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It was proved in [7] that a Serre-fibration E - B with fibre F can be
replaced, as far as its singular complex is concerned, by a "twisted Cartesian
Product" B X F. In [1], [2], [9], [10] it was shown how, from this, the theorem
of E. H. Brown on the structure of a suitable differential on B (R) F could be
derived. Here, as throughout the present paper we use the same letter to
denote a space, its singular complex and its normalised chain-complex.
At the time of these papers, the relevant algebraic ideas--in particular that

of a coalgebra, a comodule and the cotensor product--were not well under-
stood; due to this both the proofs given and the nature of the result obtained
remained obscure. We hope to clarify these matters here.
The existence of the differential itself is established by a simple "perturba-

tion argument", Chapter 3; essentially the same argument appears in [10].
Then, the B-comodule structure and the dual A-module structure, where A
denotes the group of the twisted Cartesian product B X F, are investigated
in Chapter 4. Here we follow the method of Weishu Shih [1]. The form of
the differential given by E. H. Brown then follows from a simple, purely
algebraic lemma, Chapter 2; also it follows that the appropriate chain complex
for the fibration E’ induced by a map B:B -, B is the co-tensor product
B @" (B XF).
The result of Eilenberg and Moore, [4], namely H (E’) Cotor" (B’, E)

is now not hard to prove. We prove it here assuming only--as was done in
[6J--that the action of vl (B) an the homology of F is trivial. Chapter 5
merely summarises the necessary cohomological algebra from [4] and [6].
A point of notation" the symbol of any object lso stands for the identity

map on that object.
I am indebted to several conversations with John Moore.

1. Preliminaries

Let R be a commutative ring with unit; C+ denotes the category of positive
complexes over R, i.e. the sequences

-+ Kn+l K- d Kn-1 --+ -+ K -- K0 - 0

of R-modules and R-morphisms such that d, dn+ 0. There is an evident
forgetful functor [::] C+ -, G+, the category of positive graded R-modules;
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we shall also embed G+ in C+ by identifying an object of G+ with the complex
all of whose differentials are zero.

(B, , e) will be called a coalgebra (over C+) if B is an object of C+ and
h B -- B @ B, e B - R are maps of C+ such that

(e(R)B)b (B (R) ) B and (B(R) b)b (b(R) B)b.

Here we assume the usual definitions of B (R) B e C+, we regard R e C+ as the
object -- 0 --o 0 -- --+ 0 -o R - 0 and we identify B (R) R, R (R) B and B,
as usual.

In the same way we apply the usual definitions of algebra, module, co-
module, cf. [2], [4]. The following notations will be used throughout: the
multiplication and unit of an algebra A will be denoted by

4, A (R) A --- A, R--o A

the operations of right or left modules will be denoted by

r:M (R) A---M, :A (R) M-oM,

co-operations will be denoted by

z:M--+M (R) B, z:M---,B (R) M

and , b, r, will be replaced by Oa, B, rM’ Zu when clarity will require it.
The categories of right (left) A-modules or B-comodules (all over C+) will be
denoted by 9a, ag;, i)B, "i) respectively. If B’, B are coalgebras, ’"will denote the full subcategory of" n 9 for which

M r M(R)B

B’ (R)M B (R)
B’ (R)M(R)B

is commutative. Similarly we define ,, etc.
We shall use the forgetful functor [::] for all the categories we have mentioned:

if X is one of our objects over C+, X is the same object over G+, i.e. after
the removal of the differentials.

If M is any object of C+ and B a coalgebra, then B @ M will denote the
"extended co-module", cf. [4], [6], namely the object of ] with structure
morphism (R) M: B (R) M -- B (R) (B (R) M). Similarly, for an algebra A we
define M (R) A e.

2. Twisted objects
Throughout this chapter, let (A, , 7), (B, h, ) denote an algebra, co-

algebra over C+.
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2.1 DEFINITION. An object P of 9A will be called a "principal twisted
object" if [::]P [:3 (B (R) A);i.e. P is B @ A apart from the differentials.
In particular, the structure morphisms are

r B (R) 4A P (R) A -- A, e @ A P--, B @ P.

Thus, denoting the differential of P by D, we shall refer to the principal
twisted object (B (R) A, D).

The following notations will be used:

i B-* B @ A, ja B @ A "- A

are given by i B (R) ,j e @ A.

2.2 PROPOSITIOn. Le (B @ A, D) be a principal wisted objecL By
x B ---, A denote he composition

B i B(R)A D j;B(R)A- ;A.
Then

D d(R) A +B(R) da+ (B(R) )(B(R)x(R)A)(b@ A).

Proof. Since the differential is compatible with the structure morphisms
we have

(1,) D(B (R) ) (B (R) )(D @ A + B (R) A (R) d,)

(1") ((R) A)D (B (R) D + d (R) B(R) A)(b (R) A).

By I" B --* A we denote the trivial map he. Note that

B(R) A (B(R) )(B(R)I(R)A)(b(R)A).
Hence

D D(B @ )(B @ I (R) A)(b@ A)

(B@ $)(D @ A +B(R) A @ d)(S@ I(R) A)(b@ A)

Here we note (A (R) dA + dz (R) A ) da $ and da I 0. Hence

D (B (R) da)(S (R) I (R) A)( @ A)

+ (B@ )(D@A)(B@I@A)($@A)

(2,) B(R) da + (S(R) b)(Di(R) A).

Dually, we obtain

(2*) D d(R)A + (B(R)j,D)(C(R)A)

whence, from (2,),

j,D d, ja + (jADi @ A)
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which we substitute in (2*)"
D dn(R) A + (B@ (dajaq(jaDin@A)))(b@A)

dn(R)A+B@da+ (B@)(B(R)x@A)(C@A), Q.E.D.

Note that dn @ A + B (R) da dn(R)a is exactly the differential of B (R) A;
the remaining term which "twists" the differential has a well-known form,
cf. [11, [2]"

2.3 DEFINITIONS. Iet M 9s, N e a and let x B --, A be a morphism.
The composition

M@N
a(R)N

>M(R)B(R)N..
M(R)x(R)N

M@A (R)N ;M (R) N

is called the "cap product" x n" M (R) N --, M (R) N. With this notation the
conclusion of 2.2 can be written

D dn(R)aWxn;

for this to be n differentinl, i.e. DD O, we must hnve

dax-k-xdn W q(x (R) x)b O,

cf. [2, 3.1]. In this case we call x a "twisting cochain"; d(R)N + xn which we
shall denote by D" is then a differential of M @ N. M @ N with this dif-
ferential will be denoted by MxN C+; we call it a "twisted object". Note
that [:3 (MxN) M (R) N.

2.4, PROPOSXTON. The unique differential on M (R) N which makes

(MxA (R) N M (R) r ;M@N

into a chain-map is D" dM(R)N W xn.

Proof. This is immediate from the commutative diagram

M(R)A(R)N
v(R)A(R)N ;M@B@A(R)N

M(R)x(R)A@N

M(R)N )M@B(R)N
a(R)N M(R)x(R)N

M@A@A@N M(R)A (R)N

[M@A@r
M@A@N M(R)N.
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2.4* PROPOSITION. The unique differential on M (R) N which makes

M (R) N (R) N,M (R) (BxN)
into a chain map is D dM(R)r xn.

2.5* DEFiNiTiON (cf. 2.1" in [3] or 2 in [4]) Let M e and L e
The kernel in C+ of the map

M(R) N- M (R) :M (R) N--,M (R) B (R) N

is called the cotensor product of M, L over B and denoted by M (R) N (or
M []s N in [4]). The sequence

O"-> M r M (R) B r (R) B M@ M @ B(R) B

is split-exact (cf. 2.2* in [3]) and hence so is the sequence

(R)N
O--oM(R)N >M@B(R)N

r (R) B (R) N M (R) b (R) N >M(R)B(R)B(R)N.

Hence, by 2.4* we have

2.6" PROPOSTXON. With the notations of 2.3, MxN-- M (R) (BxN ).

The definition dual to 2.5* defining the tensor product over an algebra A is
classical.

2.6. PROPOSiTIOn. With the notations of 2.3, MxN (MxA ) (R) aN.
Using well-known associativity properties we get

2.7 PROPOSiTiOn. MxN M (R) (BxA @ N.

3. A perturbation lemma

Let X, Y be objects of G+ and f {]" X --* Y+} be a sequence of maps;
we call p the grading of f; if f, g X --* Y are maps of grading p, q respectively,
we define the commutator If, g] as fg + (-1)W+gf.
Now, let M, N be objects of C+ and let

M ;N

be chain maps such that

f M, f N W d + d
where N -- N is a chain homotopy (i.e. a map of grading + 1 satisfying

=0, f =0, = 0.

Let D N ---, N be a (second) differential on N; we shall discuss the problem
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of modifying 7, f and the differential on M so as to obtain a chain equivalence
between M and N with these new differentials. We write

D d t’N--N;

then, since D d 0 we must have [d, t] -}- 0. Next, we define

tx t, t+x t(t,, (n >_ 1)
so that

t t... t

with (n 1) O’s and n t’s. Also, we write

nd we denote by I, he ideal of opemors which eonin les n imes.
Noeh t, I,.

3.1 La.

Proof. Forn 1,, tand[d,t]+t V fl -t + Vilely. We
continue by induction.

Now, by the inductive hypothesis,

and hence, calculating from now on mod

Now, f (N + d + d) whence

Also,

whence

+ t._ + [d, t] + [d, t]O ._ + [d, t]t
[d,

tt. I+
because [d, t] + O, Q.E.D.
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We now define

D--- d:M--,M, -- , f--f, --and
D,,+ D,, +ft,, d -t-f,,

From 3.1 we now tribally deduce

3.2 LEMMA.

DD. I D V. V.D. I DI. f.D
f. V. M, Vf N D. .D I,

.V. 0, . 0, 0.

d. The id iMnbr9 Zibr theorem

Letters such as A, B, E, F will stand, ambiously for either simplicial
sets (complete sesimplicial complexes) or the corresponng normaised
chain-complexes over the ring R; these are of course, objects of C+. The
Eilenberg Zilber theorem then prodes natural maps

B@FBXF

where B X F, B @ F denote the Cartesian product and the tenor product
respectively. There is also a chain-homotopy " B X F B X F; and the
maps , f, now have exactly the formal properties discussed in chapter 3
above. In this case we shall write

(B, f), ] ](B, f), (B, F)

when nessary.
We shM1 have to make considerable use of the associatity properties of

these maps:

4.0 LEMX (cf. [1] for a proof). The followi distains are commutative:

A (R)B@ C (A,B) (R) C AXB@C

IA(R) V(B, C) IV(AX B, C)

A @ B )< C 7(A, BX C) A X B )< C
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AXBXC

f(A,B C)

A(R)BXC

f(A B,C). A B@ C

B) (R) C

A@B@CA @ f(B, C)

AXB@C

f(A, B) @ C

A@B@C

(A XB, C)

a(R) c)

AXBXC

f(A,B X C)

A(R)BXC

AXBXC

O(A X B, C)

AXBXC

--:(A’BX..C) A(R)BXC

f(A, BXC) A@BXC

A Serre-fibration r’E --. B with fibre F can always be replaced by a
"twisted Cartesian product" E B X F which is defined as follows, cf.
[2], [7].

4.1 D.FINITmN. Let B, F be simplicial sets and A a simplicial group acting
on F. By B X F, where/i" B --, A-x is a given "twisting function" we
denote the simplicial set defined as follows"

(i) As a set, (B X F) is the Cartesian product B X Fn
(ii) The degeneracy operators are given by

s, (b, f) (s, b, s,f).

(iii) The face operators are given by

O,(b,f) (Ob,O,f), i< n

(0nb, (b).0./), i n

if b Bn, f Fn. Here has to satisfy two identities, namely
(iv) (O,,b).On_(b) (0n_,b), beBn
(v) (sb) the unit of Aifb
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Remark. Here we give preferred treatment to the last face operator, as is
done in [8], and not to the first, as in [7]. This turns out to be the appro-
priate thing to do if we want to represent our fibration as Base X Fibre rather
than Fibre X Base. In order to use the theory of Chapter 3, we shall denote
the differential of B X F by d and that of B X F (untwisted) by d. Then,
writing d d,

t(b,f) (O,(b), ((b)- 1).0f)), bB,,feF,.

We now introduce the usual "Serre-filtrations" namely (b, f) B X F has
filtration

_
p if b is the degeneration of an element of B and

F(B (R) F) i<,B, (R) F.

4.2 LEMMA.

(i) V (B, F), f(B, F), + (B, F) are filtration-preserdng.
(ii) tF(B F) c F_I(B F)

Property (i) is well known (and trivial). Properly (ii) follows easily from
(v) in 4.1. Hence, using the notation of Chapter 3, an operator belonging
to I, will reduce filtration at least by n; and therefore will be zero when
applied to an element of grading < n. The operators D,, V,, f,, +, will
therefore, by 3.2, converge as n --+ o, to operators D, U, f, . It will be
convenient to denote B (R) F with the differential D by B @ F e C+. We
summarise our result:

4.3 LEMMA.

are chain-maps satisfying

B (R)F-B XF

f7 B(R)F, Vf BX F+dWd
where is a chain-homotopy satisfying

f=0, f=0, =0.
Now, let B" B B be a mp of simpliciM sets; the twisted Cartesian

product B X F induces the twisted Cartesian product B’ X , F where ’ ;
this takes the place of the induced fibrtion:

B’XvF BXF BXF

B’ ,,
B
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where ,r(b, f) b, rr(br, f) b. Note that the map f F is "un-
twisted". It is evident that the operators of 4.3 are natural in relatioa to this
construction. We shall adhere to these notations for the rest of this chapter.
With the simplicial set B we associate the diagonal map

B- ...B X B, b (b,b).

This turns B e C+ into a coalgebra, using the usual augmentation and

b B--- B (R) B

being defined as the composition

B= f(B, B);BXB )B(R)B.

More generally, we have the simplicial maps

’ (B’ X ), B’ --, B’ X B
and

r’ X F B’ X F--B’ X (BXF)

where, again, we note that the last map is "untwisted". From these maps we
form the compositions

f (B’, B)a’ B’ ---. B’ (R) B

which gives B’ the structure of a right B-comodule and

Xx f(B’, B X F) (a’ X F):B’ X F---, B’ (R) (B X. F).

This is a chain map because f(B’, B X F) f(Bp, B X, F); which is true
because f(X, Y) depends on the operators 00 in Y only--and they are the
same for B X F and B X F.

In the light of 4.3 we want to compare Xx with the map. r (R) F B’ @, F---, B’ @ (B @ F),

The first question which must be answered is whether ks is a chain-map at all:

4.4* LEMMA. (ds, (R) B (R) F + B’ (R) D)k ksD,.

Next, to show the "equivalence" of kx and k. we must prove

4.5" LEMMA. The following diagrams are commutative:

Xi, F
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B’(R) (B(R)F) B’(R)& (R) B XF

B’ X, F @’
.) X, F

BB’ @ B XF B’ @ @ @ B XF

Proof of 4.4*. In the untwisted case--when (b) is always the unit and
B X F B X F, D dn(R)t--the statement is true. Thus, writing

T De- d(R), and T’ De,- d,(R),,

we must prove (B’ @ T)X k T’. Now, since in the notation of chapter 3,
T :-i y. where y f(B, F)A (B, F), and an analogous notation for
T’, it suffices to prove

(B’ @ y)k ky

for all n. Consider the diagram

’ X F I(B’, B) @ FB’ @ F B X B @ F , B’ @ B B F

J x
B’

I(B’, B X )B’B’XF XBXF @BXF
I

y’ () .I. d B’ a (6) B’
B’ B’XBXF @BXFB’ X r,,,,; Xr ](S’, X )fiB’,F) (3) I f(B’ X B, F) (4) B’ @ f(B,

B’ @ F B’ @ B @ F B’ @ B @ F

’ (R) F f(B’, B) (R) F

In this diagram, (1) and (3) are commutative due to naturality; (2) and (4)
by 4.0; and (5) and (6) by definition. Hence the outer rectangle will com-
mute-and that is the required result--if the inner one does. Now, since

t,,+l t@ (B, F)t., t’.+1 t’@ (B’, F, t’)t’.,
it remains to prove that the inner rectangle will commute if t., t, are replaced
either by t’, or by @(B’, F), (B, F). Now, the first of these assertions is
(B’ (R) t)),l Xx t’ and this follows--eft the remarks after the definition of
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because
(B (R) d)X-- d and (B(R) d)M d

are both true. For the second assertion, consider the diagram

fly
B

lO(B’, F)(7) I(B’ X B, F) (8) ]B’ (R) O(B, F)

B’ X F .-----. B’ B’
a XF XBXF f(BtlBXF) (R)BXF

where (7) commutes due to naturality, and (8) by 4.0. This completes the
proof of 4.4*.
The proofs of 4.5* are analogous.
If, in Definition 4.1 we replace F by the simplicial group A--operating on

itself by the group-action--we obtain the definition of the associated principal
twisted Cartesian product, cf. [7], denoted by B X A. We now consider the
simplicial maps

r’ :A X F--oF
i.e. the action of A on F, and

B X ’ (B XA) X F--oB XF.
From these maps we form the compositions

r r’(A,F) :A (R)F--.F

which gives F the structure of a left A-module and

(B X r’)(BXA, F) (BXA) (R)F--BXF.
This is chain mp, because (B X A, F) (B X A, F); which is true
because (X, Y) depends on degeneracy operators only--nd they re the
sme for B X F nd B X F.

In the light of 4.3 we wnt to compare with the mp

(B (R) r) (B (R)A) @ F---B @F.
It is now eler that the situation is dul to that which leads to Lemmas 4.4"

4.5*.
4.4, LEMM.. #.(Di (R) F -F B (R) A (R) d,) D . where D denotes the

differentials of B (R) A and B (R) F.

4.5, LEMMA. The following diagrams are commutative:

(B (R) A) (R) F (R) F
BXA(R)F

BXFB @F
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(B(R)A) (R) F f (R) F B XA (R) F

B @F B F

B XA (R) F o@ F B XA (R) F

B X F B X F

The proofs are dual to those of 4.4", 4.5*.
Let us now substitute F A and r the multiplication of A in 4.4, and

B’ B, B, ’ in 4.4". The lemmas then assert, cf. 2.1, in particular
1, and 1" in the proof, that B (R) A is a principal twisted object. It follows,
from 2.2, 2.3 that D d(R)a W xn where x x () j D i,. In the nota-
tion of 2.3 this can be written succinctly as B @ A Bx (.)A.
From this result, 2.4, and 4.4, we deduce B (R) F Bx ()F which is the

theorem of E. H. Brown, cf. [1], [2].
Finally, from 4.4", 2.4* and 2.6* we deduce that the chain-complex of the

induced fibration is given by the cotensor-product over B"

4.6" PROPOSITION. B’ @ , F B’ (R) (B @ F).

Dually, we have a proposition relating the chain-complex of a twisted
Cartesian product with that of the associated principal one:

4.6, PROPOSITION. B @ F (B @ A @ F.

5. Cotor
5.1. An element of is called injective if it is a direct summand--in

gg--of an "extended comodule" B (R) F, F e C+.
5.2. By C-(B) we denote the category of negative complexes

X: X-X1-+...-Xn-Xn+i--*’’’

consisting of objects and morphisms in ". They are called "negative" be-
cause of the usual notation X X_, cf. [4]. We embed 9 in C-(B) by
regardingMe asM--0--0-+.... Amapc M--,XofC-(B) is
called a resolution of M if

O)
(ii)

0 -- M -+ X --+ X --+ is split exact in C+

X (i _> 0) is injective, cf. 5.1 above.

The two notions employedqnamely what sort of sequences are considered as
exact and what are the injectives--are not independent; on the contrary, each
determines the other, cf. [6].
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5.3. The canonical resolution M - U (M), cf. [4], [6], is defined as follows.

0--.M
e
)B(R)M U(M) withe .

We let (M) coker e--note that rt has cokernels--and define

Un (M)a B (R) (M).
Inductively, (M)"+ is defined by the exact sequence

with U, (M)+ B @ ,(M)+. Since the above sequence splits in C+,
we get a resolution. Note that, again denoting the functor which forgets
the derentials of ", if M, N e " and M N, then U, (M)
U,(N).

5.4. Let M e n. A filtration F M on M in C+ is called a B-filtration
prodded F_x M 0, M 0 F M and aM M B @ M is filtration-
preseing, where B @ M has the tensor product filtration and B the skeleton
filtration; cf. 6.3 in [6].

5.5. It is clear that a B-filtration on M can be extended in a canonical
way to a filtration on Un (M), i.e. a filtration on each Un (M)i so that

Un(M)’ o Un(M)
is filtration-preserving.

5.6. By C we denote the category of complexes

K,+x K, K,_

over R. Let L e n, M e " and M X be a resolution of M. We define
W (L, X) e C as follows:

where denotes the product and not, beware, the coproduct (sum).

is defined by d d’ + d" where

d’ (L @" X)+ (L @" X)+_
is induced by the differentials in L, X, and

d" (L @" X*),+ (L @ " X+).+
is defined by taking the map

(-1)L {X’ X’+’} on L X’.
Denoting the homology-functor by H we define

Cotor (L, M) H$ (L, X).
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For the usual invariance proofs, as well as the fact that we could just as well
have resolved L, or both L and M, see [4], [6]. Corot is bigraded in the sense
that

Cotor (L, M) H. W (L, X) II+q-, Cotor.q (L, M)

where Cotor,q (L, M) consists of those elements represented by cycles in
(L @ X-’)q. Thus Cotorg.q (L, M) 0 unless p

_
0, q >_ 0.

5.7. B will be said to be connected if e B0 --.R is an isomorphism; in that
case it is easy to deduce--from the canonical resolution--that
Cotor (i, M) 0 if n < 0; cf. [4, 6.2].

5.8. If M is injective, we can use 0 -- M -- M -- 0 as the resolution of M,
and we get Cotor (L, M) Ht (L, M) H (L @s M).

5.9. Let B1 --* B. be a morphism of coalgebras, let L e 9Zs, M e s9
(i 1, 2) and let f L1 --* L, g M --M be -morphisms; assume further
that B1, B, M, M are R-flat. If

H () H (B1) --+ H (B), H (f) H (L) --H (L,.), H (g) H (M) H (M)

are isomorphisms, then so is the induced morphism.

Cotor* (f, g) Cotor’ (L, M) --* Cotor" (L, M),

Cf. Theorem 7.1 in [4].

6. 1-trivial modules
6.1 DEFINITION. M e will be called n-trivial if:
(i) M- (B@F) withFC+;
(ii) If F denotes the filtration of B @ F by B-degree (i.e. F (B @ F)

B, (R) F), then

We shall prove that if n _> 1, n-trivial modules behave, to some extent, like
injective ones, cf. 5.8’

6.2 THEOREM. Let M be 1-trivial and L Then

H (L (R) SM) Cotors (L, M).

Proof. M is filtered as in 6.1; we filter L by

F, L I(L @ F, B ).

We filter L (R) SM by L-degree, noting [:] (L (R) SM) c (L (R) F). The
filtration on M is a B-filtration and can be extended to Us (M), cf. 5.5. The
filtrations can now, writing

F, l IL+r-<, F L @ F Us(M),
be extended to I?V (L, Us (M)). Now, for brevity, let us write Us (M) U,
Us (B @ F) U(R) and let us call the differentials of I?V (L, U), W (L, U(R))
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D, D(R) respectively. Then, cf. 5.3, [:3 U U(R) and from

we easily deduce

Now, consider the diagram

iI?V(L, B @ F) I?V(L, M)

W(L, U(R)) JL W(L, U)

where i, j are the identities and u, v are induced by the resolutions, i, j do
not commute with the differentials. But due to (.) above, in the spectral
sequences induced by our filtrations, E (i), E (j) exist and are isomorphisms.
Since W (L, B @ F) L @ F we see that the spectral sequences on the left
collapse and E (u) is an isomorphism; indeed both terms are H (L @ F)
Hence E (v) is an isomorphism.

But, the filtrations we have introduced are bicomplete, cf. [5], hence H (v)
is an isomorphism; since IPV (L, M) L (R) M, our theorem is proved.

6.3 Application. Suppose r E -* B is a Serre-filtration in which the ac-
tion of the fundamental group of B on the homotopy of the fibre is trivial;
then E can be replaced by B X F where BI -* A0 is trivial. It follows,
cf. Chapter 4 above, that x () B1 --, A0 is trivial. Hence, as is easily seen
(cf. [2, 10.3])

(D" d,,)F F_
in Proposition 4.6". Applying 6.2 we obtain the theorem of Eilenberg, Moore
and Husemoller [4], [6], that in this case the homology of the fibration E’ in-
duced by B’ B is given by

Cotor (B’, B @ F) Cotor (B’, E).

The last identity follows from 4.5* and 5.9.
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