
A NORMAL HEREDITARILY SEPARABLE NON-LINDELOF SPACE

BY

MAY ELLEN RDIN

A. I-Iainal and I. Juhasz have defined a Hausdorff hereditarily -separable
non--LindelSf space. R. Countryman has raised the question of the exist-
ence of a regular, hereditarily separable, non-LindelSf space. The purpose
of this paper is to show that the existence of a Souslin tree of cardinality
(which is consistent with the usual axioms for set theory) implies the exist-
ence of such a space which is also normal.
A partially ordered set (T, _< is a Souslin tree provided:

1. (T, _< is a tree (t T implies {s T s _< t} is well ordered).
2. T is uncountable.
3. Every chain (totally ordered set) is countable.
4. Every antichain (pairwise unordered set) is countable.

Suppose (T, _< is a Souslin tree.
ForteT, definep(t) {seT is<_ t}andf(t) {seT It_<s};ifX T,

define p(X) U,. p(x) and f(X) U,xf(x).
For each countable ordinal a, let T, be the a level of T: that is

T, {t Tip(t) is order isomorphic to

Clearly T U< T. Without loss of generality we assume that e T,
and a < f implies f(t) n T is infinite.

I. Preliminary definitions
Let a (n, , t) co co X T a is a limit ordinal and e T for some

>a}.
For ech limit ordinal a, select a < a < hving a as limit.
For (n, a, t) e a, let Z(n, a, t) be the set of all nonempty chains Z such

that:

(a) p(t) n T,.e p(Z) but p(t) , T,.+, ,}p(Z).
(b) Z n f(T,) =0.
(c) IfzeZnTand < < a, thenZnT 0.
(d) If re T, Z p(r).

For Z c T, define Z* {Y c T for some finite F c T, Y Z p(F)}.
Observe that Z e 2; (A) implies Z* c 2; (A).

In Section III we choose for each / < 01 and A e a, a subset R(A) of T.
If A (n, a, t) and e T, define Z(A) R+(A). The following prop-
erties hold.
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(1)
(2)
(3)

Z(A Z(A ).
For all , < , there is a term of Z(A)* contained in R(A ).
A (n,a,s), B (m,,r), a < <% r sand

p(s) np(r) nT 0 implies R(A) n R(B) 0.

II. A topological space which is normal, Hausdorff, hereditarily
separable and not Lindelf

Assume R(A and Z(A) as in the last paragraph of I.
The terms of T will be the points of 2. Let U be open in 2 if and only if,

for each e U there is an m e o such that, for n m and (n, a, t) a, there is
a Y Z(n, a, t)* such that Y U.
For each a < , p(T,) is countable and open; hence 2 is not LindelSf.

The complement of a point is also obviously open since for each A e a one
can pick Y e Z(A)* avoiding t. Hence 2 is normal implies 2 is Hausdorff.

1. Proof that is hereditarily separable. Suppose X T. Let
V {tTif(t) nX O}

and let
W {re V lp(t) n V {t} }.

Since W is an antiehain there is an upper bound # on {/} W n T }. Since
p(Ta) is countable, it will suffice to show that, for each r e Ta V, there is a
countable dense subset of X n f(r).
Suppose r e Ta V. Define a0 #. Then, for each n e , define a < ,

and W. X n f(r) by induction as follows. If a has been defined, let

W,, {t eX n y(r) p(t) n X n y(T:,) {t} }.

Clearly W. is an antichain. Let a+x be greater than some upper bound on
{IWnT 0}. Let a be thelimit of

I claim f(r) n f(T:+l) is a subset of the closure of U,,: W,. Suppose
teTnf(r) ands, > aand Uis open and teU. We show UnX t.
Since U is open, there is an n such that t < a" and a Y + Z(n, a, t)* such that
Y c U. Select y + Y; forsomei, y ep(T:). Letz= Yn T:++I Thereis
an x X n f(z) since, by the definition of/, f(r) n V . There is a first
term x’ of p(x) n X n f( T:) and x’ W by definition. Since y < x’ < z,
x’ UnX.

2. Proof that is normal. Suppose H is closed. By the proof given in 1,
there is an a < 01 such that T,+I implies f(t) c H orf(t) n H t.
Suppose H and K are disjoint and closed. There is clearly a nonlimit

ordinal , < such that T implies f(t) H or f(t) K or f(t) n (H u
K) 0. Without loss of generality we assume that f(T) H n K, for K
and f(T) K are closed and disjoint.
For T there is an mt such that, for every (n, u, t) a and n > mr, there

isaY+Z(n,u,t)*suchthatY X-HiftCHand YcX-KiftCK.
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Thus, ifA (n,, t) ea, n > ms,andu < % I(2) allows us to pick
Y(A Z(A )* such that:

(a*)
(b*)

Y(A) c R(A), and
Y(A intersects H only if e H and Y(A) intersects K only if e K.

Define Uo H and Vo K.
fined, define

If subsets U_I and V-I of T have been de-

U [J r(n, , t) It U-I n > ms, < and (n, t, t) e a}
and similarly

V U {Y(n, t, t) It e V_, n > m,, < and (n,

Clearly U U k, U and V U, V are open and U H and V K.
Also U n V 0. Suppose on the contrary that i is the smallest integer such
that U n V . Select x e U n Vy. Since H and K are disjoint, by (b*),
i > 0 and j > 0. Hence for some < , and < . nd s e U_1 and r e V_,

x Y(n, , s) n Y(m, q, r).

By (a*), R(n, , s) n R(m, , r) . The minimality of i implies r s.
So property I(3) guarantees some p(s) n p(r) n T. But our definition
of then implies r and s are either both in H or both in K which is a contradic-
tion.

Since p(T,) is countable, a slightly more complicated construction of U
and V would yield a cover of T. Hence 2 also has the property that any two
disjoint closed sets are contained in the union of disjoint open and closed sets.

III. The construction of R(A)
Some definitions and lemmas. If S T and s e S, define

S(s) {t el(s) for all s

_
r

_
t, r e S}.

If A (n, a, t) e a, define $(A) to be the set of all nonempty S
such that s e S T and f < / < a implies there exists with
where S(s) n T has at least two terms.

If R, S belong to $(A) define R < S if

(i)
()

for each s e S there is an r e R such that R(r) S(s), and
for each r e R there is a V e R(r)* such that V S.

:LEMMA 1. Suppose {A.}.0 and {B.}., are disjoint countable subsets of a
and, for each n e , S,, e $(A,,) and Y,, eZ(B), and n m implies p(Y,,)
p(Y,). Then, for each n e w, there exist R,, e$(A,) and X, Y* such that
R, < S,, and the terms of {R,}., u {X},, are disjoint.

Proof. Define {C,}0<,< {B,},, u {A, j, k},,, assume n m im-
plies C, C. Index S {s} -,.
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For n e , we define by induction a function g (0, 1, n) --* the set
of all subsets of T.

Define g(0) i for all n e .
Fix n > 0 in order to define g.
Assume g_(m) has been defined for all m <: n. Let W IJ< g_(m).

Also assume:

(a) 0 < m < n and C Bi implies g,,-l(m) e Y.
(b) 0 < m < n and C (As ,j, k) implies there is an s e St and a finite set
E of branch points of S,(s) such that:

(b. 1)
(b. 2)
(b. 3)

g,_(m) f(s) p(E,),
e eE implies f(e) n (W e} t,
q < n and Eq n E 0 implies g,_(q) g,,_(m) and the first
two terms of C are the first two terms of

Note that W andE are functions of n.
We now define g.(n). Observe that W is the union of finitely many chains.

Case 1. Suppose C,, Bi. Choose g,(n) Y such that g,,(n) r W 0.
Case 2. SupposeC. (A,j,k) and for nom < nisC (A,,j,h)

for any h. Choose a branch point of S(s) such that f(t) W t. Then
define g,,(n) {t}.

Case 3. Suppose C. (A, j, k) and m < n and m is the smallest integer
such that C (A, j, h) for some h e . For each x eE choose distinct
branch points x and x. of S(x) belonging to T for some/ > a where a

is the second term of A. Then define

g,,(n) g,,_(m) t (J ,, (f(x) r p(x, x) ).

Suppose m < n. Define g,(m) g,,_(m) unless there is a point e eE
such that g,(n) r f(e) . If e e g,,(n) r E, define g,,(m) g,,(n).

Suppose there is a point e such that for some q < n, e Eq g,,(n) and
g,,(n) r f(e) 0. Let M {m < n the first two terms of C are the first
two terms of Cq}; let A be the first term of Cq. Since e e S and S e $(A),
there are unordered branch points e and e of Si(e). Since e g.(n), Case 1
or 2 holds and g,(n) is contained in a single chain. Hence (b. 2) implies
that, for some h 1 or 2, f(e) g(n) . Define

g,(m) g,_(m) t (f(e) r p(e) for all m e M.

The induction hypotheses are again satisfied.
If B C, define X g,(n). And define

R U..., {g,(m) C. (As, j, k)}.

Then X e Y*, R e$(A), R < S,, and the terms of {R},, u {Xi},,, are
disjoint.
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LEMMA 2. Suppose A ( and . is a countable limit ordinal and {Xa}< c
$(A ) and a < < . implies Xa < X Then there is an X e $(A such that.
for all < % X < X

Proof. Index {(x., .)}., {(x, ) I < ’ and x e X}. Let D be the
set of all finite sequences of O’s and l’s.
For each n e o we define R, as follows. Define R0 . Suppose R. c

has been defined for all m < n. If, for all s e X.(x), X,(s) r U ,<, R, 0,
then define R 0.
Suppose there is an s X,(x,,) such that X,(s) n {3 m<. Rm 0; we define

R. in this case after the following inductive construction. Choose
s’ X,(s) {s}. There is k e o such that /k > .. Choose unordered r0
and rl belonging to X such that X(r) X(s’) for i 0, 1. Suppose
d do, dl, d e D and r e X+" has been chosen. Choose unordered
r......0 and r,...., belonging to X+’+ such that, for i 0, 1, X+(r)
X++,(r,.....,). Having thus chosen r for all d e D, define R,, f(s’) r
(J ,) p(r).
Then define X (3., R.
Clearly X e $(A). Observe that r e R. implies X(r) R,,(r). Suppose
< "r and let us indicate why X < Xa.
To test (it), assume r e X. Then X(r) R, for somen. By the construc-

tion of R., there is k e with < ,k and a finite subset F of R. nX such that
R,, p(F) X. Since < ,, for each v F, there is V X(v)* such
that V X. Since V n R, R,(v)*, U V VR*,. Thus
V n R(r) e R(r) * X(r) * and V X so (it) is satisfied.
To test (i) assume s e X then (s, ) (x, B) for some n. We need

to find r e X such that X(r) Xz(s). This is obvious if R t. So assume
R 0. Choose e X(s) nR for some m < n. By the preceding paragraph
there is V e X(t)* such that V X thus V X(t) X(s). Choose
r e V; then X(r) V X(s) and (i) is satisfied.

2. We now use Lemmas 1 and 2 to define for each , < o and A e a, a
set R(A) so that conditions (1), (2), and (3) of I are satisfied. We need
further definitions.

If , < o,, define a {(n, a, t) e (x e T}.
If A (n, a, t)ear and a < f _< % let As (n, a, s) where

{s} T r p(t).
Let a’ {(n, a, r) e a r e Ta+}; if A (n, a, t) e a, define A’ A+.

For each A e a’ choose arbitrarily an R(A e $(A ).
If A (n, a, t) e (X and , _< a, define R(A) R(A’).
Suppose , < 01 and for all A e a and/ < % Ra(A) has been defined satisfy-

ing"

(a) A a and < implies Re(A) e Z(A); A e a and _< implies
Ra(A $(A ).
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A (n, a, t) e a and a < _< _< implies R(A) Ra(Aa) ,<

Before we complete the definition of R, we define X(A) for all A e U<, a.
Suppose 7 is a limit ordinal. By Lemma 2 and (b), if A (n, a, t) a,

we can choose X(A) $(A) such that X(A) < R(A) for all a < B < .
If < 7 and A e a, define X(A R+(A).
Suppose , is not a limit ordinal. If A e a, define X(A) R_(A). If

Aea-, choose X(A) e2;(A) such that X(A) R_(A). And if
B < 7- 1 and A e a, define X(A) R(A).

Observe that U< a is countable and A U
_
a implies X(A) e 2:(A) and

a is countable and A a implies X(A) $(A). So we can apply Lemma 1
and find disjoint R(A) for the A eUa such that R(A) X(A)* for
A U< aandR(A) $(A) andRe(A) < X(A) forA a.

If A (n, , t) a for some > % define R(A) R(A) if < ,;
we have already defined R(A) R(A’) if 3’ _< a.
Our induction hypotheses (a) and (b) are clearly again satisfied. We need

only check (1), (2), and (3) of I.
If A e a, then R+(A) e 2;(A) so 1 is satisfied.
Suppose A (n, a, t) e a. If 3’ _< a, we defined R(A) R(A’). We

chose R+(A) R+(A’) < R(A’) and if a < _< 3’ _< we
chose R(A) < R(A) e $(A). And R+(A) R(A) and, for -t- 1 < %
R(A) R+(A)*. Thus for all < there is a term of R+(A)* contained
in R(A) and (2) is satisfied.
Suppose A (n, a, s), B (m, , r), a _< < , r s, and p(s) n p(r) a-

T 0. IfseT,definefl Aif_< /andfl_ Aif > ;define/}
similarly. By our assumption

_
/}. Thus we chose R() and R()

disjoint. And, since R(A) R(fl) and R(B) R(), condition (3)
is satisfied and we have the desired construction.
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