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MAXIMAL IDEAL SPACES OF U-ALGEBRAS

BY
JONATHAN M. KANE

1. Introduction

For n > 1 let B, be the open unit ball in C" and S,,_; be its boundary. The
group of n x n unitary matrices, U(n), acts on C" by multiplication on the right
and this action takes B, onto itself and S,,_, onto itself. A subspace, X, of
C(S,,_,) is called a U-space if for each fe X and Ve U(n), fo VeX. A
U-space which is closed under multiplication is called a U-algebra. In this
paper the maximal ideal spaces are found for every closed U-algebra which
contains the constant functions.

Let Z represent the natural numbers {0, 1, 2, ...} and Z,, the positive
natural numbers. For p, g € Z, let H, , be the set of restrictions to S,,_, of the
harmonic polynomials in z and z which are homogeneous of degree p in z and
gin z.

A. Nagel and W. Rudin show in [2] that if X is a closed subspace of
C(Sz4-1) and

Y ={(p q9|X nH,, #0}

then X is a U-space if and only if X is the closure in C(S,,_) of the direct sum
X* =Y ,.0evH, .. Thus, each closed U-space is associated with a set of lattice
points, Y < Z?, and a dense subspace, X*, equal to a direct sum of H,,
spaces. If X is a closed U-algebra, its associated set of lattice points is called an
algebra pattern. Note that H, , is a U-space and is spanned by the unitary
translates of the function z£z%.

Define H, , - H, ; to be the subspace of C(S,,_,) spanned by {f- g|fe H,,,
geH, }and (H,)"=(H,)" ' H,, for m> 1. Nagel and Rudin prove in
[2] and [3] the results:

ProposITION 1.1. (a) H,,  H,, S H,y,_j,+s—; where j=0, 1, ..., min
P+aqr+sp+rqg+s)
®) Ifn=3,(H,)"=Y H,p_jmg;Wherej=0,1,..., min (mp, mq).
© Ifn=2(H,)* =) H,, 3j 22 Wherej=0,1,...,min (p, q).
(d Ifn=2andm>2, (H,)" =Y Hy,p_jmg-; where j=0,2,3,4,..., min
(mp, mg).
(e) Ifn = 29 Hp+r—1,q+s-l = Hp,q ' Hr,s if‘and Only !fps # qr.
¢ H,, H,=YH,_j,—jwherej=0,1,2,...,min(p +r, g).
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It follows that a sufficient condition for Y < Z2 to be an algebra pattern is
that for all (p, g) and (r, 5) in Y,

(P+r—f»¢1+5—j)
isalsoin Y foreachj=0,1,...,min(p + g,r +s,p + r, g + s). For n > 3 this
condition is also necessary. For example, if u € (0, 1), define
Y,={(,q9)lp=9=0 org<up}.

Then Y, satisfies the sufficient condition for being an algebra pattern. Let E,
be the closed U-algebra with algebra pattern Y,.

The central step in finding the maximal ideal spaces for all U-algebras is
finding the maximal ideal spaces for the algebras E,. This is done in Theorem
2.1. The maximal ideal spaces of a few special U-algebras are found in Theo-
rems 3.1 through 3.4. The remaining maximal ideal spaces are found in
Theorems 4.1 and 4.2.

2. The algebras E,,
For r € (0, 1] and u € (0, 1) define
pATLE + AT
14+u

where A is given implicitly by r = (ul + 2*)/(1 + p). ¢ is real analytic and is
decreasing in both r and pu. For w € C?" let

o(r, p) =

r(w) = ij|2 and s(w) = len+j|2'
j=1 Jj=1

Let

K, = {we c?n

i wiw,.;=1rw)e(0,1). and s(w) < a(r(w), u)}.

j=1

Note.(a) K,iscontained in the algebraic variety A = {w|}_, w;w,.; = 1}.

b)) K, =K, ifpu>y.

(c) If n: C**— C" is the projection onto the first n coordinates, n(K,) =
Bn\{o}'

(d) For z € B,\{0}, the set {w € K,,| n(w) = z} is an (n — 1)-dimensional ball.

(¢) For {w;} = K, , n(w)— 0if and only if | w;| — co.

Let S = {w e C*"|r(w) = 1 and w; = w,, ; for j < n}. Then § is the collection
of all the points w in the closure of K, cl (K,), with r(w) = 1.

THeoREM 2.1.  For p € (0, 1) the maximal ideal space of E,, is the one point
compactification of the space cl (K,). Moreover, if f€ E,, £ is homolomorphic on
K, and f(2) = f(n(2)) for each z € S.
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Define H, to be the algebra of functions continuous on the one point
compactification of cl (K,) and holomorphic on K,. Theorem 2.1 will be
proved after establishing the following facts.

ProposITION 2.2. E, and H, are isomorphic Banach algebras.
ProposITION 2.3. ¢l (K,) is polynomially convex.
Proof of Proposition 2.2. If we C?", let
J, = [_Wx _Wz _w,,]
Wit1 Wai2z 70 Wy,

For V € U(n) define T,: C*"—C?*" by Ty(z)=w if J,=J,V. Then T, is
biholomorphic with T, ! = T,-,. Note that for each V € U(n) and z € C*",
HTy(z)) = r(z), s(T,(z)) = s(z), and z € A if and only if Ty (z) € A. Therefore, T,
maps K, onto itself. If z € S, n(T;(2)) = n(z)V. If z € A there are u, v > 0 and

V € U(n) so that
u 00 -0
JZV=|:u—1 b 0 .- O:I'

Here r(z) = u? and s(z) = u~2 + 02
Forp,qge Z,,x € [0,1],and V € U(n) define y, , ,.v: S, — Sby

, xP JT—x2 (20 - 0
'yp.q,x,V(C)=w lwa:[E-__p\/i——_;ic—:lo ()]V‘

Then y, , v is a continuous function of { and y,, , .y extends to be holomor-
phic for { e cl (B,)\{0}.

Lemma 24. K, = {w|w =1y, .. () for some p and q with q/p € (u, 1),
x € [0, 1], V € U(n), and { € B,\{0}}.

Proof of Lemma 2.4. Clearly, if q/p = w' € (4, 1), x € [0, 1], V € U(n), and
{ € B,\{0}, then y, . () € A. Therefore, for some u, v >0 and V; € U(n),

Vp.a,xv({) = w where
u 00 -+ 0
hn:L*z;ou-J~

rw) = u? = x?| (1P + (1 — x%)| {|*

Here

and
sw=u"2+02=x2{|7®+(1 - x?Y|¢| 2.
Let A =|¢|??€(0, 1) so
rw) =x2A + (1 — x»)2* and sw)=x22"1 + (1 — x?)A ™"
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As x varies in [0, 1] and A varies in (0, 1), n(w) ranges over (0, 1). Fix a value of
r(w) in (0, 1), that is fix (w) = x4 + (1 — x*)4*, and consider what values can
be obtained for

sw) = x2A71 4+ (1 — x2)A7¥,

If x =0 or 1, s(w) = r(w)~ ! which corresponds to having u = ./r(w) and v = 0.
As x ranges over (0, 1), s(w) reaches a maximum at

= [F
1+
This gives
_ WAt
r(W) - 1 + I'l',
and
AT+ AT ,
sw) = 0 = atr(w), w) < otr(w), )
+u

This shows that s(w) can take on any value with u~2 < s(w) < a(r(w), p). This
proves that y, , . ,({) is in K,. Moreover, z € K, only if there are u, v > 0 and

V, € U(n) with
u 00 --- 0
I:Vs =|:u‘1 v 0 - O]°

Selecting p, q, x, V, Vi and { so T, (v 4xv(0) = Ty,(2) shows z=
Vp.a.x,vv1v2-1({). This proves the lemma.

Note that if g/p = pand x = \/p/(1 + p), 7, 4, v({) is in the boundary of K,,.

n:S— S,,_1 is a homeomorphism so let h: S,,_; — S be its inverse. Define
G: H,— C(S2,-1)

by G(f)=f°h. G is an algebra homomorphism and for V € U(n), G(f)
V=foT,oh=G(f- Ty so G(H,) is a closed U-algebra. Suppose 2725 = G(f
) for r, se Z and f € H,. Then, by Lemma 2.4, whenever g/p € [u, 1), x € [0,
1], and V € U(n), f ° ¥4 v is continuous on cl (B;) and holomorphic on
B,\{0}. But then f oy, , ., is holomorphic on all of B; and f oy, , . (0) =f
(o0) is independent of p, g, x, and V. One gets

f ° 'Yy,q,x,V(C) =f ° h °T o ?p,q,x,V(C)
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when |{| =150 22} o m oy, , .y extends to be holomorphic on B,. If V has
entries («; ;), then for |{| = 1,

Zizy oMo Vova, () = (g, 1 XCP + 0y 1 /1 — x2Lay

(0g,2%XCP + 23 54/1 — x2g9) = (og, 1207 + 0z 14/1 — X9y
(@0, X072 + a0 /1 — X279 = (7 7Py, X (P
+ 0y 1/1 = X2 (0y 2% + aiz 51/1 — X3P

which extends to be holomorphic on B, only if s/r <gq/p. Moreover,
2425 o T © Y, 4 . v(0) is independent of x and V only if r =s =0 or s/r < g/p.
This can hold for each choice of p and q with gq/p € [u, 1) only if r =s =0 or
s < pr. Thus, GH,) n H, , # (0)if and only if r = s =0 or s < ur so G(H,) =
E,.

qu z€ Ky, z=7,4v() for some p, q, x, V,and {. f fe H,, f oy, 4 v is
holomorphic on B, so

L@ =1 VpaxADI < sup|f 0,00 < sup| f(W)].

{eSy weS

1Al = sup [ fW)| = sup| f(W)| = sup [G(f(2)| = IG()Il,

weK, weS z€S2n-1

Thus,

so G is a Banach algebra isomorphism.

Proof of Proposition 2.3. Since K, = (), <, K,, it will be sufficient to prove
Proposition 2.3 for rational u=gq/p. Let we C?*"\cl(K,). Let Py(z)=
Z';=l Z2jZn+j— 1. If IPl(W)I > 0, then

|Py(w)| > sup |Py(2)|=0.
zecl(Ky)

If r(w) > 1, let Po(z) = Y"_; z;w;. Then
| Po(w)| = r(w) > /r(w) = sup |Py2)].

zecl(Ky)
So assume P,(w) = 0 and r(w) < 1 but s(w) > a(r(w), u). Select u, v > 0 and
V; € U(n) so
IV u 00 -+ 0
” ‘_[u‘l v 0 - 0]

where r(w) = u? and s(w) = u~2 + v For some t < v, u~% + t* = a(r(w), p) so

thereisa V, € U(n) and { € cl (B,) so
1 %
u o0 - OV— 1 1+u -+ 0
t 0 - 0ol 2% 1

ﬂ 14

+uc
-1

U &L

0
_ — 0 --- 0/l
LA —_— e
1+u 1+p
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Let P4(z) = 2822, ,. For A € cl (B,) define w, by

u o 0 --- 0
Find « € S, so that
|P3 oV, 0 Vi(wy)| = sup| Py oV, o Vi(wy)].
AeBy

If T,,,(w) = w,,
|P3oVyo Vo Vsw) = sup|Pyo ¥V, Vi(w)l

Ae By
1 \? n )\

>|Pyo Vyo Viwy)| =

Pae Vae Bl (\/1+u>(\/1+u>
=sup|z5z5. | = sup [z5z84,|

zeS z e cl(Ky)
= sup [P0V, 0¥ o V(2.

z e cl (Ky)

Therefore, if w ¢ cl (K,), there is a polynomial with modulus larger at w than
any point of cl (K,). Hence cl (K,) is polynomially convex.

Proof of Theorem 2.1. By Proposition 2.2, it is enough to show that the
one point compactification of ¢l (K,) is the maximal ideal space of H, and that
all multiplicative linear functionals of H,, are point evaluations.

LEMMA 2.5. H, is the closure of the linear span of the monomials

{W“Ia e Z?", Zn: RS uiaj or a= O}.
j=1 ji=1
Proof of Lemma 2.5. w*"e H, if and only if
G(w*) = jﬁlz‘j‘ff}‘"” €E,.
Ifp= Z;=1 a;and g = Y1 Gnt s

q
GwYyeH,o Hoy<S Y Hp_j,-;<SE, ifq<upp.
j=

E, is the closed linear span of the H,, , spaces with g < up or p =g =0 and
the H,, spaces are linear spans of the functions {z§z% - V|V € U(n)} If V has

entries (oc ik
B n p/ n __ \4
v =(Fo)($m0)
k=1 m=1
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which shows that z£z4 - V is a sum of monomials of degree p in z and q in z.
This proves the lemma.

Let ¢ be a multiplicative linear functional on H,. By Lemma 2.5, ¢ is
determined by the values it assigns to the monomials w® where Y., a,. i<
p Yy a;. Forj<n,letz;= ¢p(w).

Suppose z;=0 for each j<n Choose w'e H, with a#0. Since
Yy Gyrj < Y-y aj, for some m >0,

n
mzan+j
=1

m 2”: a;— 1
j=1
Thus, for some k < n, w™/w, € H, and ¢(w)™ = p(W™) = d(w)dp(w™/wy) = 0.

It follows that ¢ is point evaluation at the point at infinity.
Suppose for some k < n z; #+ 0. Choose m so that 1/m < u. For j < n, define

<

— ¢(w;cnwn+ !)
n+j — Z;‘n .

Ifw'eH,letp=Y"_,a;and ¢ =Y, a,.; Then
dW?) = Pp(wi) "™ P(wi) ™ P(w")

=z ( Ilw?f) o ( 1| w:'“"ﬂw:w)

Jj=1

= z;™ 125 T1o(wgwa+ )]
j=1 ji=1
= 2%

Therefore, ¢ is point evaluation at the point z € C?", It follows from Proposi-
tion 2.3 that z e cl (K ).

Since functions in H, separate points in K, distinct point evaluations on
the compactification of cl (K,) give distinct multiplicative linear functionals on
H,. This proves Theorem 2.1.

3. Special cases

Nagel and Rudin show that there are four types of U-algebras which are
self-adjoint (that is, f € X whenever f e X.):

(@ C'= Hy o5

(®) A= {fe C(Sz,_1)| f(e*™*z) = f(z)foreach z € S,,_,} where ke Z,;

© Dy ={feC(S3,-1)| flaz) =f(z)forz€ S,,_, and ¢ € S, };

d) if n=2, D,={f € CS,,-)|f@)=f(w) for z, w € §,,_; with
{z, w) = 0}.
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THEOREM 3.1. The maximal ideal space

(@) For C! is a one point space,

(b) For Ay is the lens space [4, p. 88] consisting of S,,_, wherez, we S,,_
are identified whenever e*™*z = w.

(c) For D, is CP(n — 1) [4, p. 146].

(d) For D, is RP(2) [4, p. 146].

Proof of Theorem 3.1. Each algebra given is isomorphic to the set of con-
tinuous functions on the set claimed to be its maximal ideal space. Since each
set is compact and Hausdorff and the continuous functions on each set se-
parate points on the set, the theorem follows.

Nagel and Rudin also show that if a U-algebra is not self adjoint, then its
algebra pattern, Y, either satisfies g < p for all (p, g) e Y or p < q for all
(p, 9) € Y. Moreover, {(p, q) € Y|p =g} is {(0, 0)}, {(p, p)Ip € Z}, or in the
case n =2 only {(2p, 2p)|p € Z}. If X is a U-algebra with algebra pattern Y
such that (p, q) € Y only if p < g, then X is isomorphic to X = {f| fe X} and
X has an algebra pattern Y with (p, q) € Y only if g < p. Therefore, when
finding the maximal ideal spaces for the remaining U-algebras, it will be
enough to consider those whose algebra pattern satisfies (p, g) € Y only if
q<p.

Forue[0,1]and ce Z let

Y,co={P.9)Ilp=9g=0 or g<pup and c dividesp— gq}.

If p is rational with u = s/r where s and r are relatively prime positive integers
and d is a positive integer, let

Y,

ed = Y00 U {(mdr, mds)\me Z . }.

Then Y, ; is an algebra pattern provided that

(a c=dwhenpu=0,

(b) d = 0 when u is irrational,

() cdivides d(r — s),

(d d=0,1or(ifn=2)d=2whenpu=1.

Let E, . ; be the closed U-algebra with algebra pattern Y, . ;. Let L, . ; be the
maximal ideal space of E, . ;. If u€ (0, 1), E, ; o = E, discussed in Section 2.
Then

Eo 11 ={feCSau-D|f

extends to be continuous on cl (B,) and holomorphic on B,}
and
E,  .0={f€ C(S,,-)| fextends to be continuous on cl (B,

such that for each z € S,,_;, f(«z) is holomorphic in « € B,}.
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THEOREM 3.2. E, , , and E, ; o both have cl (B,) for a maximal ideal space.
The case of E, , , is a classical result in function theory while the case of
E, 1,0 is a lesser known result of K. Hoffman and L. Singer [1].

THEOREM 3.3. The maximal ideal space of Ei 4 is Ly 1 ={(z [w]) €
cl(B,) x CP(n—1)|weS,,_, and z = Aw for some i € C'}.

Proof of Theorem 3.3. Each fe E, , ; can be written as a sum g + h where
g € D, (as in Theorem 3.1) and h e E, , , where h extends to cl (B,) with
h(0) = 0. Let ¢ be a multiplicative linear functional on E, , ;. Then ¢ restricts
to be a multiplicative linear functional on both D, and E, ; . By Theorems
3.1 and 3.2 there are w, € S,,_, and z, € cl (B,) so that ¢(g) = g(w,) and
¢(h) = h(zo) for all ge D, and heE,, , Therefore, for fe E, ; , with
f=g+h, &(f) = dg) + d(h) = g(we) + h(z,). Suppose z, = tw for t € C* and
weS,,_y.Forallge D,and he E  ,,

g-hekE; ;o and (g- h)zo) = g(Wh(z,).

Thus g(w)h(zo) = (g * h)zo) = P(gh) = d(g)p(h) = g(Wo)h(zo). It follows that
[w] = [wo] in CP(n—1) so z, = Aw, for some ie C!. This proves the
theorem.

For ue(0, 1), L, , o is the one point compactification of cl (K,) which is the
maximal ideal space for E, ; o by Theorem 2.1. The maximal ideal space of
E, , for rational u is similar to L, , o except that L, ; is a more compli-
cated compactification of cl (K,). If r and s are relatively prime positive in-
tegers with pu=s/r, let L be the compactification of cl (K,) created by

attaching the set U(n) x [0, 1] in such a way that a neighborhood base of
(W, y) e U(n) x [0, 1] consists of the sets

PrsxcQUIW =V <& |y — x| < =, [{| <¢}
VAV, x)e Um x [0, 1| IV —W| <e |y—x|<e}

for small ¢ > 0 where 7, ; . y is the same as in Lemma 2.4.

THEOREM 3.4. If u = s/r, the maximal ideal space of E, (L, ;,1) is the set
L where two points (W, y) and (V, x) € U(n) x [0, 1] are identified whenever

2 — x2
0 1—y* 0 0]W=[co1 0 ][0 1—-x* 0 O]V,
y 0 0 --- 0 0 w,] x 0 0O --- 0
where 0] = @5 °.

Proof of Theorem 3.4. Proposition 2.2 shows that E, , , is isomorphic to
the algebra of functions continuous on the one point compactification of
cl (K,) and holomorphic on K,. Similarly, E, , ; is isomorphic to the algebra
of functions continuous on L and holomorphic on K. Call this algebraH,, , ;.
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Then H, , , is the closed linear span of {w*|>_; a,.; < p D'y a;}. As in
Theorem 2.1, if ¢ is a homomorphism of H, ; , into C! such that ¢(w)) # 0 for
some j < n, then ¢ is point evaluation at some point of ¢l (K,). If ¢(w;) = 0 for
all j < n, then ¢(w") = O whenever Y 7_; a,.; < 4 Y 1=, a;. On the other hand,
using the monomials w* with Y }_; a,.; = pu Y 7-, a;, one gets a set of relations

d(W)P(W’) = p(w)p(w’) whena+b=c+d.

Solving a set of difference equation arising from these relations yields a point
z € C*" such that ¢p(w®) = 2 when ) }_; a,.; = 1 D j=; a;. It follows that such
a homomorphism arises as

¢(f) = :ln;f ° yr,s,x,V(C)

for proper choice of x and V' and that the space of all such ¢ is the continuous
image of U(n) x [0, 1]. The functions in H,; ; do not separate points of
U(n) x [0, 1] = L so some of these points must be identified to give the maxi-
mal ideal space of H, ; ;. This yields L, ; ;.

Notice that the maps {T,,| V € U(n)} which map cl (K,) onto itself extend
continuously to L, ; by mapping (W, x) e Un) x [0, 1] to T((W, x)) =
WV, x).

4. Final reductions

In Section 3 the maximal ideal spaces were given for each closed self-adjoint
U-algebra and for the algebras E, ; ; for u € [0, 1]. In this section the maxi-
mal ideal space L, , is found for each E, ., (Theorem 4.1) and then it is
shown that each remaining U-algebra has a maximal ideal space equivalent to
one of the E, , , algebras (Theorem 4.2).

THEOREM 4.1. Let pe(0,1),c,de Z,,a = e*™, and B = ™/4,

(@) Lo, iscl(B,) with z, w € cl (B,) identified if z = aw.

(b) L,.oisL,,owithzwecl (K, identified whenever z = T,(w).

(¢) If pis rational, L, .4 is L, , with z, w € cl (K,) identified whenever
z = T,(w) and z, w € U(n) x [0, 1] identified whenever z = Ty/(w).

(d) Ly is Ly y,q with (zq, [w,]) and (z5, [w,]) identified if [w,] = [w,]
and 0 # z, = az,.

€ Ifn=2 L,,, is L., with (0, [w;]) and (0, [w,]) identified if
wy, wyp =0.

Proof of Theorem 4.1. Consider the space E, . ;. If p is rational let X =
E, ., and if p is irrational let X = E, ; ,. The theorem will follow when it is
shown that each homomorphism of E,  , into C* is the restriction of a homo-
morphism from X into C! because then one only has to identify homorphisms
on X which are equal when restricted to E, ;. Since X* (see Section 1) is
dense in X, it is enough to show that each homomorphism on E, . , extends to
be a bounded homomorphism on X*.
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Let ¢ be a homomorphism from E, ., into C. If g € H, 4, g€ H, o =
E

e, d*

Case 1. Suppose ¢(g) + 0 for some g € H, ,. Let x be a cth root of
dg). If feH,,=X, let r=q—p (modc). Then gfeE,,, Define
&*(f) = ¢(g’f)/x". Then ¢* is well defined since r = s + mc implies

¢gy) _ 9a'g™) _ ¢6™) ¢aY) _ #e¥)

x' x5x™e xm x* x
One may extend ¢* by linearity to X*. Since
7SS ko =TT 65k = £5 BTN _ 55 g g
= ¢*QC O*Q M)
where the f;’s and h,’s lie in H,, , spaces, ¢* is multiplicative.

To show that ¢* is bounded on X* let fe X* with | f|| = 1. Let «y, «,, ...
.4 be the (cd)th roots of 1 and V, = oI € U(n). Thenforallme Z .,

cd cd cd
YfmoVi€E, ., and || T moVl|l< T || fme Wl|=cd
k=1 k=1 k=1
Thus,
cd cd
AR A Sl¢<2f’"° V;) <cd
k=1 k=1

But this can happen for all m only if | ¢*(f - V;)| < 1 for all k which proves
that ¢* is bounded. ¢* extends ¢ to X as desired.

Case 2. Suppose ¢(g°) =0 for all g € H; . Then ¢(g) =0 forallge H,,
S E,.o withp>0 For p>0and feH,,SE,,,let ¢*(f)=0.Ifd=0,
this extends ¢ to ¢* on X. If d > 0 and u = s/r where r and s are relatively
prime, for all ge H,,, g° € E, . ;. If ¢(g*) =0 for all g € H, , then ¢ is the
trivial homomorphism and easily extends to X. If g € H, ; with ¢(g%) # 0, let x
be a dth root of ¢(g%). Then ¢* extends to H,, ., for m e Z as in Case 1 and
¢* extends by linearity to a multiplicative linear functional on X in the same
way as in Case 1. This completés the proof.

THEOREM 4.2. Let X be a closed U-algebra with algebra pattern Y contain-
ing (0, 0). Let

sup {q/pl(p, 9) € Y,p#0} < L.
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Let c=gcd. {p—ql(p, q) € Y}. If {(p, 9) € Y|q = pp} is empty, let d =0.
Otherwise let d = g.c.d. {m|(mr, ms) € Y} where r and s are relatively prime with
u = s/r. Then the maximal ideal space of X is L, . -

The idea of the proof will be similar to that of Theorem 4.1 except that less
is known about Y, making the proof more technical.

LEMMA 43. (a) For some Ny € Z, (mc,0)€ Y for allm > N,.

(b) If >0, for each q € Z there is an N, € Z such that (mc + q — j,
q—j)€ Y whenever m > N, and 0 <j < q.

© If (p, @ € Z* with q/p < u such that c divides p — q, there exists m,
ke Z, withk > N such that (imp — kc,mq) € Y.

Proof of Lemma 4.3. It follows from Proposition 1.1 (b){d) that g.c.d.
{m|(m, 0) € Y} = c. Part (a) follows.

If 4 > 0, there is a (p, q) € Y with g > 0. Proposition 1.1 (b)«(d) then shows
that there are (p, g) € Y with arbitrarily large g. Since (mc, 0) € Y for all large
m, (b) follows from Proposition 1.1 (f).

If (p, q) € Z% where q/p < u and ¢ divides p — g, choose (a, b) € Y with
b/a > q/p. Choose m* such that m*(bp — qa) > 2N,c and let m = m*b. By
Proposition 1.1 (b)(d)(f), for all j < mgq,

(m*qa + Noc — j,m*qb — j) = (m*bp + Noc + m*(qa — bp) — j, m*bq — j)e Y.

So (mp —kc —j, mq—j) € Y where kc = m*(bp — qa) — Ngc = Nyc. This
gives (c).

LEMMA 4.4. Let ¢ be a homomorphism from X to C'. Then ¢ is the re-
striction of a unique homomorphism ¢*: EX . ;— C'.

Proof of Lemma 4.4. Let N, be defined as in Lemma 4.3.

Case 1. Suppose that for some m > N, there is a g € H,,. o, such that
#(g)#0. Let (p,q)e Y, ., and select ae Z, such that p + amc> N, + q.
If feH,,, Proposition 1.1 (a) shows that g% € Hyp o HpyS

=0 Hp4ame—j,q-; Which is contained in X by Lemma 43 (b). Define
o*(f) = ¢(g*f)/P(g)". As in Theorem 4.1, ¢* extends by linearity to a homo-
morphism of E¥ ,. Since ¢*(f) = ¢(g%)/P(g)" must hold for all ¢* that
extend ¢, ¢* is uniquely determined.

Case 2. Suppose that for all m > N, and g € H,. o, ¢(9) =0. If (p, g9) €
Y, .4 a/p < p and fe H, , define ¢*(f) = 0. If d = 0, this defines ¢* on each
H, cEf , If u=1,thend=0, 1, or 2. In each of these cases (p, p) € Y if
and only if (p, p) € Y, . ; s0 ¢ is already defined on H,, , so set ¢* = p on H, ..
If u<1 and d #0, u=s/r. The set W = {m € Z|(mdr, mds) e Y} is closed
under addition, and g.c.d. W = 1. Thus, there is an N € Z, such that for all
m >N, (mdr, mds)e Y. Let (a, b)e Y, ., with b/a= u. Then m > Nrd/a
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implies (ma, mb) € Y. Proposition 1.1 (b)(d)(e) shows that for all m > 3Nrd/a,
H,p)" = X.Iffe H,; and m > 3Nrd/a, define ¢*(f) = 0if ¢(f™) =0 and

*(f) = d(f™)/$(f™) otherwise,

Extend ¢* by linearity. Again, ¢* becomes a multiplicative linear functional
on E} ;. The way ¢* was defined on H, , with b/a = u was clearly forced. If
H,,€E, o, then by Lemma 4.3 (c) there exist m, k € Z, such that (kc, 0) and
(ma — kc, mb) € Y. Proposition 1.1 (a)(b)(d) shows

(Hap)™ < Hie o * Hopa—keymo

so ¢* must be zero on H,, since ¢ is zero on H,, ,. Thus ¢* is the unique
extension of ¢.

Proof of Theorem 42. Lemma 4.4 shows that every homomorphism ¢ on
X has a unique extension, ¢*, to E}¥_ , so it is enough to prove that this
extension is bounded. If u < 1, it follows from the proofs of Theorems 2.1, 3.2,
and 3.4 that ¢* is bounded if and only if ¢* is bounded on H, , for each
(. 9) € Y, 4. But Proposition 1.1 (b)d)f) and Lemma 4.3 (b) imply that
if feH,,<E,.,, then f"eX for some meZ,. Thus
[o*(N I =1/ < IS

If u = 1, define I to be the linear direct sum of the H, , spaces in E, ., with
q < p and define A4 to be the sum of the H, , spaces in E, . ;. If f € I, then f'is
contained in the span of finitely many H, , spaces with g < k, ¢ dividing p — q,
and g/p < w < 1. Then for me Z,, f™ is contained in the span of H, , spaces
with g < mk, m < p — g, c dividing p — g, and g/p < i It follows from Lemma
43 and Proposition 1.1 (f), that for some meZ,, f™e X. Thus,
[o*(N)| = | d(f™|'™ < | |, so ¢* is bounded on I. One has ¢* bounded on
A since A € X. It then follows from Theorem 3.1 (a)(c)(d) and Theorem 3.2
that ¢* is bounded on E¥ . ; as in the proof of Theorem 3.3.
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