WEAKLY SEMI-COMPLETELY CONTINUOUS A^* -ALGEBRAS

BY

B. J. TOMIUK AND PAK-KEN WONG

1. Introduction

A Banach algebra A is called weakly semi-completely continuous (w.s.c.c.), if, for every element $a \\ \epsilon A$, the mapping $T_a : x \rightarrow axa$ ($x \\ \epsilon A$) is a weakly completely continuous operator on A, i.e., if T_a maps bounded sets into sets which are relatively compact in the weak topology $\sigma(A, A')$, where A' is the conjugate space of A. Ogasawara and Yoshinaga [8] have studied weakly completely continuous (w.c.c.) Banach^{*}-algebras and Alexander [1] developed a theory of compact Banach algebras (which we call semi-completely continuous or briefly s.c.c. algebras). It is thus natural to have a look at w.s.c.c. Banach algebras and to see how they are related to s.c.c. and w.c.c. Banach algebras. We confine our study of w.s.c.c. Banach algebras to A^* -algebras with the k-property, i.e. A^* -algebras A for which there exists a constant k such that $||xy|| \leq k ||x|| ||y||$ for all $x, y \\ \epsilon A$.

In §4 we show that a w.s.c.c. A^* -algebra with the k-property and an identity element is finite dimensional. Using this fact we prove that an A^* -algebra with the k-property which contains non-zero w.s.c.c. elements contains minimal idempotents. In §5 we study the relationship between s.c.c. and w.s.c.c. A^* -algebras with the k-property. A B^* -algebra is s.c.c. if and only if it is w.s.c.c. If A is an A^* -algebra with the k-property and \mathfrak{A} is its completion than A is w.s.c.c. if and only if \mathfrak{A} is w.s.c.c. If A is a commutative A^* -algebra with the k-property then A is s.c.c. if and only if it is w.s.c.c.

Section 6 is devoted to the study of modular annihilator Banach algebras from the point of view of s.c.c. and w.s.c.c. Banach algebras. For example we show that if A is a semi-simple Banach algebra, then A is modular annihilator if and only if for every maximal modular left (right) ideal M there exists a right (left) identity u for A modulo M such that u is an s.c.c. element of A(Theorem 6.2). Thus, in particular, every s.c.c. Banach algebra is modular annihilator. If A is an A^* -algebra with the k-property then A is modular annihilator if and only if A is w.s.c.c. (Theorem 6.7). We also show that an A^* -algebra A is modular annihilator if and only if every maximal commutative *-subalgebra of A is modular annihilator.

2. Preliminaries

All algebras and vector spaces under consideration are over the complex field C. A Banach algebra with an involution $x \to x^*$ is called a Banach *-algebra. A Banach *-algebra A is a B^* -algebra if the norm and the involution satisfy the condition $||x^*x|| = ||x||^2$, $x \in A$. If A is a Banach *-algebra

Received June 18, 1970.

on which there is defined a second norm $|\cdot|$ which satisfies, in addition to the multiplicative condition $|xy| \ge |x||y|$, the B^* -algebra condition $|x^*x| = |x|^2$, then A is called an A *-algebra. The norm $|\cdot|$ is called an auxiliary norm on A, and $|\cdot| \le \beta ||\cdot||$ for some constant $\beta > 0$ [9; p. 187]. An element x of an A^* -algebra is called normal if $x^*x = xx^*$.

Let A be an A^{*}-algebra with the k-property. Than A has a unique auxiliary norm topology [8; p. 18, Theorem 3] and hence can be embedded as a dense subalgebra in a unique (up to *-isomorphism) B^{*}-algebra \mathfrak{A} . We refer to the algebra \mathfrak{A} as the *completion* of A. It follows that A is a dense two-sided ideal of \mathfrak{A} [8; p. 17, Lemma 3] and $||xy|| \leq k ||x|| |y|$ for all $x \in A, y \in \mathfrak{A}$. Conversely, if A is an A^{*}-algebra which is a dense two-sided ideal of the B^{*}-algebra \mathfrak{A} then A has the k-property [8; p. 18, Lemma 4]. Thus the k-property characterizes those A^{*}-algebras which are dense two-sided ideals of B^{*}-algebras.

Let A be a Banach algebra. An element $a \\ \epsilon A$ is called completely continuous (c.c.) if the mappings $x \rightarrow ax$ and $x \rightarrow xa$ are completely continuous operators on A. An element $a \\ \epsilon A$ is called semi-completely continuous (s.c.c.) if the mapping $x \rightarrow axa$ is a completely continuous operator on A. (In [1] such an element is called compact.) It is clear that if a is c.c. then it is s.c.c., but the converse is not true as is shown in [1]. An element $a \\ \epsilon A$ is called weakly completely continuous (w.c.c.) if the mappings $x \rightarrow ax$ and $x \rightarrow xa$ are weakly completely continuous operators on A. An element $a \\ \epsilon A$ is called weakly semi-completely continuous (w.s.c.) if the mapping $x \rightarrow axa$ is a weakly completely continuous operator on A. If every element of a Banach algebra A is c.c. (resp. s.c.c., w.c.c. or w.s.c.c.) we say that A is a c.c. (resp. s.c.c., w.c.c. or w.s.c.c.) algebra.

Since every norm-closed subspace of a Banach space is weakly closed [7; p. 422, Theorem 13], it follows that every closed left (right) ideal of a Banach algebra is weakly closed.

For any subset S of an algebra A, let $l_A(S)$ and $r_A(S)$ be respectively the left and right annihilators of S in A. An algebra A is modular annihilator if every maximal modular left (right) ideal of A has a non-zero right (left) annihilator. A Banach algebra A is an annihilator algebra if for every closed left ideal J and for every closed right ideal R we have $r_A(J) = (0)$ if and only if J = A and $l_A(R) = (0)$ if and only if R = A. It is a dual algebra if $l_A(r_A(J)) = J$ and $r_A(l_A(R) = R$ for every closed left ideal J and for every closed right ideal R of A.

If S is a subset of a Banach algebra A, $cl_A(S)$ will denote the closure of S in A. For all other concepts used in this paper see [9].

3. Some lemmas

LEMMA 3.1. Let A be a w.s.c.c. Banach algebra. Then every closed subalgebra B of A is w.s.c.c. If I is a closed two-sided ideal of A, then A/I is a w.s.c.c. Banach algebra.

Proof. Let $x \in B$ and let $\{x_n\}$ be a bounded sequence in B. Since x is a w.s.c.c. element of A, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and an element $y \in A$ such that $\{xx_{n_k}x\}$ converges weakly to y. But B is weakly closed and every continuous linear functional on B has a continuous linear extension to A. Hence $y \in B$, and so B is w.s.c.c.

Now let I be a closed two-sided ideal of A, [x] an element of A/I and $\{[x_n]\}$ a bounded sequence in A/I, say $|| [x_n] || \le k$ $(n = 1, 2, \dots)$. We can clearly choose a representative element x_n of $[x_n]$ such that $|| x_n || \le 2k$ $(n = 1, 2, \dots)$. Let x be any representative of [x]. Since x is w.s.c.c., there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{xx_{n_k}x\}$ converges weakly to an element y in A. Since the conjugate space of A/I is isometrically isomorphic to

$$I^0 = \{f \in A' : f(x) = 0 \text{ for all } x \in I\},\$$

 $\{[x][x_{n_k}][x]\}$ converges weakly to [y] in A/I. Hence A/I is w.s.c.c.

LEMMA 3.2. Let A be a semi-simple Banach algebra. Then every element of the socle of A is w.s.c.c. In particular, if A has dense socle, then A is a w.s.c.c. algebra.

Proof. Since every s.c.c. element of A is w.s.c.c., it follows from [1; p. 14, Theorem 7.2] that the socle S_A of A consists of w.s.c.c. elements. If $cl_A(S_A) = A$, then A is s.c.c. by [1; p. 15, Theorem 7.3] and so w.s.c.c.

4. Existence of minimal idempotents

LEMMA 4.1. Let A be an A^* -algebra with the k-property. Then every closed left (right) ideal of A which contains a non-zero w.s.c.c. element contains a w.s.c.c. idempotent.

Proof. Let J be a closed left ideal of A which contains a non-zero w.s.c.c. element. Then J clearly contains a self-adjoint w.s.c.c. element, say a, such that |a| = 1. Then

$$||a^{2^{n}}|| \leq k ||a^{2}|| |a^{2^{n-1}}| \leq k ||a^{2}|| \qquad (n = 1, 2, \cdots).$$

Let $S = \{a^4, a^8, a^{16}, \dots\}$ and let G(a) be the set of all weak adherent points of S, i.e., the set of points z such that every weak neighborhood of each zcontains some a^{2^n} for arbitrarily large n. Since S is contained in the set $\{axa : x \in A \text{ and } || x || \leq k\}$ whose weak closure is compact, by [7; p. 430, Theorem 1], G(a) is not empty and every subsequence of S contains a subsequence which converges weakly to an element of G(a). Moreover, it is easy to see that, for every $z \in G(a)$, there is a subsequence of S which converges weakly to z. (See the proof of [10, Lemma 3.1].) We show now that G(a)contains non-zero elements. Let B be the closed *-subalgebra of A generated by a and let \mathfrak{B} be the completion of B in the norm $|\cdot|$. It is clear that \mathfrak{B} is a commutative B^* -algebra and that B is dense in \mathfrak{B} . Since |a| = 1, it is easy to see that there exists a multiplicative linear functional f on \mathfrak{B} such that |f(a)| = 1. Let f' = f | B, the restriction of f to B. Then f' is a multiplicative linear functional on B and hence continuous. Let $g \in A'$ be an extension of f' to all of A with ||g|| = ||f'||. Then $|g(a^{2^n})| = 1$ for all $n = 0, 1, 2, \cdots$. Thus G(a) contains non-zero elements. By the argument given in the proof of [5; p. 180, Theorem 4], G(a) is a group. Let u be the identity of G(a). Then $u \neq 0$, $u^2 = u$, and since $a^* = a$, $u^* = u$. Since J is weakly closed, $u \in J$.

THEOREM 4.2 Let A be an A^* -algebra with the k-property and an identity element. If A is w.s.c.c. then A is finite dimensional.

Proof. Let B be a maximal commutative *-subalgebra of A. By Lemma 3.2, B is w.s.c.c. Let M be a maximal closed ideal of B and let $\{u_{\alpha}\}$ be a maximal orthogonal family of non-zero self-adjoint idempotents in M; $\{u_{\alpha}\}$ is not empty by Lemma 4.1. Let Q be the set of all elements $u \in B$ which are finite sums of elements from $\{u_{\alpha}\}$. Let e denote the identity of A; clearly $e \in B$. Since $eu_{\alpha} = u_{\alpha}$ for all α , we have

$$|| u_{\alpha_1} + \cdots + u_{\alpha_n} || \le k || e || |u_{\alpha_1} + \cdots + u_{\alpha_n} |\le k || e ||.$$

Thus Q is bounded and since e is w.s.c.c., Q has a weak adherent point, say q. It is easy to see that q is the only weak adherent point of $Q, q \neq 0, q^2 = q$ and $q \in M$. Moreover, $u_{\alpha} q = u_{\alpha}$ for all α so that $u_{\alpha}(e - q) = 0$ for all α . Since $e \notin M, e - q$ is a non-zero self-adjoint idempotent which is orthogonal to all u_{α} . We claim that $M \cap B(e - q) = (0)$. In fact, let $I = M \cap B(e - q)$ and suppose that $I \neq (0)$. Then, by Lemma 4.1, I contains a non-zero self-adjoint idempotent, say v. Since v = v(e - q), we have $vu_{\alpha} = 0$ for all α . As $v \in M$, this shows that $\{u_{\alpha}\}$ is not a maximal orthogonal family of self-adjoint idempotents in M; a contradiction. Hence I = (0) and consequently e - q is a minimal idempotent of B. Since B(e - q) + Bq = B and $Bq \subset M$, we have

$$M = Bq = \{x - x(e - q) : x \in B\}.$$

Thus every maximal closed ideal M of B is an annihilator ideal and consequently the carrier space Ω of B is discrete. Since B has an identity element, Ω is compact and therefore a finite set. Hence B is finite dimensional. Let $\{e_1, e_2, \dots, e_n\}$ be the set of all self-adjoint minimal idempotents in B. It is easy to see that $\{e_1, e_2, \dots, e_n\}$ is a maximal orthogonal family of self-adjoint minimal idempotents in A and $e = e_1 + \dots + e_n$. Hence $A = \sum_{i,j=1}^{n} e_i A e_j$ and, since $e_i A e_j$ is one dimensional for all $i, j = 1, 2, \dots, n$ [1; p. 13, Lemma 7.1], it follows that A is finite dimensional.

COROLLARY 4.3. A w.s.c.c. B^* -algebra with identity is finite dimensional.

COROLLARY 4.4. Let A be an A^* -algebra with the k-property. Then every closed left (right) ideal of A which contains a non-zero w.s.c.c. element contains a minimal idempotent (which is w.s.c.c.).

Proof. Let J be a closed left ideal of A which contains a non-zero w.s.c.c. element. Then, by Lemma 4.1, J contains a w.s.c.c. self-adjoint idempotent $u \neq 0$. Since B = uAu is a w.s.c.c. A^* -algebra with k-property and an identity element u, by Theorem 4.2, B contains a self-adjoint minimal idempotent, say e. Since eAe = euAue = eBe, e is also a minimal idempotent of A. Clearly $e \in J$. A similar proof holds for a closed right ideal of A which contains a non-zero w.s.c.c. element.

5. w.s.c.c. A^* -algebras

LEMMA 5.1. Let A be an A^* -algebra with the k-property and let M be a maximal modular left ideal of A. Then $r_A(M) \neq (0)$ if and only if there exists a right identity u for A modulo M which is a normal w.s.c.c. element of A.

Proof. Suppose that u is a normal w.s.c.c. right identity modulo M. Let B be a maximal commutative *-subalgebra of A containing u. Since B has the k-property and u is a w.s.c.c. element of B, by Corollary 4.4, B contains self-adjoint minimal idempotents. We claim that there exists a self-adjoint minimal idempotent in B which does not belong to M. Suppose that this is not true. Then $B \cap M$ is a non-zero modular ideal of B. Let M' be a maximal modular ideal of B containing $M \cap B$. Then M' contains all the self-adjoint minimal idempotents of B. Let $\{e_{\alpha}\}$ be a maximal orthogonal family of self-adjoint minimal idempotents in M', and let Q be the set of all elements of B which are finite sums of elements from $\{e_{\alpha}\}$. Then uQu is a bounded net and, since u is w.s.c.c., u^2Qu^2 converges weakly to a unique element v', say. Let $v = u^4$. It is clear that v is an identity modulo M' and that $v - v' \neq 0$ since $v \notin M'$ and $v' \notin M'$. Moreover, it is easy to see that $(v - v')e_{\alpha} = 0$ for all α . Let J be the closure of B(v - v') in B. Then $Je_{\alpha} = (0)$ for all α . Hence if $J \cap M' \neq (0)$ then there would exist a selfadjoint minimal idempotent in $J \cap M'$ which would be orthogonal to all e_{α} , contradicting the maximality of the family $\{e_{\alpha}\}$ in M'. Thus $J \cap M' = (0)$ and, since $J \neq (0)$, this shows that there exists a self-adjoint minimal idempotent e in B which does not belong to M' and consequently does not belong to M. Since e is also a minimal idempotent of A, we have $M \cap Ae = (0)$ and, since M is a maximal left ideal of A, we see that M + Ae = A. It now follows that $M = \{x - xe : x \in A\}$ and $r_A(M) = eA$. (See the proof of [12; p. 38, Lemma 3.3].)

Now suppose that M is a maximal modular left ideal for which $r_A(M) \neq (0)$, and let $R = r_A(M)$. Then $R^* \cap M = (0)$; for if $x \in R^* \cap M$, then $x^* \in R$ and $xx^* = 0$ which implies that x = 0. Since M is maximal, we have $M + R^*$ = A. Thus R^* is a minimal left ideal and therefore of the form Ae, where e is a self-adjoint minimal idempotent. Thus R = eA and $M = \{x - xe : x \in A\}$, where e is a normal w.s.c.c. element of A.

THEOREM 5.2. Let A be a B^* -algebra. Then A is w.s.c.c. if and only if A is dual.

Proof. Suppose A is w.s.c.c. Let M be a maximal modular left ideal of A

and u a right identity for A modulo M. Since $u + u^*(1 - u)$ is also a right identity for A modulo M [9; p. 42] which is self-adjoint and w.s.c.c., by Lemma 5.1, $r_A(M) \neq (0)$. Applying the continuity of the involution, we see that Ais modular annihilator and therefore, by [12; p. 42, Theorem 4.1], A is dual. (Duality of A also follows from [6; p. 48, Théorème (2.9.5)] since every maximal modular left (right) ideal of A is an annihilator ideal.) Conversely, if A is dual then it has dense socle and therefore is w.s.c.c. by Lemma 3.2.

COROLLARY 5.3. A B^{*}-algebra A is s.c.c. if and only if it is w.s.c.c.

Proof. Clearly if A is s.c.c. then it is w.s.c.c. The converse follows from Theorem 5.2 and the fact that a dual B^* -algebra is s.c.c.

Let A be an A^* -algebra with the k-property and \mathfrak{A} the completion of A; Ais a dense two-sided ideal of \mathfrak{A} . For each $x \in A$ and $f \in A'$, let $x \circ f$ and $f \circ x$ be the linear functionals on \mathfrak{A} defined by $(x \circ f)y = f(yx)$ and $(f \circ x)y = f(xy)$ for all $y \in \mathfrak{A}$. Since $||xy|| \leq k ||x|| |y|$ for all $x \in A$ and $y \in \mathfrak{A}$, they are continuous linear functionals on \mathfrak{A} . Similarly, for $x \in \mathfrak{A}$ and $F \in \mathfrak{A}'$, we define $x \circ F$ and $F \circ x$, which are clearly continuous linear functionals on \mathfrak{A} . Their restrictions $(x \circ F)_A$ and $(F \circ x)_A$ to A are also continuous linear functionals on A. In fact, if $y \in A$, then

$$|(F \circ x)_A y| = |F(xy)| \le |F| |xy| \le \beta |F| ||xy|| \le k\beta |F| ||x|||y||$$

where |F| denotes the bound of F in \mathfrak{A} . Similarly we can show that $(x \circ F)_A$ is continuous on A with respect to the norm $\|\cdot\|$.

THEOREM 5.4. Let A be an A^* -algebra with the k-property and \mathfrak{A} the completion of A. Then A is w.s.c.c. if and only if \mathfrak{A} is w.s.c.c.

Proof. Suppose that A is w.s.c.c. Let $\{x_n\}$ be a bounded sequence in \mathfrak{A} and let $x \in A$. Since $||xx_n|| \leq k ||x|| |x_n|$, $\{xx_n\}$ is a bounded sequence in A and, since A is w.s.c.c., there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and an element $z \in A$ such that, for all $f \in A'$,

$$f(x^2 x_{n_k} x) \to f(z).$$

Since $(x \circ F)_A \epsilon A'$, for all $F \epsilon \mathfrak{A}'$, we have

$$F(x^2 x_{n_k} x^2) = (x \circ F)_A(x^2 x_{n_k} x) \longrightarrow (x \circ F)_A(z) = F(zx).$$

Thus x^2 is a w.s.c.c. element of \mathfrak{A} . Now every self-adjoint element of \mathfrak{A} is the limit of a sequence of self-adjoint elements of A. Since every positive element a of \mathfrak{A} is of the form $a = b^2$, where b is a self-adjoint element of \mathfrak{A} , it follows that every positive element of \mathfrak{A} is w.s.c.c. In fact, let a be a positive element of \mathfrak{A} , $\{a_n\}$ a sequence of positive elements in A such that $|a_n - a| \to 0, T_a : x \to axa$ and $T_{a_n} : x \to a_n xa_n (x \in A)$. Then the operator bound

$$|T_a - T_{a_n}| \leq |a - a_n| [|a_n| + |a|];$$

so that $T_{a_n} \to T_a$. Since each a_n is a w.s.c.c. element of A, it follows from

[7; p. 483, Corollary 4] that a is w.s.c.c. Now let \mathfrak{M} be a maximal modular left ideal of \mathfrak{A} and let u be a right identity for \mathfrak{A} modulo \mathfrak{M} . We may assume that $u^* = u$; otherwise we take $u + u^*(1 - u)$ for a right identity modulo \mathfrak{M} . Then u^2 is positive and a right identity modulo \mathfrak{M} . Since u^2 is w.s.c.c., by Lemma 5.1, $r_{\mathfrak{A}}(\mathfrak{M}) \neq (0)$. Thus \mathfrak{A} is modular annihilator and hence dual. Therefore, by Theorem 5.2, \mathfrak{A} is w.s.c.c.

Conversely, suppose that \mathfrak{A} is w.s.c.c. By Theorem 5.2, \mathfrak{A} is dual and hence w.c.c. [8; 21 Theorem 6]. Let $x \in A$ and let $\{x_n\}$ be a bounded sequence in A. Then $\{x_n\}$ is also a bounded sequence in \mathfrak{A} and hence, since \mathfrak{A} is w.c.c., there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ and an element $z \in \mathfrak{A}$ such that $F(x_{n_k}x) \to$ F(z) for all $F \in \mathfrak{A}'$. Now, for all $f \in A', f \circ x \in \mathfrak{A}'$ and so

$$f(xx_{n_k}x) = (f \circ x)(x_{n_k}x) \longrightarrow (f \circ x)(z) = f(xz),$$

for all $f \in A'$. Since $x \in A$, $xz \in A$ so that $\{xx_{n_k} x\}$ converges weakly to an element in A. Thus A is w.s.c.c.

THEOREM 5.5. Let A be a w.s.c.c. A^* -algebra with the k-property. If, for every $x \in A$, x belongs to the closure of Ax, then A is dual.

Proof. Let \mathfrak{A} be the completion of A. Then, by Theorems 5.2 and 5.4, \mathfrak{A} is dual. Since A is a dense two-sided ideal of \mathfrak{A} , [8; p. 28, Lemma 8] shows that A is dual.

THEOREM 5.6. Let A be a commutative A^* -algebra with the k-property. Then A is s.c.c. if and only if A is w.s.c.c.

Proof. If A is s.c.c. then it is clearly w.s.c.c. So suppose now that A is w.s.c.c. Then the completion \mathfrak{A} of A is a dual commutative B^* -algebra and hence c.c. Let $\{x_n\}$ be a bounded sequence in A and let $x \in A$. Since $\{x_n\}$ is bounded in the norm $|\cdot|$ and since \mathfrak{A} is c.c., there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{xx_{n_k}\}$ converges to an element $y \in \mathfrak{A}$ in the norm $|\cdot|$. But $yx \in A$ and so, by the k-property, $\{xx_{n_k}x\}$ converges to yx in the norm $||\cdot||$. Hence A is s.c.c.

6. Modular annihilator Banach algebras

LEMMA 6.1. Let A be a semi-simple Banach algebra. Then every idempotent which is an s.c.c. element of A belongs to the socle of A.

Proof. Let e be an idempotent which is s.c.c. Then B = eAe is a finitedimensional Banach algebra with identity e. Since A is semi-simple, B is also semi-simple (see [1; p. 6, Lemma 4.5]). Hence $e = e_1 + \cdots + e_n$, where e_i are minimal idempotents of B $(i = 1, 2, \dots, n)$. Since $e_i Ae_i =$ $e_i eAee_i = e_i Be_i = Ce_i$, each e_i also a minimal idempotent of A. Hence e belongs to the socle of A.

THEOREM 6.2. Let A be a semi-simple Banach algebra. Then A is a modular annihilator algebra if and only if, for every maximal modular left (right) ideal

M of A, there is a right (left) identity for A modulo M which is an s.c.c. element of A.

Proof. If A is a modular annihilator algebra, then every maximal modular left ideal M of A is of the form $M = \{x - xe : x \in A\}$, where e is a minimal idempotent. By [1; p. 14, Theorem 7.4], e is s.c.c. A similar statement holds for maximal modular right ideals of A. To prove the converse, let M be a maximal modular left ideal and let u be a right identity modulo M which is Let B be the closed subalgebra of A generated by u. That is, B is the s.c.c. closure of the algebra of all polynomials of the form $\alpha_1 u + \alpha_2 u^2 + \cdots + \alpha_n u^n$, where n is an arbitrary positive integer. B is a non-radical s.c.c. Banach Now $M \cap B$ is a modular ideal of B and so can be extended to a algebra. maximal modular ideal M' of B with u being an identity for B modulo M'. Since the carrier space of B is discrete [1; p. 10, Theorem 6.6], there exists an idempotent $e \in B$ such that $e \notin M'$ [9; p. 168, Theorem (3.6.3)], and hence $e \notin M$. But e is an s.c.c. element of A. Therefore, by Lemma 6.1, there exists a minimal idempotent e_1 in A such that $e_1 \notin M$. The argument in the proof of Lemma 5.1 now shows that $r_A(M) \neq (0)$. A similar proof holds for a maximal modular right ideal of A. Thus A is modular annihilator.

THEOREM 6.3. Let A be an A^* -algebra. Then A is a modular annihilator algebra if and only if every maximal communitative *-subalgebra of A is a modular annihilator algebra.

Proof. If A is modular annihilator then, by [3; p. 517, Corollary], every maximal commutative *-subalgebra B of A is modular annihilator. Another proof of this fact can be given as follows: Let \mathfrak{A} be the completion of A in an auxiliary norm. (In [11] it is shown that \mathfrak{A} is unique up to *-isomorphism.) Since A has dense socle [2; p. 287, Lemma 2.6], A is dual. Let B be the closure of B in \mathfrak{A} ; \mathfrak{B} is a dual *-subalgebra of \mathfrak{A} . For any $x \in B$, let $Sp_A(x)$, $Sp_B(x)$ and $Sp_{\mathfrak{A}}(x)$ denote the spectrum of x in A, B and \mathfrak{A} respectively. Since B is maximal in A, $Sp_B(x) = Sp_A(x)$ and hence, since $|\cdot|$ is a Q-norm on A, it is also a Q-norm on B. (See [2; p. 285, Lemma 1.2].) Thus if M is a maximal modular ideal of B then M is closed with respect to $|\cdot|$ in B. Let u be an identity for B modulo M. Than u can be written in the form $u = \sum_{\alpha} \lambda_{\alpha} e_{\alpha}$, where $\{e_{\alpha}\}$ is the maximal orthogonal family of self-adjoint minimal idempotents in \mathfrak{B} ; $\sum_{\alpha} \lambda_{\alpha} e_{\alpha}$ converges to u in the norm $|\cdot|$. (See the proof of [8; p. 21, Theorem 6].) But A is a modular annihilator *-subalgebra of \mathfrak{A} and $Sp_{\mathfrak{A}}(u) \subseteq Sp_A(u)$. Hence, by [2; p. 287, Lemma 2.5], every $e_{\alpha} \in A$ and so every $e_{\alpha} \in A \cap \mathfrak{B} = B$; moreover every e_{α} is a minimal idempotent of A. Since $u \notin M$ and M is closed in $|\cdot|$, it follows that there exists at least one $e_{\alpha} \notin M$. Hence $l_B(M) = r_B(M) \neq (0)$ and consequently B is modular annihilator.

To prove the converse, let M be a maximal modular left ideal of A and u a right identity modulo M. We may assume that $u^* = u$; otherwise we take $u + u^*(1 - u)$. Let B be a maximal commutative *-subalgebra of A con-

taining u. Since $M \cap B$ is a modular ideal of B and B is a modular annihilator algebra, there exists a minimal idempotent e in B such that $e \notin M \cap B$. But this means that e is a minimal idempotent of A and $e \notin M$. Hence $r_A(M) \neq (0)$. The continuity of the involution now completes the proof.

COROLLARY 6.4. Let A be a modular annihilator A^* -algebra. Then every normal element $x \in A$ can be written in the form $x = \sum_{\alpha} \lambda_{\alpha} e_{\alpha}$, where $\{e_{\alpha}\}$ is an orthogonal family of self-adjoint minimal idempotents in A and $\{\lambda_{\alpha}\}$ is a family of scalars. The sum $\sum_{\alpha} \lambda_{\alpha} e_{\alpha}$ converges to x in the auxiliary norm of A.

Proof. Let B be a maximal commutative *-subalgebra of A containing x. By the first paragraph of the proof of Theorem 6.3, B contains such a family $\{e_{\alpha}\}$.

COROLLARY 6.5. Let A be an A^* -algebra. Then A is modular annihilator if and only if A has the spectral expansion property.

Proof. For the definition of the spectral expansion property see [2; p. 288]. If A is modular annihilator then, by Corollary 6.4, A has the spectral expansion property. Conversely suppose A has the spectral expansion property. Then $|\cdot|$ is a Q-norm on A [2; p. 284] so that if M is a maximal modular left ideal of A then M is closed with respect to $|\cdot|$. Let u be a right identity modulo M; we may clearly assume that $u^* = u$. Then $u = \sum_{\alpha} \lambda_{\alpha} e_{\alpha}$, where $\{e_{\alpha}\}$ is an orthogonal family of self-adjoint idempotents in the socle S_A of A. Since $u \notin M$, there is at least one $e_{\alpha} \notin M$. As every $e_{\alpha} \in S_A$, this means that there exists a self-adjoint minimal idempotent $e \notin M$. It follows now that $r_A(M) \neq (0)$ and that A is modular annihilator.

THEOREM 6.6. Let A be an A^* -algebra with the k-property and \mathfrak{A} the completion of A. Then A is modular annihilator if and only if \mathfrak{A} is modular annihilator.

Proof. If A is modular annihilator then \mathfrak{A} is modular annihilator since \mathfrak{A} is dual. The converse follows from [12; p. 40, Theorem 3.7]. However we can give a direct proof of this. In fact, since A has the k-property, it is easy to see that if M is a maximal modular left ideal of A then $\mathfrak{M} = \operatorname{cl}_{\mathfrak{A}}(M)$ is a modular left ideal of \mathfrak{A} . Hence $r_{\mathfrak{A}}(\mathfrak{M}) \neq (0)$. Since A is a dense two-sided ideal of \mathfrak{A} and \mathfrak{A} is semi-simple $A \cap r_{\mathfrak{A}}(\mathfrak{M}) \neq (0)$. This shows that $r_A(M) \neq (0)$ and applying the continuity of the involution completes the proof.

Combining Theorems 5.2, 5.4, and 6.6 we obtain the following:

THEOREM 6.7. Let A be an A^* -algebra with the k-property and let \mathfrak{A} be the completion of A. Then the following statements are equivalent:

- (i) A is a modular annihilator algebra.
- (ii) A is a w.s.c.c. algebra.
- (iii) A is a modular annihilator algebra.
- (iv) A is a w.s.c.c. algebra.

References

- 1. J. C. ALEXANDER, Compact Banach algebras, Proc. London Math. Soc. (3), vol. 18 (1968), pp. 1–18.
- 2. B. A. BARNES, Algebras with the spectral expansion property, Illinois J. Math., vol. 11 (1967), pp. 284-290.
- 3. ——, On the existence of minimal ideals in a Banach algebra, Trans. Amer. Math. Soc., vol. 133 (1968), pp. 511-517.
- F. F. BONSALL AND A. W. GOLDIE, Annihilator algebras, Proc. London Math. Soc., vol. 14 (1954), pp. 154–167.
- 5. F. F. BONSALL AND B. J. TOMIUK, The semi-algebra generated by a compact linear operator, Proc. Edinburgh Math. Soc., vol. 14 (1965), pp. 177-196.
- 6. J. DIXMIER, C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964.
- 7. N. DUNFORD AND J. SCHWARTZ, Linear operators, Part I: General theory, Interscience, N. Y., 1958.
- T. OGASAWARA AND K. YOSHINAGA, Weakly completely continuous Banach*-algebras, J. Sci. Hiroshima Univ. Ser. A, vol. 18 (1954), pp. 15–36.
- 9. C. E. RICKART, General theory of Banach algebras, Van Nostrand, Princeton, N.J., 1960.
- 10. B. J. TOMIUK, Duality and the existence of weakly completely continuous elements in a B*-algebra, Glasgow Math. J., vol. 13 (1972), pp. 56-60.
- 11.----, Modular annihilator A*-algebras, Canad. Math. Bull., to appear.
- 12. B. YOOD, Ideals in topological rings, Canadian J. Math., vol. 16 (1964), pp. 28-45.

UNIVERSITY OF OTTAWA OTTAWA, CANADA McMaster University Hamilton, Canada