ON THE CHAIN-COMPLEX OF A FIBRATION

BY
V. K. A. M. GUuGENHEIM!

It was proved in [7] that a Serre-fibration = : £ — B with fibre F can be
replaced, as far as its singular complex is concerned, by a “twisted Cartesian
Product” B X F. In[1],[2],[9], [10] it was shown how, from this, the theorem
of E. H. Brown on the structure of a suitable differential on B ® F could be
derived. Here, as throughout the present paper we use the same letter to
denote a space, its singular complex and its normalised chain-complex.

At the time of these papers, the relevant algebraic ideas—in particular that
of a coalgebra, a comodule and the cotensor product—were not well under-
stood; due to this both the proofs given and the nature of the result obtained
remained obscure. We hope to clarify these matters here.

The existence of the differential itself is established by a simple “perturba-
tion argument”’; Chapter 3; essentially the same argument appears in [10].
Then, the B-comodule structure and the dual A-module structure, where 4
denotes the group of the twisted Cartesian product B X; F, are investigated
in Chapter 4. Here we follow the method of Weishu Shih [1]. The form of
the differential given by E. H. Brown then follows from a simple, purely
algebraic lemma, Chapter 2; also it follows that the appropriate chain complex
for the fibration E’ induced by a map 8: B’ — B is the co-tensor product
B ®® (B X; F).

The result of Eilenberg and Moore, [4], namely H (E') = Cotor® (B’, E)
is now not hard to prove. We prove it here assuming only—as was done in
[6]—that the action of w1 (B) an the homology of F is trivial. Chapter 5
merely summarises the necessary cohomological algebra from [4] and [6].

A point of notation: the symbol of any object also stands for the identity
map on that object.

I am indebted to several conversations with John Moore.

1. Preliminaries
Let R be a commutative ring with unit; C* denotes the category of positive
complexes over R, i.e. the sequences

K- K K K S Koo 0

of R-modules and R-morphisms such that d, d,41 = 0. There is an evident
forgetful functor O : CT — G, the category of positive graded R-modules;
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we shall also embed G in C" by identifying an object of G* with the complex
all of whose differentials are zero.

(B, ¥, ) will be called a coalgebra (over CT) if B is an object of C* and
¢:B—B® B,¢: B— R are maps of C* such that

(e®B)yY=B®c)y =B and By} = (¢ ® B}Y.

Here we assume the usual definitions of B ® B e (™", we regard R ¢C™ as the
object =0 —>0— -+ — 0 — R — 0 and we identify B ® R, R ® B and B,
as usual.

In the same way we apply the usual definitions of algebra, module, co-
module, cf. [2], [4]. The following notations will be used throughout: the
multiplication and unit of an algebra A will be denoted by

0:A®A— A, n:R—A;
the operations of right or left modules will be denoted by
TTM®A—-M, 1:AQM-—->M,
co-operations will be denoted by
o:M—-M®B, 6o:M—->B®M

and ¢, ¥, 7, o will be replaced by ¢, ¥s 7 o When clarity will require it-
The categories of right (left) A-modules or B-comodules (all over C*) will be
denoted by 91, , (9%, 9n®, P9 respectively. If B/, B are coalgebras, *'on”
will denote the full subcategory of *’an n o® for which

M—2 ,M®B

la’l ‘[a, ® B
BeM ——BI—®;‘* B®M®B
is commutative. Similarly we define 49, , M3 ete.

We shall use the forgetful functor [ for all the categories we have mentioned:
if X is one of our objects over C*, 00X is the same object over G7, i.e. after
the removal of the differentials.

If M is any object of C* and B a coalgebra, then B ® M will denote the
“extended co-module”, cf. [4], [6], namely the object of ®am with structure
morphismyz ® M: B® M - B® (B® M). Similarly, for an algebra A we
define M ® A edMy.

2. Twisted objects

Throughout this chapter, let (4, ¢, 1), (B, ¥, ¢) denote an algebra, co-
algebra over C*.
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2.1 DerNITION. An object P of ®a1, will be called a “principal twisted
object” if OP = O(B ® A);ie. Pis B ® A apart from the differentials.
In particular, the structure morphisms are

p=B®¢s:POA—A, op=ys® A:P—>B®P.

Thus, denoting the differential of P by D, we shall refer to the principal
twisted object (B ® A, D).

The following notations will be used:
i8:B—>B®A, ju:B®A—A
are given by is = B ® n4,j4 = €3 ® A.

2.2 ProrosiTiON. Let (B ® A, D) be a principal twisted object. By
z . B — A denote the composition
B—LB@A—D——»B@A—‘ZA—»A.
Then
D=ds®A+B®ds+ B®¢)B®z® A)Y¥ ® A).

Proof. Since the differential is compatible with the structure morphisms
we have

(1x) DB®¢)= B®¢)D®A+B®A®ds)

a*) W®AD=B®D+ds® B® A)(¥ ® 4).

By I: B — A we denote the trivial map ne. Note that
BR®A=B®¢)BO®I®A)W ® A).

]

Hence
D=DB®¢)BR®I®A)Y®A)
=B®¢)D®A+BR®A®A)BOI®A)Y®A)
Herewenote ¢ (A ® dy +ds ® A) = dsdand dsI = 0. Hence
D= B®dio¢)BOI®A)Y® A)
+ BR®¢)D®A)BRI®AWY®A)

(2«) =B®di+ B® ¢)(Diz® 4).
Dually, we obtain
2%) D=ds®A+ B®jD)y®A)

whence, from (2),
JaD = dajs + ¢(juDizg ® A)
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which we substitute in (2*):
D=ds® A+ (B® (dajad(juDis ® A)))¥ ® A)
=ds®A+B®di+ (B®¢)(B®z®A)¥y®4), QED,

Note that ds ® A + B ® ds = dpga i8 exactly the differential of B ® 4;
the remaining term which ‘“twists” the differential has a well-known form,
cf. [1], [2]:

2.3 DeriniTiONs. Let M ¢ %, N ¢ 4,91 and let 2 : B — A be a morphism.
The composition

c® N M®r®N
—————-——-% 3

M®N M®B®N

oA N-M®" . yenN

is called the “cap product” zn: M ® N — M ® N. With this notation the
conclusion of 2.2 can be written

D = dpga + on;
for this to be a differential, i.e. DD = 0, we must have
daz +2ds + ¢ @ z)¥ = 0,

cf. [2, 3.1]. In this case we call z a “twisting cochain”; dygy -+ xn which we
shall denote by D” is then a differential of M ® N. M ® N with this dif-
ferential will be denoted by MxzN ¢ C*; we call it a “twisted object”. Note
that O (MzN) = M ® N.

2.4 ProposiTioN. The unique differential on M ® N which makes

(Mzd) @ N-MO7,

into a chain-map is D° = dygx + zn.

M®N

Proof. This is immediate from the commutative diagram

MeAoN 248N yeopeaen HB2OAGN
lM@r lM@B@T
MeN conN MO®B®ON M®c®N
MoAdodeoN M®98N yesenN
lM@A@'r lM@’r
M®A®N M ®N.

M®r
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2.4 ProposiTiON. The unique differential on M ® N which makes

M®N_"_Q_:N_,

into a chain map is D* = dugy + 0.

2.5* DeriNtTION (cf. 2.1% in [3] or 2 in [4]). Let M e M® and L ¢®om.
The kernel in C* of the map

o ®N—-—M@ox:MON->M®B®N

is called the cotensor product of M, L over B and denoted by M ®* N (or
M Op N in [4]). The sequence

M ® (BzN)

0-M—" e l®B-M®Y oBeB
is split-exact (cf. 2.2* in [3]) and hence so is the sequence

s® N
_—

0—-M®N M® B®N

T@BON-MO®VY®N 1 oB®B®N.

Hence, by 2.4™ we have
2.6™ PropOSITION. With the notations of 2.3, MaN= M ®® (BazN).

The definition dual to 2.5* defining the tensor product over an algebra 4 is
classical.

2.64« ProrosiTiON. With the notations of 2.3, MaN = (MzA) ® 4N.
Using well-known associativity properties we get
2.7 ProposITION. MzN = M ®° (BxA) ® 4 N.

3. A perturbation lemma

Let X, Y be objects of G" and f = {f, : X, — Y,,} be a sequence of maps;
we call p the grading of f; if f, g + X — Y are maps of grading p, ¢ respectively,
we define the commutator [f, g] as fg + (—1)*""gf.

Now, let M, N be objects of C* and let

Mc—N

be chain maps such that
V=M, Vf=N+dd+ &d
where ® : N — N is a chain homotopy (i.e. a map of grading +1) satisfying
oV =0, =0, & = 0.
Let D : N — N be a (second) differential on N; we shall discuss the problem
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of modifying V, f and the differential on M so as to obtain a chain equivalence

between M and N with these new differentials. We write
D—-—d=t:N—N,;

then, since D* = d® = 0 we must have [d, {] + ## = 0. Next, we define

=1t twa=10, @®>1)

so that
by =1® - &
with (n — 1) ®’s and n ’s. Also, we write
2a=ti+ -+,

and we denote by I, the ideal of operators which contain ¢ at least n times.

Note that t, e I, .

3.1 LEMMA.
[d’ Zn] + Zn vf Zn € In+l

(n>1).
L,Y,.=tand[dt] +¢Vft=—+tVftel,. We

Proof. Forn =
continue by induction.
ZISiSntﬂ-l v on + t V erH-l + Zn-{-l v .ﬂn+]

Zn+1 Vf2n+l =
B VItV 21+ 2ntr V ftusa.

I

Now, by the inductive hypothesis,
Zn szn = —[d, Zn] mod I,

and hence, calculating from now on mod I,
2ot VI 2w = —t8ld, 2]+t V2w
= —1dld, 2.+t V2.
Now,t V fon = t(N + d® + &d) D, whence
Zn+1 Vf2n+1 = th - t@znd + td@Zn.

[d, 8] + [d, ¢ ® 2]

Also,
[d’ Zn+1] =
[d 8] + dt® D0 + 18D, d

Il

whence
[d’ Zn-}-l] + Zn+1 Vv f2n+1
t 20+ [d, (N + & 2.}

£ 4 08D+ [d t] + [d, )0 D + [d, 8L,

[d, t)®t,
= — Bty € Inyo

because [d, ] + ¢ = 0, Q.E.D.
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‘We now define

Di=d:M—>M, W=V, i=f &=2

Doy =D+ ftaV=d+f2.V
Vatr = Vat+ @y V=V +&2 .V
for =fa+ fa® =f+ 3,8

Bppr = B + B, & =D+ 3, .

From 3.1 we now trivially deduce

and

]

3.2 LEMMA.
D,D,el,, DV, — VaDnel,, D,fo — fuDel,,
faVa=M, Vafs —N—D& — &,Decl,,
& Va=0, fuPn=0, & &, =0.

4. The twisted Eilenberg Zilber theorem

Letters such as A, B, E, F will stand, ambiguously for either simplicial
sets (complete semisimplicial complexes) or the corresponding normalised
chain-complexes over the ring R; these are of course, objects of C*. The
Eilenberg Zilber theorem then provides natural maps

v
B®F:$2B><F

where B X F, B ® F denote the Cartesian product and the tensor product
respectively. There is also a chain-homotopy ® : B X F — B X F; and the
maps V, f, ® now have exactly the formal properties discussed in chapter 3
above. In this case we shall write

VvV = V(B)F), f=1fB,F), ®=&(B,F)

when necessary.
We shall have to make considerable use of the associativity properties of
these maps:

4.0 Lemma (cf. [1] for a proof). The following diagrams are commutative:

A®B®C V4B ®C 4, wBecC
p®vwﬂ) lWAx&m
A®BXC » A X B X C

V(4,B X C)
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AXBXC fAXBC | 4xBeC
pM£xc> Mmm®c
A®BXC Tejs o A®BeC
AXB®C VA XBO) | 4xBxC
lf(A,B) ®C lf(A,B X C)
A®B®C Tevm o A®BXC
AXBXC (4B XC | 49Bx%xC
l@(A X B, C) lA ® ®(B, ()
AXBXC AExo A®BXC
AXB®C VA XBO |, 4xBxcC
Pu3)®c lﬂAme
AXB®C

V(A xB, 0 AXBC

A Serre-fibration 7 : E — B with fibre F can always be replaced by a
“twisted Cartesian product” E = B X; F which is defined as follows, cf.
[21, [7]:

4.1 DerFiniTiON. Let B, F be simplicial sets and A a simplicial group acting
on F. By B X; F, where §: B, — A, is a given “twisting function” we
denote the simplicial set defined as follows:

(i) Asaset, (B X; F), is the Cartesian product B, X F,
@ii) The degeneracy operators are given by

8:(0, f) = (&b, &:f).
(iii) The face operators are given by
(b, f) = (0:d,0:f), i <nm
@b, £(0):04f), T=n

if beB,, feF,. Here £ has to satisfy two identities, namely
(iv) £(04d)0n1£() = £(On1bd), beB,
(v) &(syb) = theunit of A, if beB,.
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Remark. Here we give preferred treatment to the last face operator, as is
done in [8], and not to the first, as in [7]. This turns out to be the appro-
priate thing to do if we want to represent our fibration as Base X Fibre rather
than Fibre X Base. In order to use the theory of Chapter 3, we shall denote
the differential of B X; F by d; and that of B X F (untwisted) by d. Then,
writing ¢t = d; — d,

t(b, f) = (@a(b), (§(®) — 1):04f)), beBu,feFn.

‘We now introduce the usual ‘“‘Serre-filtrations” namely (&, f) e B X F has
filtration < p if b is the degeneration of an element of B, ; and

F,(B®F) = 2 :;,B; ® F.
4.2 LEMMA.
i) V@B, F),f(B,F), ®(B, F) are filtration-preserving.
(i) tF,(BX F)C Fp1(BXF)

Property (i) is well known (and trivial). Properly (ii) follows easily from
(v) in 4.1. Hence, using the notation of Chapter 3, an operator belonging
to I, will reduce filtration at least by =n; and therefore will be zero when
applied to an element of grading < n. The operators D,, V., f», ®, will
therefore, by 3.2, converge ag n — «, to operators D¢, V¢, fi, ®:. It will be
convenient to denote B ® F with the differential D; by B ®; FeC". We
summarise our result:

4.3 LEMMA.

Ve
B®5F;}_-’_B X F
¢

are chain-maps satisfying
feVe=B®F, Vifi=BXF + d® + & dy
where ®; is a chain-homotopy satisfying
Bife =0, frd =0, &P =0.

Now, let 3: B" — B be a map of simplicial sets; the twisted Cartesian
product B X; F induces the twisted Cartesian product B’ Xy F where £ = £8;
this takes the place of the induced fibration:

BxeF —2XF  pu.r

’
™ ™

B'—LB
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where (b, f) = b, «' (¥, f) = b’. Note that the map 8 X F is “un-

twisted”. It is evident that the operators of 4.3 are natural in relation to this

construction. We shall adhere to these notations for the rest of this chapter.
With the simplicial set B we agsociate the diagonal map

B—% .BXB, b ®b).
This turns B eC™ into a coalgebra, using the usual augmentation and
Vvs:B—>B®B
being defined as the composition

B pyp IBB) pep

More generally, we have the simplicial maps

o = (B' X 8)0sr : BB —>B" X B
and
o X F:B XgF—-)BIX (BX;F)

where, again, we note that the last map is ‘“untwisted”. From these maps we
form the compositions

¢ =f(B,B)y:B —-B ®B
which gives B’ the structure of a right B-comodule and
M=fB,BXF) XF):B X¢F—->B ® (BX;:F).

This is a chain map because f(B’, B X F) = f(B’, B Xy F); which is true
because f(X, Y) depends on the operators dy in ¥ only—and they are the
same for B X F and B X; F.

In the light of 4.3 we want to compare Ny with the map

N=0Q@®F:B Q®F—-B ® (B®F),
The first question which must be answered is whether \; is a chain-map at all:
44" LemMa. (de ® B® F + B’ ® D)\ = M Dy .
Next, to show the “equivalence” of A\; and A\; we must prove
4.5* Lemma. The following diagrams are commutative:

B ®F __ V¢ . p Xy F

) )

B'® (B®:F) -WB'@B)QF
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B @ F —3 B X.F
v b
F@@@JﬁHFEI—F®BXJ
B XeF —2 B X F
n v
B'® B X;F 7 ® o B ® BX:F

Proof of 44*. In the untwisted case—when £(b) is always the unit and

BX5F=BXF,D=dB®,——the
T=De—d3®p

we must prove (B’ ® T)\ = N\ T".
T=>,

T', it suffices to prove

B ® ya)he =

for all n. Consider the diagram

statement is true. Thus, writing

arnd T, = DE! _— dB'@p'l

Now, since in the notation of chapter 3,

n=1Yn Where y, = (B, F)t, V (B, F), and an analogous notation for

e yﬁ.

BerF

d XF

fB"B)®F

B XBQF

\%Km<n
'} F

V(B'XB,F) (2) B ®V(B,F)
f(B',B X F)

U

>B' ® B

[/
B XF———B XBXF

B ®BXF

yn | (5)

t,

E@@l

(6)

B ® ya

Ber

B' X F————>

d XF
/f(B', F) (3)

B XBXF

B®BQF

f(B', B X F)
lf(B' X B, F)

B ®BXF

(4) B ® f(B,§)

B@BQ®F

d®F

f(B,B)® F

In this diagram, (1) and (3) are commutative due to naturality; (2) and (4)

by 4.0; and (5) and (6) by definition.

Hence the outer rectangle will com-

mute—and that is the required result—if the inner one does. Now, since

tn+l

t® (B, F)ty, tny = t®(B, F, )tn,

it remains to prove that the inner rectangle will commute if tn , t» are replaced

either by ¢, ¢t or by ®(B’, F), ®(B, F).
B'® t)M

Now, the first of these assertions is
M ¢ and this follows—cf. the remarks after the definition of \;—



ON THE CHAIN-COMPLEX OF A FIBRATION 409

because
(B ® d)\ = Md and (B’ ® dg))q = N dp

are both true. For the second assertion, consider the diagram

! ’
BxF ZXF pypxp LBBXF) popyr
j@(B', @ l@(B’xB,m (8) JB'®<:><B,F>
4 i ’
B XF o_/xF’BXBXF f(B’,BXF) B ®BXF

where (7) commutes due to naturality, and (8) by 4.0. This completes the
proof of 4.4%,

The proofs of 4.5* are analogous.

If, in Definition 4.1 we replace F by the simplicial group A—operating on
itgelf by the group-action—we obtain the definition of the associated principal
twisted Cartesian product, cf. [7], denoted by B X A. We now consider the
simplicial maps

7t AXF—>F
i.e. the action of A on F, and

BX7:(BX:A)XF—BXF.
From these maps we form the compositions
r=7VA,F):A®F—F
which gives F the structure of a left A-module and
m= BXT)VIBXAF): BX;:A)®F—>BX;F.

This is a chain map, because V(B X A, F) = V(B X; 4, F); which is true
because V (X, Y) depends on degeneracy operators only—and they are the
same for B X F and B X; F.

In the light of 4.3 we want to compare u; with the map

pe=B®r): B®:A)® F—>B®:;F.

It is now clear that the situation is dual to that which leads to Lemmas 4.4*

4.5%,

44, LEMMA. u(D: ® F + B ® A ® dr) = D; s where D; denotes the
differentials of B ®;: A and B ®;¢ F.

4.54 LEMmMA. The following diagrams are commutative:
Bed)oF —8F  px.aeF

1 e

B®;F’—"—V—£—‘—->BX5F
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Be.AeF J®F pyAeF

I I

B®5F‘—fe—"BXgF

Bx;AeF —2®F  pyaeF

I »

B X F ——“E,E———’ B X:F
The proofs are dual to those of 4.4%, 4.5*,

Let us now substitute F = 4 and r = the multiplication of A in 4.4, ; and
B' = B, = B,¢ = £in 44" The lemmas then assert, cf. 2.1, in particular
14 and 1% in the proof, that B ® 4 is a principal twisted object. It follows,
from 2.2, 2.3 that D; = dpg + 2n where x = 2 (¢§) = j4 D¢ 4s. In the nota-
tion of 2.3 this can be written succinctly as B ® : A = Bz (£)A4.

From this result, 2.4 and 4.4, we deduce B ®; F = Bz (¢£)F which is the
theorem of E. H. Brown, cf. [1], [2].

Finally, from 4.4% 2.4™ and 2.6* we deduce that the chain-complex of the
induced fibration is given by the cotensor-product over B:

4.6™ ProposiTION. B’ ®y F = B’ ®® (B ®: F).

Dually, we have a proposition relating the chain-complex of a twisted
Cartesian product with that of the associated principal one:

4.6+« ProPoSITION. B®:F = (B®:A) ®4F.
5. Cotor

5.1. An element of ?I is called injective if it is a direct summand—in
P9t—of an “extended comodule” B ® F, F ¢ C™.
5.2. By C™ (B) we denote the category of negative complexes
X: XX 5. X" X"

consisting of objects and morphisms in ®a1t. They are called “negative” be-
cause of the usual notation X* = X_;, cf. [4]. We embed ®I0 in C” (B) by
regarding M e*Mas M —-0—0— ---. Amape: M — X of C"(B) is
called a resolution of M if

@) 0ﬁM——>X°—>X1——>--~issplitexactinC+
(i) X' (¢ > 0) is injective, cf. 5.1 above.
The two notions employed—namely what sort of sequences are considered as

exact and what are the injectives—are not independent; on the contrary, each
determines the other, cf. [6].
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5.3. The canonical resolution M — Ug (M ), cf. [4], [6], is defined as follows.

0—>M——-B®M=Us(M)" withe = ou.
We let Up(M)' = coker e—note that ®a1 has cokernels—and define
Us(M) = B® Us(M)"
Inductively, Us (M )™*" is defined by the exact sequence

0—UsM)—2 B ® Us(M)" — Us (M) — 0,

with Us(M)*™ = B ® Us(M)"*". Since the above sequence splits in C™,
we get a resolution. Note that, [0 again denoting the functor which forgets
the differentials of ®ont, if M, N ¢ 0 and OM = ON, then OUz (M) =
OUs(N).

54. Let M ¢ ®m. A filtration F, M on M in C™ is called a B-filtration
provided F.y M = 0, M = Uy<, F, M and o : M — B ® M is filtration-
preserving, where B ® M has the tensor product filtration and B the skeleton
filtration; cf. 6.3 in [6].

5.5. It is clear that a B-filtration on M can be extended in a canonical
way to a filtration on U (M ), i.e. a filtration on each Uz (M )* so that

Us(M)* — Us(M)™
i8 filtration-preserving,.

5.6. By C we denote the category of complexes
* __)Kn+l_)Kn’_‘)Kn—1_) v

over R. Let L e M®, M ¢ 90 and M — X be a resolution of M. We define
W (L, X) € C as follows:

WL, X)n = [I5=0 L ®® X )nss
where J] denotes the product and not, beware, the coproduct (sum).
du| (L ® X )i
is defined by d = d’ + d” where
& (L®° X )i — (L ®F X )npica
is induced by the differentials in L, X", and
4" (L®° XVpyi = (L ® " X )y
i8 defined by taking the map
(-1)’L, ® {X*—> X"} onL, ® X’
Denoting the homology-functor by H we define
Cotor® (L, M) = HW (L, X).
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For the usual invariance proofs, as well as the fact that we could just as well
have resolved L, or both L and M, see [4], [6]. Cotor is bigraded in the sense
that

Cotors (L, M) = H, W(L, X) = []p+g=n Cotors, , (L, M)

where Cotors,, (L, M) consists of those elements represented by cycles in
(L ® X ?),. Thus Cotory,, (L, M) = Ounlessp < 0, ¢ > 0.

5.7. B will be said to be connected if ¢ : By —R is an isomorphism; in that
case it is easy to deduce—irom the canonical resolution—that
Cotorn (L, M) = 0if n < 0; cf. [4, 6.2].

5.8. If M is injective, we can use 0 — M — M — 0 as the resolution of M,
and we get Cotor® (L, M) = HW (L, M) = H(L ®"® M).

5.9. Let ¢ : By — B; be a morphism of coalgebras, let L; e 91*¢, M, e >'on
¢=1,2)andletf: Li— Ly, g : My — M, be ¢-morphisms; assume further
that By, By, M1, M, are R-flat. If

H(¢): H(B))—~H(B:), H(f):H(L)—H(L), H(g):H(M1)— H (M)
are isomorphisms, then so is the induced morphism.

Cotor® (f, g) : Cotor® (L, M) — Cotor”® (Lz, M),
Cf. Theorem 7.1 in [4].

6. 1-trivial modules

6.1 DEFINITION. M € "0 will be called n-trivial if:
(i) OM = 0O (B® F)with FeC*;
(ii) If F, denotes the filtration of B ® F by B-degree (ie. F,(B® F) =
220B; ® F), then (dy — dsgr)Fp C Fpn-1.

We shall prove that if n > 1, n-trivial modules behave, to some extent, like
injective ones, cf. 5.8:

6.2 THEOREM. Let M ¢ " be 1-trivial and L e I0°. Then
H(L ® ®M) = Cotor® (L, M).
Proof. M is filtered as in 6.1; we filter L by
F,L = ¢7*(L ® F, B).

We filter L ® *M by L-degree, noting O (L ® ?M) € O(L ® F). The
filtration on M is a B-filtration and can be extended to Uz (M), cf. 5.5. The
filtrations can now, writing

F, W= H«+r—i$p F,L ®°F, UB(M)i:

be extended to W (L, Uz (M)). Now, for brevity, let us write Us(M) = U,
Us(B ® F) = Ug ; and let us call the differentials of W (L, U), W (L, Ug)
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D, Dg respectively. Then, cf. 5.3, OU = OUg and from

(dy — dpgr)Fp C Fpp
we easily deduce

(%) (D — Dg)F, C Fys.

Now, consider the diagram

W(L,B® F) —'— W(L, M)

|« g
W(L, Ug) —o W(L, U)

where 1%, j are the identities and u, v are induced by the resolutions. ¢, 7 do
not commute with the differentials. But due to (x) above, in the spectral
sequences induced by our filtrations, E*(3), E* (j) exist and are isomorphisms.
Since W(L, B ® F) = L ® F we see that the spectral sequences on the left
collapse and E’(u) is an isomorphism; indeed both terms are H(L ® F)
Hence E*(v) is an isomorphism.

But, the filtrations we have introduced are bicomplete, cf. [5], hence H (v)
is an isomorphism; since W (L, M) = L ®”° M, our theorem is proved.

6.3 Application. Suppose v : E — B is a Serre-filtration in which the ac-
tion of the fundamental group of B on the homotopy of the fibre is trivial;
then E can be replaced by B X F where £ : By — A, is trivial. It follows,
cf. Chapter 4 above, that z(¢£) : By — Ao is trivial. Hence, as is easily seen
(cf. [2, 10.3])

(D*® — dpor)Fy C Fys

in Proposition 4.6*. Applying 6.2 we obtain the theorem of Eilenberg, Moore
and Husemoller [4], [6], that in this case the homology of the fibration E’ in-
duced by g8 : B’ — B is given by

Cotor® (B’, B ®; F) = Cotor” (B, E).
The last identity follows from 4.5 and 5.9.
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