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1. Introduction

Let C be a linear space of Radon measures on R”. Then we say a bounded
Borel set E C R” is a determining set for C if and only if u € C,
pu(x + E) = 0 for all x € R” implies u = 0 (equivalently, u, v € C and
p(x + E) = y(x + E) for all x € R" implies u = vy). The general problem
is: given a class of measures C, find conditions under which a given set E
is a determining set. In this paper we study this problem for various classes
of measures under different growth/decay conditions of the measures at o,
Let M be the class of all Radon measures, M; the class of ‘‘tempered”’
Radon measures, M, the class of measures ‘‘vanishing at ©’’ and My the
class of finite complex measures. Then we have M C My, M, C M.

We describe the following interesting features:

(i) No bounded Borel set E is a determining set for M [3].
(ii) No ‘“‘symmetric’’ bounded Borel set is a determining set for M,
(Corollary 3.4).
(iii) No ‘‘spherically symmetric’’ bounded Borel set is a determining
set for M, (Theorem 4.3)
(iv) Every bounded Borel set of positive Lebesgue measure is a deter-
mining set for My (see [10]).

The problem of finding determining sets when one allows rotations as
well as translations is an old one and is known in the literature as Pompeiu’s
problem [3], [13]. However, in this paper we restrict our attention, for the
most part, to determining sets under translations. Some of the results presented
here are our own while others rephrase old results in the language of
determining sets. The main tool used here is the Fourier transform on R".
Since the basic question is measure theoretic it would be interesting if we
could find geometric proofs of the results obtained without appealing to
Fourier analysis (as for example in the proof of Helgason’s support theorem
for the Radon transform [5]).
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2. Notation and Terminology

For any unexplained terminology see [9]. Let A denote the Lebesgue
measure on R” and L'(R") the set of complex valued Borel measurable
functions on R" which are absolutely summable with respect to Lebesgue
measure. Then L!(R") is a Banach space when equipped with the norm
defined by ||f]| = [z [f®)] d\x). (As usual we identify functions which are
equal almost everywhere with respect to Lebesgue measure.) If f € L'RY),
x € R”, let *f be defined by *f(y) = flx + y). Let V,be the closure in the
norm topology of L'(R") of the linear span of {!f; x € R"}. If E is a Borel
set, let 1; denote its indicator function, i.e., 1z(x) = 1if x € E, 1z(x) =
0if x & E. Let S(R") be the space of smooth, rapidly decreasing functions
equipped with the Schwartz topology (see [9]). By a tempered distribution
we mean a continuous linear functional on S(R"). Let CZ(R") denote the
set of infinitely differentiable functions of compact support, C.(R") the set
of continuous functions of compact support and Cy(R") the set of continuous
functions vanishing at infinity. A continuous linear functional on C3(R")
(equipped with the inductive limit topology) is called a distribution, and a
distribution of order zero is called a (complex) Radon measure (see [9] for
relevant definitions). Alternately a Radon measure is a continuous linear
functional on C.(R") equipped with the inductive limit topology (see [9])
(thus, for example, any continuous function f defines a Radon measure—
usually denoted by f(x) dA(x)). Let M be the set of all complex Radon
measures on R”. A Radon measure u is said to be ‘‘tempered”’ if u defines
a tempered distribution. (Thus for example, any L’-function f and, more
generally, any complex Radon measure of ‘‘polynomial growth’’ are tempered
Radon measures.) Let

M; = {4 € M; u a tempered measure}.

We say w € M ‘“‘vanishes at «”’ if u(x + K) — 0 as |jx|| — « for each
compact set K.
Let

M, = {u € M; u vanishes at ©} and
Mg = {u € M; p a finite complex measure}.

Observe that M C M,, M; C M. Finally let * denote covolution (of
functions, measures, distributions, etc.), and if fis an L'-function or more
generally a tempered distribution, f denotes its Fourier transform (see 9.

Let C denote the field of complex numbers. An entire function f on C”"
is said to be of ‘‘exponential type’’ if there exist positive constants A and
r such that

lf(2)] < Ae™ for all z € C.

We now record three theorems which will be used later.

THEOREM 2.1 (Paley-Wiener). Let u be a tempered distribution on R".
If w is of compact support, then ji. is an entire function on C" of exponential
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type. Conversely if i extends to an entire function on C" of exponential
type and [i is of slow growth on R", then w is compactly supported.

THEOREM 2.2 (Malgrange [7]). If fi and f, are entire functions on C" of
exponential type and if fi/f, is entire, then f,/f, is of exponential type.

Finally, let Supp u denote the (closed) support of u, and Cx(Supp u),
the convex hull of the support of u.

THEOREM 2.3 (Lions and Titchmarsh [4]). If u, and u, are tempered
distributions on R" of compact support, then

Cx(Supp (uy * pp)) = Cx(Supp p1) + Cx(Supp u,).

3. L'(R") and Determining Sets for M,

We begin with the observation that there are no determining sets for the
class M of all Radon measures on R". More precisely we have the following
theorem of Brown-Schreiber-Taylor (see Theorem 4.3 in [3]):

THEOREM 3.1. Let E be a bounded Borel set of positive Lebesgue measure
in R%. Then there exists a non-trivial continuous function f on R* such that
[esx fO)ANY) = 0 for all x € R%. (As the authors point out, the results in
[3] can be generalized to any n = 2.)

In view of this we look for determining sets for My, the class of tempered
Radon measures on R". We begin by proving the following proposition:

ProprosITION 3.2. Let E be a bounded Borel subset of R" of positive
Lebesgue measure. Then E is a determining set for My if and only if
T(x) # 0 for all x in R". Equivalently, E is a determining set for My if
and only if V,, = L'(R").

Proof. We first observe that if there exists x, € R” with Tz(x,) = 0,
then x, # 0 because 17(0) = A(E). Now consider the complex measure
du = €™ d\(x), where - denotes the usual inner product in R". Then
0 # w € My and w(E + x) = 0 for all x € R". On the other hand, sup-
pose Tz(x) # O for all x € R”. Suppose u € My and u(x + E) = 0 for all
x € R". This implies 1z * & = 0, where i(A) = u(—A). Since E is bounded
and u € My, 1z * i defines a tempered distribution (see [9]) and it has a
Fourier transform in the sense of tempered distributions. Passing to Fourier
transforms we have T Eu, = 0. (Note Tpisa C”-function since E is bounded.)
Since 1:(x) # 0 for x € R”, we conclude & = 0 (as a distribution) and
hence i = 0;i.e., u = 0; i.e., E is a determining set for M.

Finally, the last part follows immediately from the Wiener-Tauberian
theorem (see [9]).
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Example of determining sets for My. Take n = 1 and let
E=[-1,11UR2 - a,2 + a]

where « is irrational and 0 < o« < 1. For R", n > 1, we can take the
n-fold product of E.

We thank M. G. Nadkarni and R. L. Karandikar for this example.

In view of the last part of Proposition 3.2, a natural question to ask at
this stage is: Given a Borel set E such that 0 < A(E) < o, is there a criterion
to decide whether V,, = L'(R")? In this connection we prove a negative
result, i.e., a large class of sets do not have this property. More generally
we prove the following negative result:

ProposITION 3.3. Let f € L'(R") be real valued, bounded and satisfy the
Sfollowing conditions:

(i) There exists Ay € R" such that f(x + A\y) = f{—x + Ay) a.e (x).
(ii) There does not exist a continuous function g on R" such that
f = g almost everywhere.

Then V; # L'(R").

An immediate consequence of this theorem is the following:

CoROLLARY 3.4. Let E be a Borel set in R" with 0 < ME) < ®. Suppose
1z(x) = 1g(—x) a.e (x). Then V,, # L'R"). Thus such an E which is
moreover bounded cannot be a determining set for M.

Proof of Proposition 3.3. By translating if necessary we may assume
Ao = 0. In this case, since f(x) = f(—x), f is a real valued function. To
prove the theorem it is enough to show that f has a zero. Suppose not.
Since f is a continuous real valued function on R” we may assume £ (f) >
0 for ¢t € R". Now, it is known that if f € L'(R") is bounded and £ (t) = 0
for all ¢, then f € L'(R"). (See Remark (i) following this proof.) However,
by Fourier inversion, this implies that f{x) = g(x) (a.e) where g is a continuous
function. This contradicts condition (i) and the proof of the theorem is
complete. The corollary is immediate from the theorem. (Corollary 3.4 can
be regarded as an analogue of Theorem 3.1; i.e., we have shown that a
‘‘symmetric set’’ E can never be a determining set for M;.)

Remarks. (i) Iff€ L' N L", then f € L* Choose an approximate identity
{u,} in L' such that 0 < @, € L' N L? (many such exist). Then &, — 1
uniformly on compact sets. If f = 0, we have 0 < [4,f = fu,f< 1o -
Hence ff € L' and in fact [ f < |fl..

(ii) The corresponding theorem is false in L*(R"). In fact, if fis any non
trivial function in LA(R") which vanishes outside a compact set, then it can
be easily shown that the linear span of the translates of fis dense in L{R").
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(iii) As remarked in the introduction, the Pompeiu problem concerns
itself with the following question: What conditions on the set E ensure that
E is a determining set for M if one allows rotations as well as translations?
More precisely we say that a bounded set E of positive measure has the
Pompeiu property if w = 0 whenever u € M and wu(o(E)) = 0 for all rigid
motions o of R". So the above question can be reformulated as follows:
when does E have the Pompeiu proerty? This question is surprisingly deep
and leads to problems of spectral synthesis. It has been completely answered
by Brown-Schreiber-Taylor in [3] and the condition involves the *‘complex
zeros”’ of 1. However in the same paper it is pointed out that the following
theorem is, on the other hand, quite easy: for each a = 0, let

C,={x€eR":|x| = a}.

Then the following are equivalent: (i) If fis a bounded continuous function
on R" such that [, fix)d\(x) = 0 for all rigid motions o of R", then f =
0; (ii) Tz does not vanish identically on C, for any « = 0. We wish to point
out that this theorem can be strengthened. We say a bounded set E of
positive measure has the Pompeiu property for My if u = 0 whenever
n € My and w(o(E)) = 0 for all rigid motions o of R". Using the methods
of Proposition 3.2 and standard properties of Fourier transforms and or-
thogonal transformations, one can prove that if

Co={x€ER": x| =a} fora=0

then the following are equivalent: (i) E has the Pompeiu property for My;
(ii) 1z does not vanish identically on C, for any a = 0.

4. Determining Sets for M,

We begin with the following remark. Let u € M, and let f be the indicator
function of a ball with centre at 0 such that f fd\ = 1. Let f, be the
corresponding approximate identity. Then

fexfe*xpu—op ase—>0

(in the sense of distributions). Now f, * f. * u & Cy(R"). In view of this, in
most arguments, it is enough to take u = g(x)d\(x) with g € CyR").
It follows from a deep theorem about mean periodic functions on R (see
[2], [6]) that if f € Cy(R), E is a bounded Borel subset of R of positive
Lebesgue measure and [g., f(x)d\(x) = O for all y € R, then f = 0. In
view of the remark in the first paragraph we can rephrase this result as
follows:

THEOREM 4.1. Let E be a bounded Borel subset of R of positive Lebesgue
measure. Then E is a determining set for MyR).

Using this result it is proved in [2] that:



344 ALLADI SITARAM

THEOREM 4.2. Let E be a bounded Borel subset of R" of positive Lebesgue
measure of the form E, X E, X -+ X E, where each E; is a bounded Borel
subset of R. Then E is a determining set for M,.

The question of what happens if E is not of the above type is left open
in [2]. The following theorem shows that for sets which are not product
sets the situation can be very unsatisfactory.

THEOREM 4.3. Let E be a bounded Borel subset of R" (n > 1) of positive
Lebesgue measure. Also assume that E is spherically symmetric about 0
(i.e., x € E implies Tx € E for all orthogonal transformations T). Then E
is not a determining set for M,.

Proof. Since E is spherically symmetric about 0, it is symmetric about

0 (i.e., x € E implies —x € E). Hence by Corollary 3.4, there exists
0 # x, € R" such that T E(xo) 0. Let |xo]l = R > 0. Then, because E is
spherically symmetric, 15 vanishes on {x; ||x|| = R}. Let W be the uniform
probability measure on {x; |x| = R}. Then it is well known that WR
CO(R”) Now 1 EWR is the zero measure. Hence (1;Wy)~ = 0; i.e., 1 * W,

= 0;i.e., [g+y Wgd\ = 0 for all y € R".Thus E is not a determmmg set
for M,.

The following interesting remark is due to B. V. Rao. Theorem 4.2 can
be interpreted as follows. Let E be as in the theorem. Let u € M and
suppose there exists ¢ € C such that for every compact set K, (u — c)\)
(x + K) = 0 as ||x|| = o (i.e., u is asymptotically like the Lebesgue
measure). Further if u(x + E) = w(E) for all x € R", then u = cA; i.e.,
if u is a Radon measure which is asymptotically like the Lebesgue measure
and is moreover translation invariant with respect to the single set E, then
it is actually (a constant multiple of) the Lebesgue measure.

Theorem 4.3 (and its proof) is motivated by an example, given to us by
Prof. J. P. Kahane, of a non trivial mean periodic function on R? vanishing
at o,

5. Support Theorems for Finite Measures

It is easy to prove (see [10]) that if E is a bounded Borel set of positive
measure in R”, then E is a determining set for M. It is therefore natural
to ask the following question: If u € My and w(x + E) = 0 for all x € R"
such that |x| > R, can one say something about the support of u? We prove
in this section that if u is ‘‘very rapidly decreasing’’, then indeed one can
conclude that u is of compact support. The theorem we are going to prove
is essentially a reinterpretation of some famous results of Malgrange in [7].
Before stating our theorem, we make a definition.

DEFINITION 5.1. u € MF is said to be ‘‘very rapidly decreasing’’ if
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Ln e"d |u| (x) <o forall r > 0.

Let
N = {u € Mg; u “very rapidly decreasing’’}.

THEOREM 5.1. Let w € N and let E be a bounded Borel set of positive
measure such that E C {x : |x| < r}. If ux + E) = 0 for all x with
x|l > R, then Supp uw C {x : ||x| <R + r}.

Proof. Since u € N it is easy to show that i is an entire function on
C", bounded on R". Further, the condition u(x + E) = 0 for ||x]| > R
implies that @ * 1 = g where g is a'measure of compact support, Supp
g < Bg (where a(A) = u(—A)). Passing to Fourier transforms we have
i 1z = 2. Moreover 1. and g are entire functions on C" of exponential
type, being Fourier transforms of compactly supported measures. As already
observed @ is an entire function and hence it follows from Theorem 2.2 that
i is of exponential type (and is moreover bounded on R”). Thus by Theorem
2.1, @ is of compact support; i.e., u is of compact support. It follows easily
from Theorem 2.3 that Supp s C Bg.., and this concludes the proof of our
theorem.

The theorem above is motivated by Helgason’s support theorem for
Radon transforms (see [5]). In Helgason’s theorem one needs to assume
only ‘‘rapid decrease’’ whereas we have to assume ‘‘very rapid decrease’’.
We observe below that this condition is really necessary.

ProPoSITION 5.2. Let E be a bounded Borel subset of R of positive
Lebesgue measure such that 14z,) = 0 for some z, € C, zo & R. Then
there exists f € S(R), f not of compact support, such that f * 1g is of
compact support.

Proof. We first remark that such an E does exist; for example, take E
to be the disjoint union of two closed bounded intervals of R, suitably
chosen—see the example of a determining set for My in §3.

Choose g € CZ(R) such that g(z,) # 0—this is certainly possible. Now

.__g_(.& [= S(R)

X — 2o
(because zo & R and g(x) € S(R)) and hence there exists f € S(R) such
that

f x) = &, x € R.
X — 2o

However f is not of compact support because 2(z)/(z — z,) is not entire.
Now
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F) 100 = 2 )—() xER.

Also the right hand side extends to an entire function on C of exponential
type (because both g, 1 E(Q/(z — Zo) are entire functions of exponential
type—note z, is a zero of 1x(z)). Thus

(F*1p)=(*1p)"

is an entire function of exponential type and hence since it is bounded on
R", by Theorem 2.1, f * 1z is of compact support. As already observed,
f € S(R) but fis not of compact support and the proposition is proved.

We can generalize this proposition to R" by taking the n-fold product of
E.

However if the set E is ‘‘sufficiently nice’’ we can get a support theorem
without any decay conditions on the measure u, as the next proposition
indicates. For simplicity we work with R? but the same proof can be used
in R".

PrOPOSITION 5.3. Let E = {(x1, %) : X} + x5 < /. If o € MR and
w(x + E) = 0 for x € R* with ||x|| > R, then Supp p C Bg.,.

Proof (sketch). We are given that u * 1; = g where g is a measure of
compact support and supported in B;. Passing to Fourier transforms, we
have f(x) Tz(x) = 2(x) for x € R% Now it is known that the zeros of 1,
on R? occur precisely on a sequence of circles

{(x,, xz) :x“; + X§ = r?}9 0<r1 <rn<..

Since { is a continuous function on R?, 2 also vanishes on these circles.
But 2 is an entire function on C? and hence 2 vanishes on

{(z1,22) EC} 22 + 2§ = r}}

Since 23 + 23 — r, is an irreducible entire function vanishing on this set,
it divides 2. Also 15 vanishes precisely on those sets and it can easily be
shown by an argument similar to above that if (z} + z3 — r)* divides 1,
then it divides g. From this it follows that /1 is an entire function on C?
and hence, since

~ _ 2(x) 2
ax) = 1,00 for x € R%,

fi extends to an entire function on C. The rest of the proof is exactly as
in Theorem 5.1.

Remarks. (i) For finite measures there is no need to confine oneself to
bounded sets E. For a discussion of determining sets without assuming
boundedness of E, see [1], [10], [11].
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(ii) For a discussion of determining sets for My in the context of general
locally compact abelian groups etc., see [8].

(iii) The main idea in the proof of Proposition 5.3 is motivated by the
proofs in [3].
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