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1. Introduction

For each 2-cell D in Euclidean n-space E (n _> 3), no matter how wildly
embedded, there exist many essentially distinct mapsf of E to itself such that
each f is a homeomorphism of E D onto E f(D), f(D) is an arc, and
liD is related to a canonical projection map [7], [8], [15]. One might expect
the image arc to be quite tangled, for the wildness spread over the disk must
be compressed into a 1-dimensional set, but the wildness of the image may
turn out to be less complicated than that of the disk. In fact, in [7, p. 371]
and [8], examples are provided of a wild disk D in E (n 3 and n _> 5) and
a map of E to itself squeezing D to a tame arc. Theorem 3 of [15] indicates
that similar examples can be found in E.

Let A2 denote the 2-cell

E x y+
the 1-cell

{(x, o) < -<
and r the projection map of A onto hi sending (x, y) to (x, 0). Suppose D
is a disk in the interior of an n-manifold M. A map f of M to itself is said to
squeeze D to an arc A if and only if there exist homeomorphisms g. of h. onto
D and gl of 51 onto A f(D) such that fg gl and f is a homeomorphism
of M D onto M A. Observe that these conditions force f-(x) to be an
arc if x e Int A; otherwise f-l(x) is a singleton.
As another important property of the examples mentioned above, there also

exists a map of E" to itself squeezing D to a wild arc; hence, these examples
indicate that the arcs associated with any disk via squeezing maps need not be
equivalently embedded. One might ask whether the embedding of a disk
could be determined by studying its various images under such maps. The
purpose of this paper is to indicate why the question has a negative answer:
in case n 3 or n >_ 5 we give an example of a wild disk D in E such that
for every map f of E to itself squeezing D to an arc, f(D) is tame.
A map of E to itself that squeezes a disk to an arc satisfies the less re-

strictive definition of a cell-like (or UV) mapping. A map g of X onto Y is
cell-like if and only if each point preimage g-(y) can be embedded in some
Euclidean space as a cellular subset.
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Suppose X is a topological space, A a subset of X, and B a subset of A.
Then X A has property 1-UV at B if and only if for each open set U con-
raining B, there is an open set V containing B such that (1) V U and (2)
each loop in V A is null homotopic in U A. When B is a singleton set,
the assertion that X A has property 1-UV at B is equivalent to the asser-
tion that X A is locally simply connected (1-LC) at B.

If C is a cell, then Int C and BdC denote the interior and boundary of C,
respectively. The symbol C1 denotes the topological closure operator; the
symbol I, the unit interval. If X is a topological space and A a closed subset
of X, then X/A denotes the decomposition space associated with the upper
semicontinuous decomposition of X whose only nondegenerate element is A.

2. Characterizations of disks that squeeze only to tame arcs
PROPOSITION 2.1. Suppose D is a dis] in E’* (n >_ 5) and f a map of

to itself that squeezes D to an arc. The following statements are equivalent:
(1) For each p e f(D), E’* D has property 1-UV at ]"(p).
(2) For each p e f(D), E f(D) is 1-LC at p.
(3) I(D) is tame.

Proof. The equivalence of (1) and (2) follows from the continuity of f
and the requirement that f carry E D homeomorphically onto E" f(D).
That (2) implies (3) has been proved by Bryant and Seebeck [6, Th. 4.2].
Obviously, (3) implies (2).

THEORE 2.2. Let D be a disk in E (n >_ 5). The following statements are
equivalent"

(1) For each arc spanning D, E D has property 1-UV at .
(2) For each mapf ofE to itself squeezingD to an arc, E’* f D is 1-ULC.
(3) For each map f of E to itself squeezing D to an arc, f D is tame.

Since (2) and (3) are equivalent [6, Th. 4.2], Theorem 2.2 is a consequence
of the following result.

THEORE 2.3. Suppose D is a disk in E (n >_ 4). The following state-
ments are equivalent"

(1) For each arc spanning D, E’* D has property 1-UV at .
(2) For each map f of E to itself squeezing D to an arc, E’* f(D) is

1-ULC.

Proof. Assume (1) and let f be a map of E to itself squeezing D to an arc.
The argument given for Proposition 2.1 indicates that E f(D) is 1-LC at
each point of Int f(D), and one can easily show from this that E" f(D) is
1-LC at the endpoints of f(D). Thus, E f(D) is 1-ULC.

Assume (2), and let denote a spanning arc of D and U a neighborhood of. According to Theorem 3 of [14] in case n _> 5 and Theorem 2 of [15] in
case n 4, there exist tame arcs a and a in D f spanning D and such
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that the closure F of the component of D (a U .) containing f is a subset
of U. By shrinking a and to points and applying [8, Th. 2] or [15, Th. 3]
to the image of D, we obtain a map f of E onto itself squeezing D to an arc
such that, for i 1, 2, f() is a point. From the hypothesis that E f(D)
is 1-ULC one can establish easily the existence of a neighborhood V’ of Int
f(F) such that f-(V’) U and each loop in V’ f(D) is contractible in
f(U) f(D). Clearly, V f-(V’) is the neighborhood required to show
that E D has property 1-UV at ft.

PROPOSITION 2.4. Suppose D and D* denote disks in E such that D c Int
D* and D* is locally tame modulo D, and suppose f is a map of E to itself squeez-
ing D to an arc. The following statements are equivalent"

(1) For each p e f(D) E D* has property 1-UV atf-l(p).
(2) For each p f(D), E f(D*) is 1-LC at p.
(3) f(D*)istame.
(4) f(D) is tame.

Proof. The equivalence of (1) and (2) follows as in Proposition 2.1. Since
D* is locally tame at points of D* D, E f(D*) is 1-LC at each point of
f(D* D). Thus (2) gives that E f(D*) is 1-ULC, so (2) implies (3)
[4, Th. 8]. Obviously (3) implies both (2) and (4). Finally, (4) gives that
f(D*) is locally tame modulo a tame arc, which means that J(D*) is tame
[9, Th. 1].

TEOR 2.5. Suppose D and D* are disks in E such that D Int D* and
D* is locally tame modulo D. The following statements are equivalent:

(1) For each arc spanning D, E D* has property 1-UV at .
(2) For each map f ofE to itself squeezing D to an arc, J(D) is tame.

Proof. With [7, Th. 2’] and Proposition 2.4 in place of [8, Th. 2] and
Proposition 2.1, the argument almost parallels the one given for Theorem 2.2,
except that we must separately establish the following" if statement 1 holds,
then E D* is 1-LC at each point p of BdD. To do this, let U denote a
neighborhood of p. Choose an arc spanning D such that p and c U.
From (1) we see that p has a neighborhood V (V also contains ) such that
V U and each loop in V D* is nullhomotopie U D*.

3. Wild disks in E’ (n >_ 5)

Given Z Y X E" we say that loops near Y can be pushed towards Z
through E X if and only if for each neighborhood U of Y and W of Z there
exists a neighborhood V of Y such that to each loop J in V X there cor-
responds a map h of a disk with holes H into U X such that ,for one com-
ponent S of BdH, his defines J and h(BdH S) is contained in W X.
Suppose B is an arc in En-1 (n

_
4) such that En-1 B is 1-LC at the

endpoints of B and, for each subarc B’ of B and endpoint q of B’, loops near
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B’ can be pushed towards q through E-1 B.
D B XIinE-1 E E. Consider the disk

PROPOSITION" 3.1. E D is 1-LC at each point of BdD;

Proof. The proof is routine; at points of BdB Int I this result depends
on the assumption that E- B be 1-LC at the endpoints of B.

An arc a is D is said to be vertical if a p a’ for some p e B and a’ c I;
similarly, an arc a in D is said to be horizontal if a a X for some a’ c B
and e I. The following proposition is of an elementary nature, and we leave
its proof to the reader.

PROPOSITION" 3.2. If a is a horizontal or vertical arc in D and p is an endpoint
of , then loops near a can be pushed towards p through E’* D.

PROPOSITION" 3.3. If a is a spanning arc of D that is the finite union of
horizontal and vertical subarcs, then E D has property 1-UV at a.

Proof. Suppose a a (J a(J (Ja, where each a is either horizontal
or vertical in D, and a a+ p, an endpoint of each (i 1, ,/ 1).
Let p denote Bda p_. Let U be a neighborhood of a.

According to Proposition 3.1, pk has a neighborhood N such that each loop
in N D is null homotopic in U D. By Proposition 3.2 there exist
neighborhoods Ni of pi (i 1, ,/c 1) and V of a (i 1, ,/c), with
N c V+I, such that each loop in V D can be deformed in U D to the
union of loops in N D (i 1, k). Let V [JV. We assume that
Vi V iff li Jl -< 1 and that in this case V l V is connected. Then
each loop L in V D is homotopic (as in the definition at the beginning of this
section) in V D to the finite union of loops Lj such that each L. is con-
tained in some V (i 1, -.., k). But the L’s can be pushed through
U D into N D, then into N+ D, and ultimately into N D, at
which spot each of the resulting collection of loops can be contracted in
U D. Hence, E" D has property 1-UV at a.

PROPOSITION" 3.4.
at . For each arc spanning D, E D has property 1-UV

Proof. Let denote a spanning arc of D and U a neighborhood of . There
exist arcs a and a. spanning D such that a is the finite union of horizontal
and vertical subarcs (i 1, 2), (a (J a.) [’l , and C1F U, where F
denotes the component of D (a (.] a) containing . Observe that D is
cellular, since E D is homeomorphic to E (B X 0).

It follows from Proposition 3.3 that there exist neighborhoods W of a such
that any loop in W D is null homotopic in U D (i 1, 2). Assume
W1 CI W2 . Let Wo denote a neighborhood of F such that W0 CI D F
and W0 U. The cellularity of D implies C1F satisfies the cellularity cri-
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terion [13, Th. 1], so there exists another neighborhood V of C1F, with
V c W0 U W1 U W., such that each loop L in V D is null homotopic in
(W0 U W1 0 W2) C1F.
Unfortunately, the image of such a contraction may intersect D in a subset

of W U W2. To avoid this problem, from the domain of the contraction of
L we extract a disk with holes S such that the contraction h restricted to one
component J of BdS defines the loop L, h(S) ] D 0, and
h(BdS) J) c W 0 W2. By the construction of the W’s, each loop of
h(BdS J) is null homotopic in U D, and we can readily piece together
the desired contraction of L.

THEOREM 3.5. There exists an everywhere wild disk D in E (n >_ 5) such
that, for each map f ofE onto itself squeezingD to an arc, f(D) is tamely embedded.

Proof. To make use of the construction given at the beginning of this
section, we must find a wildly embedded arc B in E- such that E- B is
1-LC at the endpoints of B and, for each subarc B’ of B and endpoint q of B’,
loops near B’ can be pushed towards q through E-1 B. A method for
describing such arcs was first given by Brown [5]. The idea is to take a non-
cellular arc A in E-2 and define B as

<A> X I c En-/A X E1,
where <A> denotes the point corresponding to A in En-/A. It follows from
[2] that E-2/A X E is homeomorphic to E-1.

It is easy to show that E- B fails to be 1-LC at each point b of Int B,
and, therefore, E (B X I) fails to be 1-LC at each point (b, t) of B X I,
where b e Int B and e Int I. Consequently, the disk D B X I is every-
where wild. It is easy to show that B satisfies the properties mentioned in
the preceding paragraph. Hence, Proposition 3.4 and Theorem 2.2 imply
that for each map f of E to itself squeezing D to an arc, f(D) is tamely
embedded.
We conclude this section with the observation that these techniques can be

reapplied to prove the result stated below. Even in the case that g(D) is an
arc, Theorem 3.6 differs from Theorem 3.5 in that, unlike the squeezing maps,
no relation between glD and the proiection map r As -- A1 is required

TEOIE 3.6. Suppose D is a disk in E (n >_ 5) such that each map
squeezing D to an arc yields a ame arc, and suppose g is a cell-like map of E to
itself such that g is a homeomorphism of E D onto E g(D) and g(D) is a
finite graph. Then g(D is tamely embedded.

4. A wild disk in E

The purpose of this section is to establish the analogue of Theorem 3.5 for
n 3. We make extensive use of the construction methods first described by
Bing [3] and later altered by Gillman [10] and Alford [1]. None of their



64 ROBERT J. DA.VERMN

examples has the desired properties, so we must describe a new scheme for
hooking eyebolts.

THEOREM 4.1. There exists an everywhere wild disk D in E such that for each
map f of E to itself squeezing D to an arc, f(D is tamely embedded.

Proof. Part I. The example. Let D denote a planar square in E. Partition
D into subsquares {B.} using horizontal and vertical line segments that span
D, and enumerating as with matrix notation, so that B denotes the square
in the i row andj column of this partition.

From the center of each B erect a solid feeler with a solid loop at the far
end, as suggested in [1, 3, 10]. Denote this bent eyebolt emanating from
B as H, and place these eyebolts so that the loop of H+. . encircles the
stem of H. (Of course, it is understood that the eyebolts associated with
the top row of the partition, which have nothing to encircle, are allowed
simply to dangle in space.) See the figure. In referring to such a configura-
tion, we say the eyebolts link vertically pointing upward.
At the next stage we shall construct a configuration in which the eyebolts

link horizontally pointing to the right; at the third stage, the eyebolts will link
vertically pointing down; and at the fourth stage, horizontally pointing to the
left. In the remainder of the construction we shall build configurations of
eyebolts such that the linking pattern at the n stage will coincide with that
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of the jth stage above (1 _< j _< 4), where j -- n (modulo 4). We provide
the details for constructing the second stage.
As in [1], [3], [10], thicken B. slightly and let T B. [J H. The disk

D will be contained in UTo’. A slice is removed from the loop of each T to
form a topological cube K. Note that BdB separates BdKj into two
pieces, one of which has a hook in it. The interior of this hooked disk is
pushed slightly into Int K, so as to form a disk C which lies, except for its
boundary BdC BdB, in Int Tj. The disk D. UCo. is another ap-
proximation to our disk D.
Each of the C’s is partitioned into a subdivision of 13 disks, topologically

like the subdivision of the original square D in that rows and columns of disks
are employed, and such that along the boundaries of the C’s these sub-
divisions match up. The number 13 is chosen for the convenient correspond-
ence with the notation of [1]. Enumerate the disks {E} in the subdivision
of each C as before, such that those disks corresponding to the ends of the
slice removed from T. are the disks of the subdivision denoted as ET, and
7,9
From the center of each Em erect an eyeboltLm such that the loop ofL

encircles the stem of L, ,,,+1 and that, furthermore, the loop of L, 18 encircles
the stem of the L, associated with the disk to the right of E, . (Of course,
if no such disk exists, L. is not required to encircle anything.) Only one
other type of entangling, but of crucial importance for the wildness of the
limit, is required: the eyebolts L7, and L, (associated with each C) are
entangled in the same manner as (in the notation of [1]) the eyebolts T and
T9 are entangled, which is depicted in [1, Figure 4]. The configuration in
any one of the C’s consists of one row, the middle one, which looks just like
the string of eyebolts of [1, Figure 4] and twelve other rows which run essen-
tially parallel to the middle row, but for which there is no entangling in the
slice removed from the outer eyebolt; instead, these twelve rows appear as
strings of horizontal eyebolts similar to the strings of vertical eyebolts pictured
in the figure, with some additional bending resulting from the hook in C.
The eyebolts run so close to C. that

12U_x L, :: T and L, 18 c:: Tj U T, ++.

For the next stage, we repeat the construction outlined in the four pre-
ceding paragraphs to obtain a configuration of eyebolts that link vertically
pointing downward. The special entangling is most easily handled by de-
fining subdivisions so that all those disks corresponding to the ends of the
removed slices lie in the seventh columns and in either the fifth or ninth rows
of the subdivisions.
To be sure, we must make other restrictions to guarantee that the limit of

D, D, is a disk D. Such restrictions are discussed extensively in [3],
[10], and we omit these details, being content with the mention of the unusual
aspects of our construction. Note that each stage in this process can be
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placed essentially above the plane of D1 consequently, we may assume that
D is contained in the interior of a disk D* which is locally tame modulo D.

Part II. Properties of D. With the techniques of [3, Section 7] one can give
a straightforward proof that E D fails to be 1-LC at each point of Int D.
Hence, D is wildly embedded.
We call an arc A in D vertical (horizontal) if, for each positive integer i,

there exist two columns (rows) of the partition of D such that A is contained
in the union of all those thickened disks, together with their associated eye-
bolts, in the subdivision from the two columns (rows).
Under this interpretation of vertical and horizontal, we can obtain the

analogue of Proposition 3.2 for this example by simply looking at the appro-
priate subsequence of defining stages. For instance, if A is a horizontal
subarc of D and p is the right endpoint of A, then we look at stages 2, 6,
4n W 2, to see that loops near A can be pushed towards p through E D*.
Similarly, we look at the appropriate subsequences to show that E D* is
1-LC at points of BdD.
The rest of the proof of Theorem 4.1 proceeds through analogues of Proposi-

tions 3.3 and 3.4, exactly as in Section 3, and ends with an appeal to Theorem
2.5.

THEOREM 4.2. Suppose D is a disk in E such that each map of E to itself
squeezing D to an arc yields a tame arc, and suppose g is a cell-like mapping of
E to itself such that g is a homeomorphism of E D onto E g(D) and
g(D) is a finite graph. Then g(D) is tamely embedded.

Provided the usual disk D* exists, this result, the obvious parallel to Theorem
3.6, has a relatively easy proof. Without this hypothesis, however, the proof
involves more technicalities than we wish to describe here. The key to the
argument is Theorem 1 of [12]. Methods of this paper can be used to prove
that E g(D) satisfies the 1-FLG property described in [12], and some of
the messier 3-space techniques, combined with [7, Th. 2’], can be used to show
that g(D) pierces disks at each point of a subset dense in g(D).

5. Generalizations to/-cells in E"
A natural question begs some consideration" for which combinations of

positive integers j tc

_
n can we find a wildly embedded k-cell K in E such

that every map of E to itself squeezing K to a j-cell yields a tame j-cell? (We
leave the definition of such a map to the reader.) With techniques very
similar to those used in this paper, one can prove that this question has an
affirmative answer if 1

_
j / n and n >_ 5. On the other hand, Propo-

sitions 2.1 and 3.1 carry the warning not to expect the same answer when
k n, and the situation when/c n 3 bears this out.

THEORE 5.1. A necessary and sucient condition for a 3-cell K in E to be
tame is that for each map f of E to itself squeezing K to an arc, f(K) is tame.

Proof. As remarked in [7, p. 371], the necessity follows from known results.
To prove sufficiency, one must observe that, although it is not stated in the



WILD DISKS IN E 677

hypothesis of Theorem 3 of [7], for each p e BdK there exists a map f squeezing
K to an arc such that f(p) is an endpoint of f(K). Clearly, the tameness of
f(K) implies that E K is 1-LC at p. It follows from [4, Th. 2] that the
condition is sufficient.

Remark. The result above also holds for maps squeezing the 3-cell K to
2-cells. For purposes of comparison it may be of some value to observe that,
according to Bing’s 1-ULC condition, if there exists one map f of E to itself
squeezing K to a tame 2-cell, then K is tame.
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