, \bar{\beta}_{\lambda}, \cdots,\left(\alpha_{n}\right)_{\lambda}\right)\right\}
$$

converge to φ. Since $\left(z_{1}, \cdots, z_{n}\right) \rightarrow z_{u} z_{v}$ is holomorphic on $D^{n},\left\{\beta_{\lambda} \bar{\beta}_{\lambda}=\left|\beta_{\lambda}\right|^{2}\right\}$ converges in $M\left(H_{\infty}(D)\right)$, to say ψ. In [11] it is shown that such an angle of approach to the unit circle requires that $P(\psi)$ be non-trivial. Thus, there exists an interpolating sequence $\left\{\gamma_{n}\right\}_{1}^{\infty}$ such that $\psi \in \operatorname{cl}\left\{\gamma_{n}\right\}_{1}^{\infty}$. Let

$$
A(z)=\prod_{n=1}^{\infty} \frac{\bar{\gamma}_{n}}{\left|\gamma_{n}\right|} \frac{\gamma_{n}-z}{1-\bar{\gamma}_{n} z}, f\left(z_{1}, \cdots, z_{n}\right)=A\left(z_{u} z_{v}\right)
$$

and

$$
L_{m}(z)=\left(\left(\alpha_{1}\right)_{m}, \cdots, L_{\beta_{m}}(z), \cdots, L_{\bar{\beta}_{m}}(z), \cdots,\left(\alpha_{n}\right)_{m}\right)
$$

Then

$$
\begin{aligned}
{\left[f \circ L_{\lambda}(z)\right]^{\prime}(0) } & =A^{\prime}\left(\left|\beta_{\lambda}\right|^{2}\right)\left(L_{\beta_{\lambda}}(z) L_{\bar{\beta}_{\lambda}}(z)\right)^{\prime}(0) \\
& =A^{\prime}\left(\left|\beta_{\lambda}\right|^{2}\right)\left[\left(\beta_{\lambda}+\bar{\beta}_{\lambda}\right) / 2\right] 2\left(1-\left|\beta_{\lambda}\right|^{2}\right)
\end{aligned}
$$

We proceed to show that this expression is bounded away from zero independent of λ. We have $L_{\gamma_{n}}(z)=\left(z+\gamma_{n}\right) /\left(1+\bar{\gamma}_{n} z\right)$. Let $f_{n}(z)=$ $A \circ L_{\gamma_{n}}(z)$. Then

Thus

$$
\left\{\gamma_{n(\lambda)}\right\} \rightarrow \psi \quad \text { and } \quad L_{\gamma_{n}(\lambda)} \rightarrow L_{\psi}
$$

$$
f_{\lambda}(z) \rightarrow f(z)=\hat{A} \circ L_{\psi}(z)
$$

and
$\left|f_{n}^{\prime}(0)\right|=\left(1-\left|\gamma_{n}\right|^{2}\right)\left|A^{\prime}\left(\gamma_{n}\right)\right|=\prod_{k \neq n}\left|\left(\gamma_{n}-\gamma_{k}\right) /\left(1-\bar{\gamma}_{n} \gamma_{k}\right)\right|$

$$
=\prod_{k \neq n} \rho\left(\gamma_{n}, \gamma_{k}\right) \geqq \delta
$$

since $\left\{\gamma_{n}\right\}_{1}^{\infty}$ is interpolating. It follows that

$$
\left|f^{\prime}(0)\right|=\left|\lim _{\lambda} f_{\lambda}^{\prime}(0)\right| \geq \delta>0
$$

Now choose a disc $V=\left\{z:|z|<\varepsilon^{*}\right\}$ such that $\left|f^{\prime}(z)\right| \geq \delta / 2$ and $f_{\lambda}^{\prime} \rightarrow f^{\prime}$ uniformly on V. Therefore, there exists λ_{0} such that $\lambda \geq \lambda_{0}$ implies $\left|f^{\prime}(z)-f_{\lambda}^{\prime}(z)\right|<\delta / 4$ for all $z \in V$. It follows that $\left|f_{\lambda}^{\prime}(z)\right| \geq \delta / 4$ for all $z \in V$ and $\lambda \geq \lambda_{0}$. Now consider

$$
U=\{m:|\hat{A}(m)|<\varepsilon\} \quad \text { where } \varepsilon<\varepsilon^{*}
$$

In [10, p. 86] it is shown that $\{z:|A(z)|<\varepsilon\} \subset U$ is the union of pairwise disjoint domains $R_{1}, R_{2}, R_{3}, \cdots$ with A mapping R_{n} biholomorphically onto the disc of radius ε about the origin. Also

$$
R_{n} \subset \Delta\left(\gamma_{n} ; \eta\right)=\left\{z: \rho\left(z, \gamma_{n}\right)<\eta\right\}
$$

where $\eta<(\delta-\eta) /(1-\delta \eta)$. Thus choosing $\eta<\varepsilon^{*}$ implies

$$
R_{n} \subset \Delta\left(\lambda_{n} ; \varepsilon^{*}\right)=L_{\lambda_{n}}\left(D_{\varepsilon^{*}}\right)
$$

But U is a neighborhood of ψ. Therefore, for large $\lambda,\left|\beta_{\lambda}\right|^{2} \in U$. In particular, $\left|\beta_{\lambda}\right|^{2} \in R_{n(\lambda)}$. This means there exists $z_{\lambda} \in D_{\varepsilon^{*}}$ such that

$$
L_{\gamma_{n}(\lambda)}\left(z_{\lambda}\right)=\left|\beta_{\lambda}\right|^{2}
$$

Then

$$
\left|f_{n(\lambda)}^{\prime}\left(z_{\lambda}\right)\right|=\left|A^{\prime}\left(\left|\beta_{\lambda}\right|^{2}\right)\right| \frac{1-\left|\gamma_{n(\lambda)}\right|^{2}}{\left|1+\overline{\gamma_{n(\lambda)} z_{\lambda}}\right|^{2}} \geq \delta / 4
$$

It follows that

$$
\left|\left(f \circ L_{\lambda}(z)\right)^{\prime}(0)\right| \geq \frac{\left|1+\bar{\gamma}_{n(\lambda)} z_{\lambda}\right|^{2}}{1-\left|\gamma_{n(\lambda)}\right|^{2}} \cdot \frac{\delta}{4} \cdot \frac{\beta_{\lambda}+\bar{\beta}_{\lambda}}{2} \cdot 2\left(1-\left|\beta_{\lambda}\right|^{2}\right)
$$

Now $\left|z_{\lambda}\right|<\varepsilon^{*}$ and $\left|\beta_{\lambda}\right|^{2}=L_{\gamma_{n(\lambda)}}\left(z_{\lambda}\right)$ gives

$$
\frac{1-\left|\beta_{\lambda}\right|^{2}}{1-\left|\gamma_{n(\lambda)}\right|} \geq \frac{1-\frac{\left|z_{\lambda}\right|+\left|\gamma_{n(\lambda)}\right|}{1+\left|\gamma_{n(\lambda)}\right|\left|z_{\lambda}\right|}}{1-\left|\gamma_{n(\lambda)}\right|} \geq \frac{1-\varepsilon^{*}}{2}
$$

Therefore,

$$
\left|\left(\hat{f} \circ L_{\varphi}(z)\right)^{\prime}(0)\right| \geq c^{*}>0
$$

which means that L_{φ} is one-one in a neighborhood of the origin.
Theorem 4.2. Suppose $\left\{\beta_{\lambda}\right\}_{\lambda \epsilon \Gamma} \rightarrow \psi=P(\psi)$ and Γ is such that $\left\{\bar{\beta}_{\lambda}\right\} \rightarrow \varphi$. Then $\left\{L_{\bar{\beta}_{\lambda}}(z)\right\} \rightarrow \varphi$ for all $z \in D$. In particular, if $\psi \epsilon \partial\left(H_{\infty}(D)\right.$) (Šilov boundary of $H_{\infty}(D)$), then $\varphi \in \partial\left(H_{\infty}(D)\right)$.

Proof. If $\left\{L_{\bar{\beta}_{\lambda}}(z)\right\} \rightarrow \varphi$ for some $z \in D$, then $\left\{L_{\bar{\beta}_{\lambda}}(z)\right\} \rightarrow \varphi$ for all $z \in D \backslash\{0\}$. Thus there exists $f \in H_{\infty}(D)$ such that $\left\{f\left(\bar{\beta}_{\lambda}\right)\right\} \rightarrow r$ and $\left\{f\left(L_{\bar{\beta}_{\lambda}}\left(\frac{1}{2}\right)\right)\right\} \rightarrow s$ where $r \neq s$. Let

$$
F(z)=\overline{f(\bar{z})}
$$

Then $F \in H_{\infty}(D)$ and $\left\{F\left(\beta_{\lambda}\right)\right\} \rightarrow \bar{r}$ and $\left\{F\left(L_{\beta_{\lambda}}\left(\frac{1}{2}\right)\right)\right\} \rightarrow \bar{s}$. This contradicts the fact that $\left\{L_{\beta_{\lambda}}(z)\right\} \rightarrow \psi$ for all $z \in D$. In [9, p. 179] it is shown that $\psi \in \partial\left(H_{\infty}(D)\right)$ if and only if $\psi(B) \neq 0$ for every Blaschke product B. From the above construction, it is clear that $\varphi(B) \neq 0$ for every Blaschke product B; hence, $\varphi \in \partial\left(H_{\infty}(D)\right)$. Notice that this procedure also gives the result that $\left\{\bar{\beta}_{\lambda}\right\}$ converges without taking a subnet.

Theorems 4.1 and 4.2 show how to construct a one-dimensional analytic disc in $M\left(H_{\infty}\left(D^{n}\right)\right)$ which maps under π to a point in $M\left(H_{\infty}(D)\right)^{n}$ with a trivial part. Moreover, we can choose this point to lie in the Šilov boundary $\partial\left(M\left(H_{\infty}(D)\right)^{n}\right)=\left(\partial\left(H_{\infty}(D)\right)\right)^{n}$.

V. A necessary condition

In the preceding sections we saw examples of analytic sets in $M\left(H_{\infty}\left(D^{n}\right)\right)$ obtained as the limit of analytic mappings into D^{n}. We present here a necessary condition for a point of $M\left(H_{\infty}\left(D^{n}\right)\right)$ to belong to an analytic set obtained in this manner. This is a modification of an argument employed in both [10] and [11].

Theorem. Let F be any non-constant map from D^{m} into $M\left(H_{\infty}\left(D^{n}\right)\right)$ which lies in the closure of the set of analytic maps from D^{m} into D^{n}. Then each point in the range of F lies in the closure of the zero set of a function in $H_{\infty}\left(D^{n}\right)$.

Proof. Let $\varphi=F(0)$ and $\left\{F_{\lambda}\right\}$ be a net of analytic maps from D^{m} into D^{n} such that $\lim _{\lambda} F_{\lambda}=F$. Then F is analytic and hence $F\left(D^{m}\right) \subset P(\varphi)$. Since F is non-constant, there exists $f \in H_{\infty}\left(D^{n}\right)$ such that $\hat{f}(\varphi)=0$ and $\hat{f} \circ F \not \equiv 0$. Let

$$
U=\left\{\psi \in M\left(H_{\infty}\left(D^{n}\right)\right):\left|\hat{f}_{j}(\psi)\right|<\varepsilon, j=1, \cdots, l \text { and } \hat{f}_{j}(\varphi)=0\right\}
$$

where $f_{j} \in H_{\infty}\left(D^{n}\right)$. Then there exists $r, 0<r<1$, and net index λ_{0} such that

$$
F_{\lambda}\left(D_{r}^{m}\right) \subset U \quad \text { for all } \lambda \geq \lambda_{0}
$$

and

$$
D_{r}^{m}=\left\{\left(z_{1}, \cdots, z_{m}\right):\left|\left(z_{1}, \cdots, z_{m}\right)\right|<r\right\}
$$

Choose $\left(z_{1}^{0}, \cdots, z_{m}^{0}\right) \in D_{r}^{m}$ with $z_{1}^{0} \neq 0$ and $\hat{f} \circ F\left(z_{1}^{0}, \cdots, z_{m}^{0}\right) \neq 0$. Let

$$
T(z)=\left(z, \frac{z}{z_{1}^{0}} z_{2}^{0}, \cdots, \frac{z}{z_{1}^{0}} z_{m}^{0}\right)
$$

and

$$
V=\left\{z \in D: T(z) \in D_{r}^{m}\right\}
$$

Then V is an open connected subset of D with $f \circ F_{\lambda} \circ T$ converging uniformly to $\hat{f} \circ F \circ T$ on compact subsets of V. Then since $\hat{f} \circ F \circ T$ has a zero at 0 and is not identically zero, it must be that $f \circ F_{\lambda} \circ T$ has a zero on V for all sufficiently large indices λ. The image of these zeros are zeros of f and they lie in U which is a basic neighborhood of φ.

References

1. F. Birtel and E. Dubinsky, Bounded analytic functions of two complex variables, Math. Zeitschr., vol. 93 (1966), pp. 299-310.
2. A. Browder, Introduction to function algebras, W. A. Benjamin, New York, 1969.
3. L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math., vol. 80 (1958), pp. 921-930.
4. -, Interpolations by bounded analytic functions and the corona problem, Ann. of Math., vol. 76 (1962), pp. 547-559.
5. A. Gleason and H. Whitney, The extension of linear functionals defined on H^{∞}, Pacific J. Math., vol. 12 (1962), pp. 163-182.
6. W. Hayman, Sur l'interpolation par des fonctions bornées, Ann. L'Inst. Fourier (Grenoble), vol. 8 (1958), pp. 277-290.
7. E. Hille, Analytic function theory, vol. 2 Ginn, New York, 1962.
8. K. Hoffman, Analytic functions and logmodular Banach algebras, Acta Math., vol. 108 (1962), pp. 271-317.
9. - Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
10. - , Bounded analytic functions and Gleason parts, Ann. of Math., vol. 86 (1967), pp. 74-111.
11. A. Kerr-Lawson, A filter description of the homomorphisms of H^{∞}, Canad. J. Math., vol. 17 (1965), pp. 734-757.
12. D. Newman, Some remarks on the maximal ideal structure of H^{∞}, Ann. of Math., vol. 70 (1959), pp. 438-445.
13. I. J. Schark, Maximal ideals in an algebra of bounded analytic functions, J. Math. Mech., vol. 10 (1961), pp. 735-746.

University of Georgia

Athens, Georgia

[^0]: Received March 30, 1970.
 ${ }^{1}$ This research was supported by a National Science Foundation Graduate Fellowship and formed part of the author's Ph.D. thesis (Tulane University, 1969) under the supervision of Professor Frank T. Birtel.

