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ABEL SUMMABILITY OF JACOBI TYPE SERIES

CALIXTO P. CALDER6N and VIRGINIA N. VERA DE SERIO

1. Introduction

A brief description of the Jacobi type series is as follows: Let Pna’#) (y) be the
n-th normalized Jacobi polynomial of parameters or, t; namely

-n Y)re (y)(1 y)(1 + y)dy n,e,
-1

for a, fl > 1. For their definitions and estimates see IS]. The m-dimensional Jacobi
polynomial of order n (n nm) is given by

m - (xj),
j=l

where X (x Xm) m, a (a am), ( m), aj > --1,
j > --1, j 1 m. We will let JCa’#) denote the measure defined on the cube
Q [-1, 1] x x [-1, 1] [-1, 1]m by

m

+ aY,’" Ym.
j=l

Clearly,

P’’) dtn,e dnl lm),(e, em)(X)p’’) (X) djfa,)

Q

Likewise, we introduce the Jacobi functions, namely,

F’")(y) P’") (y) (1 y)/(1 +
for c,/ _> O, y I. It is immediate that these functions are orthonormal with respect
to the Lebesgue measure on the interval [-I, I]; i.e.,

,y)r (y)dy dn,e.
-1
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The m-dimensional Jacobi functions are

m

--. (xj),
j=l

where X (x1 Xm) E ]1m ol (o Orn), (1 m), Oj >_ 0, j >"

0, j 1 m andn (nl rim).

Remark 1. Throughout this paper, all the single and m-dimensional parameters
and/ will be non negative.

We shall be concerned with multiple Jacobi functions series of the type

F(=’ ’:l) (X1) Ff’/m)(Xm),E fnl nm nl

where cj > 0,/j > 0, j 1, 2 m, and

’r/! r/m (f) fo f F(na’/)dY’

for f E L (Q). For short we write

E ,, F(n’/) (X).
n=(n| nm)

The Abel summability of the multiple Jacobi functions series is given by

",,,,, F(n’"’)(Xl) F(na=m,/m)(xm),lim E rr’ rm ’rim
(rl rm)-- (1-, 1-)

whenever this limit exists. The Abel approximation will be denoted by

f (r,X) f (rl rm,Xl Xm)

E r,,n’ rmnmnl ,nmF(nl’/l)(Xl) F(CXm’m)(Xm)nm
nl ,...,rim

Likewise, we define the coefficients with respect to the normalized Jacobi poly-
nomials:

Cni nm (f) f f P(a’/) dJ(a’#).
jQ

The Abel approximation for the Jacobi series is given by

f(r, X) f(rl rm, Xl Xm)
(c/) p(O,,,,flm)"’ nmCn, P,, (Xl) (Xm)rl rm .,nm --lm

n! ,...,rl
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and its restricted maximal operator is

f***(Xl Xm) sup If(r1 rm, Xl Xm)l 0 < rj < 1,
(r! rm)

& <L- <M,i j=l m.M 1--rj

The well-known estimates on the Jacobi polynomials allow us to write the Abel
approximation as the following integral (see L. A. Caffarelli-C. P. Calder6n, [CC2]
p. 278)"

f (r, X) f (rl rm, Xl Xm) fQ Ka’#) (r, X, Y) f(Y) dJ’),

for0<rj < 1, j=l m. Here

m

K’#)(r, X, Y) HK(’#)(rj,xj, yj)
j=l

is the multiple Watson kernel for the Jacobi polynomials. For an expression of the
one-dimensional Watson kernel see Bateman [B], p. 272, and {}4 below. We shall
alternatively use the Watson kernel for the Jacobi functions and the Watson kernel
for the Jacobi polynomials. The first kernel can be obtained from the second one by
multiplication by the factor (1 x)/2 (1 y)a/2 (1 + x)//2 (1 + y)#/2. Thus, the
Abel approximation for the Jacobi functions series can be expressed as

f (r, X) f (r rm, xl Xm) fQ (a’#) (r, X, Y) f(Y) dY, (1.1)

where (,,t) (r, x, y) K(’) (r, x, y) (1 x)’/2 (1 y)a/2 (1 + x)/2 (1 + y)#/2,
is the modified Watson kernel for Jacobi functions..
We consider the maximal operator

Xm)--" sup Fm, Xl xm)l,f**(Xl
(rl rm)

1 1 ri
O<rj<l,<--1--rj <M,i,j=l m,

for a given constant M > 1. The unrestricted maximal operator is defined as

f*(x Xm) sup
(rl rm)

r(r rm, Xl Xm)[,0 < rj < 1, i,j 1 m.

The properties of these maximal operators are the key to understanding and proving
convergence a.e. of the Abel approximation. The first result in this direction was
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published in 1974 by L.A. Caffarelli and C.E Calder6n, [CC2], where they developed
a method for handling the maximal operator for the restricted Abel sums of arbitrary
L (j(ot, fl)) functions. Their result is the L1-weak type estimate for the restricted
maximal operator, for details we refer the reader to [CC2] and also 6 below. One
of the results in this paper is the weak type estimate for the maximal operator of the
restricted Abel sums of multiple Jacobi functions series of arbitrary L (Q) functions.
In order to achieve this result we use two different methods. The first one, which is
argued in {}5 below, uses an approach based on a domination of the modified Watson
kernel by an infinite superposition of Poisson type kernels, namely,

where bj 2-j/2, tp (r) k and h (x) 1 x. This method deals basically
with the Lebesgue measure case.

The second method is an adaptation of the corresponding one in [CC2] and is
discussed in {}6 below. In this context, it gives a generalization of the main theorem
in [CC2] to a family of measures given by the weights

m

dJ(a’t) H(1 yj) (1 + yj) dyl.. "dym,
j--1

where (j > otj > 0,/3j >/j > 0, j 1 m. The main tool in this approach is
the following domination of the Watson kernel:

1
Ka’# (r, X, Y) < C ,

2n’/2. 2n/2 {In (X, r)} Xln(X,r) (Y),
n=(nl nm) lZ

for nj

_
Z, nj >_ 1; where

In (X, r) In, (x1, rl) x x lnm (Xm, rm), I_, (xi, ri) [--1, 1],

)(ln(X,r) is the characteristic function of In (X, r), the In, (xi, ri)’S are suitable intervals
and/z is either the Lebesgue measure restricted to Q or the m-dimensional Jacobi
measure j(a,tT), tj > aj,/j > /3j, with only a possible change in the constant
C C(ct,/, (,/). K"’ (r, X, Y) denotes the modified Watson kernel/ in the case
of the Lebesgue measure.
We have included in 4 and 6 below and in the Appendix some results that were

stated in [CC2] with proofs merely outlined or omitted in the simplest cases. It is
not only in the spirit of further clarification that these proofs have been included here



ABEL SUMMABILITY OF JACOBI TYPE SERIES 241

in detail; in fact, the density and complexity of the exposition in [CC2] make some
repetition unavoidable.

As indicated above the method of 6 below gives both results, Theorem 2.1 and
Theorem 2.2. In fact, the estimates for the Watson kernel are obtained simultaneously
for both scenarios in the various auxiliary lemmata in [}6, for ot >_ 0 and/ >_ 0. In
5, as pointed out above, a different approach to estimate the Watson kernel is found
and discussed throughout. This is the first of a series of paFers on these and related
topics.

The paper is organized as follows: In 2 the main results are stated; 3 includes
some auxiliary lemmas; 4 provides some estimates for the single Watson kernel. In
5 a theory for the Lebesgue measure case is discussed, while in 6 a unified theory
for both measures is given. Finally, we have added the Appendix in 7.

2. Main results

THEOREM 2.1. Iff L Q and

f** (x Xm) sup
(rl rm)

If(rl rm, Xl Xm)

rim< <M,i,j=l m,O<rj < 1,
M 1-rj

where

hi... rnmmn, F(l,fli)(Xl)... F(am,flm)(xm),J(rl rm, Xl Xm) rl tlm n n
,...,rtm

and

’r/I ti (f) [ f F<’:) dY,

for o (o Om), --( m), % > O, j >_0, j 1 m, then

c ,>0.(i) I{f** > .1 N QI < " Ilfll,

Here C is an independent constant. Furthermore, f(r rm, x Xm) con-
verges a.e. to f(x, Xm) as (r rm) ---> (1-, 1-), restrictedly; that

< M, i,j 1, m for some fixed constantM > 1 Ifis, when - <_ -rj

f Ll(log+ L)m-l, then the condition of restricted convergence can be relaxed to
convergence. Moreover, an estimate in the spirit ofJessen-Marcinkiewicz-Zygmund
inequality is valid:

(ii) f (f,)r’ dx < C1 -- C2 f Ifl (log+ [fl)m-1 dx,
Q Q

where 0 < y < 1, C and C2 depend on y only.
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Ifp > 1, then

(iii) f (f*)P dx <_ Cp f Ifl p dx,
Q O

whenever f belongs to LP (Q).

As indicated in the introduction, the second method used to prove the above
theorem also gives the following result:

THEOREM 2.2. Let f L l(J(a’t)), ct (ctl Om), (1 m), O/j >_ 0,
j>0, j=l m,

Cn, nm (f) f. f P(a’:),, (Y) dJ(a’/)

and let

E n, rnm C,, ("#’)(xl)" P’")(Xm)f(rl rm, Xl Xm) rl nPn,
t/I ,...,/’/m

Then, its restricted maximal operator,

f*** (X Xm) sup If(r rm, Xl xm)l 0 < rj <
(ri rm)

satisfies

ri

M- l-rj
<M,i,j=l m

j(a,t) {f*** > Z} < - Ifl dJ(’),

for any > O, 6tj > otj > O, j > j > O, j 1 m, for some independent
positive constant C C(, , 6t, ).

Remark 2. Here dJ (,t) stands for a whole family of measures with parameters
t and/, j > ctj > 0, /j >/j > 0, j m, where ctj and/j are the original
parameters of the Jacobi series in question. As a particular case we get the known
result already proved by L. A. Caffarelli and C. P. Calder6n [CC2] in 1974.

3. Auxiliary lemmas

LEMMA 3.1. Let S be a bounded set in ,m. Suppose thatfor each X S there
is associated a non-degenerate rectangle R(X) with edges parallel to the coordinate
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axes and center X, such that the edge parallel to the j-th axis has length given by
hj(t), j 1 m. Thefunctions hi(t) are assumed to be continuous, non-negative
and satisfying the monotonicity type condition

hj(tl) <_ kjhj(t2) whenever tl <_ t2, 0 _< tl, t2 6 ,
for some positive constants kj depending only on j; hj(t) > Ofor > 0, hi(O) 0,
hj(t) ---> o as --+ cxz,for j 1 m.

Then there exists a denumerable subfamily R(Xn) of rectangles that covers S
such that each X m belongs to at most

m

2mm! H (2 -I-log2 (1 -I- kj))
j--1

rectangles. Here log2 standsfor the logarithm to the basis 2.

The proof of this lemma can be found in L.A. Caffarelli-C.E Calder6n [CC1],
pp. 222-223. A consequence of this lemma is the following one, whose proof is in
L. A. Caffarelli-C. P. Calder6n, [CC2], p. 279.

LEMMA 3.2. Let S be a bounded set in ]m such thatfor each X belonging to S
there is a non-degenerate rectangle R(X) associated with it, with edges parallels to
the coordinate axes and center X, such that the edge parallel to the j-th axis has
length given by

Kjq))/2(t) [hj(xj) + qgj(t)] 1/2

where t(X) is a parameter and hj is afunction that depends on xj only, satisfying
the Lipschitz condition

Ihj(Sl) hj(s2)l <Cj ISl s21, Cj>O,j=l m.

The oj(t) are increasing functions of the parameter > 0, continuous at 0,
oj(O) O, j 1 m.

Then there exists a denumerable subfamily {R(X,)} of rectangles that covers S
and such that each X IRm belongs to at most

m

C (m) H (1 + log2 (1 + CjKj))
j-’l

ofsuch rectangles.



244 CALIXTO E CALDER)N AND VIRGINIA N. VERA DE SERIO

LEMMA 3.3. Let/zi >-- 0 be afinite measure on the interval [- 1, ], 1 m,
and let/Z be the product measure/zl x x /zm on Q [-1, 1] x x [-1, 1].
Let Q QI x Q2, where Q1 [-1, 1]J and Q2 [-1, 1]m-J, and let v
/Z x x/Zj, v2 =/Zj+ x x/zm, <_ j < m. Let f be afunction belonging to
L (Q) and consider the maximal operator

1
fn* (X) sup

t>O I)1 (In, (1, t) x...x lj (xj, t))

x Ifl dv2 dvl.
P2 (Q2)

In (Xl,t)"’lnj (Xj,t) Q2

where In, (Xi, t) is the interval

[Xi Kicp/2(t) (hi(xi) -I- qgi(t)) 1/2 Xi -I- Kiq)]/2(t) (hi(xi) + i(t))1/2] N [--1, 11,

j. Then

C (m) HiJ___l (1 +Xlg2 (1 + CiKi)) f Ifl
Q

Here hi(xi), qgi(t), Ci and Ki are the functions and constants already defined in
Lemma 3.2.

Proof It follows from the standard procedure applied to

fg (Xl Xj) Ifl dyE,
(Q2)I)2

2

by using Lemma 3.2. The passage from Q to the whole cube Q is immediate after
taking (x xj, xj+ Xm) g(x x).

4. Auxiliary estimates

From [B], p. 272, the single Watson kernel for the Jacobi polynomials can be
written as

Ka’# (r, x, y) r(1-a-/)/2 d-d kl+a+ sec2+a+/ w cos (or fl) o9
dw

o
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where k 1/2 (r 1/2 + r-1/2), s k sec o9,

Y
2

%- (s2- 1)(s2-xy)

Z s2 -(x+y)+Y, and

1
Z2 s2+(x+y)+Y.

The Watson kernel for the Jacobi functions is the modified Watson kernel obtained
from the previous one by multiplication by a convenient factor, namely,

/a’# (r, x, y) Ka’# (r, x, y) (1 x)tIE (1 y)a/2 (1 + x)/2 (1%- y)#/2.

ASSUMPTION.
1/2<r< 1.

0 X,X 1,--1 __< Y, Yi <-- lfori 1 m and

LEMMA 4.1. Thefollowing estimatefor the single Watson kernel is valid:

Ka’# (r, x, y) < C (a, fl) (1%- L),

where C (ct, ) is a positive constant, L is the integral

2

L (1 r) f (s min(x, y))-a ds

k ((X y)2 + (S - min(x, y)))3/2 (s k) 1/2

and k 1/2(r1/2 %- r-1/2), 0 < x < 1.

Before beginning the proof of this lemma, let us state some estimates that will be
needed. (Their proofs can be found in the Appendix.)

Let _< s _< 2, 0 _< x _< 1, Yl _< 1. Then:

(i) s2 min(x, y) _< 4 (s min(x, y));
(ii) s min(x, y) _< 2(s xy) <_ 4 (s min(x, y));
(iii) CI ((x y)2 %- (s 1)(s min(x, y))) _< y2

< C2((x y)2 %- (s 1)(s min(x, y)));
(iv) s2 min(x, y) <_ Z <_ C(s2 min(x, y));
(v) _< s2 %- max(x, y) _< Z2 _< C;
(vi) if tp(x, r) (k 1)1/2 (k x)1/2, then k _< o(x, r) _< k x, for k > 1;
(vii) C1 (1 r)2 < k < C2 (1 r)2 if 0 < ro < r < 1.

Here C, C and C2 denote positive constants.
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ProofofLemma 4.1. The proof is carded out through some estimates given in
four claims. By taking derivatives, the Watson kernel can be decomposed into the
sum of the following four kernels A, B, C and D"

2sec2+a+fl COS (t fl) to
A r(1-a-fl)/2

d (kl+a+/) to

d-7 zr:o

rt/2

B r(’-a-)/2kl+a+O -r (Y-)
o

sec2+a+# to cos (Or fl)to

r/2

C r(l-a-fl)/2k1++ -r (Za)
o

sec2+a+# to cos (C fl) to

zr/2

D r(1-a-#)/2kl+a+# f d (Zf/)secZ+a+flto cos(ct--fl)to

o

CLAIM 1.

0
rr/2sec2++/ Z{ZzYto cos (or S l+t+fl ds )

k ZZ2Y (s k)l/2

Proof. By changing variable and letting s k sec to we get

zr/2 x

f fs2++ kdssec2+a+o to cos (or -/) co
do2 < k-2+c+/)

, zrzfr s ( k)1/
0

Since we assume that 1/2 < r < 1, we have < k < 3/2 < 2. Now, for 2 < s <
the last integral is dominated by a constant depending on c and/ only; in fact,

S l+c+’B S l++’B C
<

ZZ#2v (s2- k2) 1/2 (s2)a (s2)# S2S S2+a+#

because Y, Z1, Z2 >_ s2, and therefore it follows that

S l++fl ds

ZZV (s k)1/ -< C (, ).
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Consequently,

2

dto _< C (or,/)+Ck-(l+a+) f sl+t+/3 ds

,, zozr (s k) 1/"

(4.1/

CLAIM 2. IAI _< C (c,/) (1 + L).

Proof.
above by

The change of variable s k sec to and (4.1) show that AI is bounded

r(1-t-/)/2 (l+c+/) k+ (l-r)
(or /) +Ck-l+a+/)

s ds
4r3/2 ZZ2 Y (s-k)l

k

which in turn is dominated by

2
y2 ds

C (cg,/3) + C (ct,/) (1 r)
ZZ2# y3 (s k) 1/2"

k

(4.2)

The estimate (ii) above for s 1, applied to (x y)2 x2 -b y2 2xy <_ 2 (1 xy)
implies that

(x y)2 < 4 (1 min (x, y)) _< 4 (s min (x, y)). (4.3)

From (4.3) and the estimate (iii) above, it follows that

y2 < C ((x y)2 + (s 1) (s min(x, y))) < C(s min(x, y)). (4.4)

Thus, (4.2), (4.4), and the estimates (iii)-(v) above give

IAI <_ C (c,/) (1 + L).

CLAIM 3. BI < C (ct,

Proof Similarly, by taking derivatives and changing variables, it follows that

2

BI _< C (a,/) + C (,/3) (1 r) f 2s2 xy ds

(s k)l/2
(4.5)

As a consequence of the estimates (i)-(v) above, we get

1
_< c (a,/)

(s min(x, y))a ((x y)2 + (s 1) (s min(x, y)))3/2"
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Therefore, it only remains to be shown that2s2 1 xy < C (s min (x, y)). Now,

2s2-1-xy<2(s2 -xy).

If y < 0, then

S
2 xy <_ 5 <_ 5s <_ C(s min(x, y)).

Suppose y > 0. Without loss of generality assume that min (x, y) x; m(x, y) y
is similar. Then

s2 xy <_ s2 x2 (s -- x) (s x) C (s min (x, y)). (4.6)

Thus, in any situation,

2S2 1 xy _< 2 (s2 xy) <_ C(s min(x, y)).

Then, estimate (iii) above, (4.5) and (4.7) give IBI <_ C (ct, ) (1 + L).

(4.7)

CLAIM 4. ICI _< C (c, t) (1 + L) and IDI _< C (c, ) (1 + L).

Proof. Once again, by taking derivatives and changing variables, it follows that
CI and DI are dominated by

2

C (a, 6) + C (a, 6) (1 r)
Z+I Z2yk

2s2 xy’ ds
Y ] (s k)1/2

and

2

C(ct,)+C(ct, fl)(1-r)
k ZZ2+1Y 1+

2s2 1 xy ds
Y J (s k)1/2’

respectively. Since 0 < Y <_ Zi, l, 2, and Z2 C, we get

1 c (/)

Z+lz2flY ZZY2 ZrY2
and

1 1 C (3)
/l r’ zrz 

Because of (4.7) it suffices to prove that Y _< C (s min (x, y)). Now,

y X -.Y + (s2 1) (s2 xy)
2
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(X y)2 < (1 min (x, y))2 _< (s min (x, y))2,

and by virtue of (4.6) we have

(s2 1) (s2 xy) < (s2 xy)2
< C (s rain (x, y))2.

Hence,

Y < C (s min (x, y)),

and so the required inequalities: ICI <_ C (,/) (1 q- L) and IOl < C (a, ) (1 + L)
hold.

Collecting results, Lemma 4.1 follows. []

Remark 3. In the case of the Lebesgue measure, the integral L and the Wat-
son kernel have to be multiplied by the bounded factors (1 -x)/2 (1 y)/2 and
(1 --x)t/2 (1 y)a/2 (1 + x)#/2 (1 + y)#/2, respectively. So, the above lemma is
also valid for the modified Watson kernel and the corresponding modified integral L.

5. A theory for the Lebesgue measure case

5.1. Estimates for the modified Watson kernel.
/(’,#) (r, x, y) is given by

The modified Watson kernel

/a’#) (r, x, y) Ka’#) (r, x, y) (1 x)/2 (1 + x)#/2 (1 y)Ot/2 (1 / y)#/2

Hence,

/(’(a’#) (r, x, y) < 2#K(a’#) (r, x, y) (1 x)/2 (1 y)a/2.

By considering the estimate given in Lemma 4.1, the fact that

(1 X)t/2 (1 y)a/2 <_ (S min (x, y))",

for s > 1, and the estimate (vii) in Section 4, it follows that/(’#) (r, x, y) is
dominated by

2

C (ct, r) + C (t, r) (k 1)1/2 f S min (x, y) ds

k ((X y)2 _1_ S -’ i (S X))3/2 (S k) 1/2"

We want to get an expression involving a superposition of Poisson type kernels. The
elementary estimate

s min(x, y) < s -x + Ix yl,
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gives

/a’) (r, x, y) < C (t,/3) + C (ct,/3) (k 1) 1/2

NOW,

2

x f s-x ds

((X y)2 + (S 1) (s x))3/2 (s k) 1/2

2

+ C (or,/3) (k-l) 1/2 f Ix-Yl ds

k
((x--y)2 d- (s--l) (S--X))3/2 (s-k) 1/2"

2
s -x ds

k ((X y)2
_

(S 1) (S X))3/2 (S k) 1/2

2 (1)’/Zf (s-l)(s-x) ds

k

On the other hand,
2

Ix Yl ds

k ((X y)2 "1- (S 1) (S X))3/2 (S k) 1/2

2 Ix-yl ds1 1 ((s_l)(s_x))/2

((s_l)(s_x))/ + 1

Ix-yl
,I/2 ds

((s-l)(s-x)

((s_l)(s_x))/ +

Thus, the modified Watson kernel is dominated by an infinite superposition ofPoisson
type kernels. The crucial estimate is

2

(k 1) 1/2 f (s k) 1/2 (S 1) 1/2 (S X) 1/2
k

ds < C, (5.1)

which in turn follows from
2

(k 1) 1/2 f 1

(S- k) 1/2 (s- 1)
ds < C.

k

(5.2)
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Remark 4. At this point, this estimate can be applied to the multiple Watson
kernel to give the Jessen-Marcinkiewicz-Zygmund inequality. In this case the well
known iteration method gives part (ii) of Theorem 2.1 because of (5.1) and (5.2)
above.

In order to get the weak type (1,1) inequality, we have to replace the continuous
estimate involving an integral by a series.

LEMMA 5.1. The modified single Watson kernel admits a domination by a series

ofPoisson type kernels, namely,
o 2j tp (r)fa,l) (r, x, y) < C (t, ) -t- C (or, ) bj
j=0 (x y)2 + 22Jo2 (r)

+ C (t, ) bj
2Jq9 (r) (2Jo (r) + h (x))

j=0 ((x y)2 + 2Jtp (r) (2Jtp (r) + h (x)))3/:’

where bj 2-j/2, tp (r) k 1 and h (x) 1 x.

Proof. Recall the basic inequality

(a’#) (r, x, y) _< C (c,/5) d- C (c,/) (k 1) /2

2
s -x + Ix Y ds

k ((X y)2 -I- (S 1) (s x))3/2 (s k) 1/2’

where, as before, we have used s min (x, y) < s x + Ix Yl. By setting s
u (k 1), we have the above integral dominated by

(k 1) /2 f u (k 1) + (1 x) + Ix Yl (k 1) du

((x y)2 -I- U (k 1) (u (k 1) q- (1 X)))3/2 (U (k 1) k 1) 1/2

u (k 1) + (1 x) + Ix Yl du
(k 1)

((x y)2 d- u (k 1) (u (k 1) + (1 X)))3/2 (U 1) 1/2" (5.3)

Set o t# (r) k 1 and h (x) 1 x. Taking into account that

tp (uo + h(x) + Ix Yl) < o (uo + h(x)) + o ((x y)2 d-" u2q92) 1/2

we have (5.3) bounded above by the sum of the following two integrals

q9 ((X y)2 + U22)1/2 du

((X y)2 +/,2tp2)3/2 (U 1) 1/2"
(5.4)
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and

t# (utp + h (x)) du

((X y)2 -I- Utp (Utp + h (x)))3/2 (u 1) 1/2"

The one in (5.4) is dominated by

utp du

((X y)2 + U2O2) U (U 1) 1/2

oo du 2J+ltp
u (u 1) 1/2 (X y)2 + 22Jtp2"

\2J

On the other hand, (5.5) is less than or equal to

oo du 2Jo (2J99 + h(x))C
U (U 1) 1/2

2J ((X y)2 + 2Jtp (2Jtp + h(x)))3/2"

(5.5)

5.2. Proof of Theorem 2.1. In order to simplify the writing of the proof we
may consider without loss of generality m 2, a typical case. The proof of the
theorem relies on a very simple fact, namely, that T = ,jo bj Tj is weak type (1, 1)
if -j0 b/2 < oo and each Tj is sublinear, weak type (1, 1) with uniformly bounded

type constants;, i.e.,/x ({ Tj (f) > . }) < f I1, j 0, 1, 2 For a proof of this
property see, for example, C. P. Calder6n [C, p. 121 ]. Taking into account (1.1) and
Lemma 5.1, it will be enough to show that each one of the following operators is of
weak type (1, 1) with uniformly bounded type constants:

ffQ l 2J’tP
+2J’

(2J’tP (r)
GI sup

(xi)__3/2)) If (Yl, Y2)I dyldy2,
"= ((xi Yi 0 (r) (r) +hi

2J’tp (r) (2J’ tp (r) + hl(Xl))
G2 sup

)2 2Jr (2Jr (xl)))3/2((Xl Yl + 0 (r) tp (r) + hi
2J2tp (r)

x
)2 22J292 If (Yl, Y2)ldyldy2,

(X2 Y2 + (r)

fft2l 2J’o (r)
G3 sup If (Y, Y2)I dyldy2,

.= (xi yi)2 + 22Jitp2 (r)

f 2Jo(r)(2Jo(r)+hl(Xl)) lf 2)G4 sup
)2

If (Y, y2)ldy dyl
((Xl--Yl +2J9 (r) (2Jtp (r) +hl(Xl)))3/2
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and

(X yl)2 + 22jp2 (r)

where o (r) k and hi(xi) 1 xi. Let us write

Oi (Xi, r) 2J’o (r) (2J’go (r) + hi(xi)).
Now, the integral in G is dominated by

C E 2-2(/1+/2)
I1,12>_0

ff,x21’+12(01 (X1, r)O2(X2, r)) 1/2 i_y,l<_2,i (Oi(xi,r))I/2
If(Yl, y2)ldyldy2.

which follows from a standard procedure by considering both estimates

0 (Xi, r)

((Xi yi)2 + Oi (Xi, r))3/2 231i (Oi (Xi, r)) 1/2’

for 21’ (0 (Xi, r)) 1/2 < Ixi Yil <_ 2/i+1 (Oi (Xi, r)) 1/2 li _> 0, and

0 (Xi, r) 1

((Xi yi)2 d-Oi (Xi, r)) 3/2 (Oi (Xi, r)) 1/2"

From Lemma 3.2 with i (t) 2J’o (r), t 1 r, Ki 2/’+1 and Ci 1, we have

If (Y, Y2)I dyldy2 > )}fY,xSUPr 2/’+/2 (01 (Xl, r) 02 (X2, r)) 1/2 i-yil<2li(Oi(xi,r)) I/2

C(m) 2

< H (1 + li)Ilfli.
i=1

Therefore, G is weak type (1,1) because

E ((1 + 11)(1 +/2) 2-2(11+12)) 1/2

11 ,/2>0

G2 and G3 are handled in a similar way by making an appropriate use of Lemma
3.2; G4 and G5 follow from Lemma 3.3. [3

6. A unified theory for both cases

6.1. Estimatesfor the Watson kernel. This section provides an estimate for the
multiple Watson kernel which is based on an estimate of the integral L that dominates
the single Watson kernel in Lemma 4.1. These estimates are summarized in the
following two lemmas:
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LEMMA 6.1.

the interval

L < C (c 3) Y. tzlln(x,r)} Xln(x,r) (Y) where In (x, r) denotes
n---0

[x 2no (x, r) ;x + 2nq9 (x, r)] f) [-1, 1],

and Xt.(x,r) is its characteristic function, n O, 1, 2 lz is either the J(a’/)
measure or the Lebesgue measure restricted to [- 1, ]. In this latter case the integral
L is modified by multiplication by the factor (1 x)/z (1 y)a/z, qg(x, r) (k
1)l/2(k x)l/2.

LEMMA 6.2. The multiple Watson kernel satisfies the inequality

1
K’ (r, X, Y) < C Z 2n,/2 2nm/2 /In(X,r) (Y),

n=fnl nm) lz {In (X, r)}

for nj E Z, nj > -1, where

In (X, r) In, (Xl, rl) Into (Xm, rm), I_, (Xi, ri) [--1, 1],

Xln(X,r) is the characteristicfunction ofln (X, r) and lz is either the Lebesgue measure
restricted to Q or the m-dimensional Jacobi measure Ja’), 6tj > tj, j > j, with
only a possible change in the constant C C(t, , t, ). K’(r, X, Y) denotes the

modified Watson kernel K in the case ofthe Lebesgue measure.

For the proof of Lemma 6.2, it will be convenient to consider the following esti-
mates of the integral L and the j,,t) measure of the intervals In (x, r).

LEMMA 6.3.
C(1-r) 1

L _<
(k min (x, y))a+l/2 k 1’

0 <_ x _< 1.

Proof. It is clear that

2

L (1 r) f (s min(x, y))l-a ds

k ((x y)2 d- (s 1) (s min(x, y)))3/2 (s k) 1/2

2
(s min(x, y)) ds

_< (1 r)
(s min (x, y))a (s 1)3/2 (s min(x, y))3/2 (s k) 1/2

k

2
(1 .r) f ds

-<
(k min (x, y))a+l/2 (s 1)3/2 (s k) 1/2"

k

(6.1)
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The fact that < k and an integration by parts show that for any a, b with
b>a>k>l,

b b

f 1 ds [(b-k)1/2 (a-k)l/2]f(s-k)l/2(s 1)3/2 (s k)l/2
2

(b 1)3/2 (a 1)3/2 4- 3
(s 1)5/2

a a

Therefore,

b

_< 2
(b 1) (a 1)3/2 4- 3

(s 1)2
a

1 (a -k) 1/2 ]2
(b- 1) (a 1)3/2
3 3 3

b-1 a-1 a-1

C(1 -r)
L<

(k min (x, y))a+l/2 k 1

ds

ds

(6.2)

LEMMA 6.4. For any Borel set E in Im, J(a’) {E} < C(a, fl, ,/)J(a’) {E},
whenever 6tj > aj, j > j, j 1 m.

Proof. Observe that for ct,/, y ]R, l1 y[ < 2 and l1 4- y < 2 imply that

(1-Y)t(l+Y) 2a+(1-Y)a-+(l+Y)’-+22

< C (a, , t,/) (1 y)a (1 4- y)O,

for any t >_ ct, fl >/. Thus, the lemma follows immediately.

LEMMA 6.5. j(a,t) {Io (x, r)} <_ C (or, , 6t, ) tp(x, r) (k x)a for 6t > or,

Proof By Lemma 6.4, it is enough to show the case J<,#). The J<a,t)-measure
of the interval Io (x, r) satisfies

J’) {Io (x, r)} fo (1- y) (l + y) dy < 2 fo (1- y) dy.

Suppose that x + tp (x, r) _< 1. For short, we will sometimes write Io and tp. Then

x+o

Ja’#){lo} <C(fl) f(1-y)ay=C(,/)((1 --x 4-q9)a+l --(1 --x- qg)a+’). (6.3)
x--p
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The Mean Value Theorem applied to f (u) = (1 u + go (x, r))’+ gives

(1 x + go)a+ (1 x go)a+ < C (a) 2go(x, r) (1 x)a

_< C (a) go(x, r) (k x)a

If x + go (x, r) > 1, then

ja,t) {Io} _< C (/3) / (1 y)a dy C (c,/3) (1 x + go)a+l.
X--tp

In this case, (1 x) < go (x, r), hence

(1 x + go)ot+l < 2go (X, r) (2go (X, r))a

But, go(x, r) (k 1)1/2 (k x)1/2 < (k x), and so

(1 x + go)a+ < C (a) go(x, r) (k x)a

Therefore,

jCa,t) {Io (x, r)} < C (a,/3) go(x, r) (k x)a

(6.4)

(6.5)

LEMMA 6.6.

2n-l go(x, r).

L < C (a, ) ix_yla+3/2 if y E In (x, r) In- (x, r) and 1 x <

Proof. Notice that in this case, y < x and k < go(x, r) < Ix Y l. Then
min (x, y) y and

l+lx-yl
(s min(x, Y)) 1-a ds

L (1 r) [
Jk ((x y)2 + (s 1) (s min(x, y)))3/2 (s k) 1/2

l+lx-yl

< (1 r)
(1 + Ix Yl- Y) f ds

(k y) Ix yl 3 (s k) 1/2"
k

Note that 1 + x 2y 1 x + 2 (x y) < 2n-go(x, r) + 2 Ix Yl < 3 Ix Yl.
Hence

Ix Yl C (1 -r)
L1 < C (1 r)

(x y) Ix yl 3 (1 -4- Ix Yl k) 1/2 <
Ix yl+3/2"

Now, assume that k < 1 + Ix Y < 2 and consider the integral

2

L2 (1 r) f ,s min(x, y))l-a ds

l+lx-yl ((x y)2 d- (S 1) (S min(x, y)))3/2 (s k) 1/2"
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As in (6.1) and (6.2), we get

L2 <

so, y < x < k implies

Altogether, it follows that

C(1-r) 3

(k- y)ot+l/2 (1 + Ix Yl- 1)’

L2 <
C(1 --r)

IX yla+3/2"

C(1-r)
L<

Ix yla+3/2"

LEMMA 6.7. If y e In(X, r) In_l(X r) and x < 2n-lo(x, r), then
J(C’){In(x, r)} < C(ot, fl, St, )lx yla+,for 6t >_ a, > .

Proof Because ofLemma 6.4, it is enough to show the case J(’’). Observe that
1 < x + 2n-o(x, r) < x + 2ntp(x, r). Thus

J(’) {In} ]i (1 y) (1 + y) dr <_ 2 / (1 y) dy
ln

x-2no

C (c,/5) (1 x 2_ 2nqg (x r )
+

a+l

< C (a, fl) (2n-o(x, r))
< C(u, fl) lx-yla+l.

LEMMA 6.8.

2n-l tp(x, r).

L < C (or, fl) o(x,r) if y E In (X r) In- (X r) and 1 x >
(l_x). lx_yl

Proof. (x-)2 From Lemma 6.3, it follows thatFirst, suppose that k > 1 + l-J

C(1 -r)
L <

(k min (x, y))+/2 k 1

C(1-r) 1-x
<

(1 x)a+l/2 (x y)2
(k 1) 1/2 (1 x) 1/2

<C
(1 x)a (x y)2

< C
(k 1) 1/2 (k x) 1/2

(1 -x)a (x y)2
o(x, r)

=C
(1 x)a (x y)2"
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(x-Y)2 Observe that Ix Yl < 2no(x, r) < 2 (1 x)Now, assume that k < + 1-x

Then, for k < s < -t- (x-Y)2 we have

s-min(x,y) < 1+
(X y)2

min (x, y) < min (x, y) + 4 (1 x)

and

1-min(x,y) < 1-x+lx-min(x,y)l < 1-x-t-2(1-x)--3(1-x),

so

1-x <s-min(x,y)<7(1-x).

With this estimate and the ones of the integrals L and L2 in the proof of the previous
(x--y)lemma, with + Ix Y replaced by + l-x we get

1-r
_< c (c, t)

(1 x)a-l/2 Ix yl2"

Hence

(k 1) 1/2 (1 x) 1/2 (X, r)
L_<C(c,/5)

(l-x) Ix-yl2 -<C(c’/5)(1-x) Ix-yl2"

LEMMA 6.9. J(a’) {In (x, r)} < C (t,/, fi, ) (1 x) 2nqg(x, r), whenever
-x >_ 2"-lqg(x, r), t >_ ct, >/3.

Proof. This result follows similarly as in the I0 case. Indeed, the inequalities
2n-lo(x, r) < x < 2nqg(x, r), give (6.3) and (6.4) with o(x, r) replaced by
2n-lo(x, r) and 2no(x, r), respectively. Thus, the factor 2 gets in (6.5) to yield the
desired estimate.

ProofofLemma 6.1. Case 1. lz J (,tT).
Let y 6 I0 (x, r). Lemmas 6.3 and 6.5 give

C(1 -r)
L<

(k min (x, y))a+l/2 k

and J(a’) {Io (x, r)} _< C (ct, fl, t, ) qg(x, r) (k x)a Then

C (a, , fi,/) o(x, r)(k x)
J(a’) {Io (x, r)}

(k 1)1/2 (k x)1/2 (k x)a

C(1 -r) 1
L <

(k min (x, y))a+l/2 k

C(c,/3,&,/)(1-r)
(k x)+1/2 k

_< c
J(’) Io (x, r)

j (c,) I0 (x, r)

Xlo(x,r) (Y).

Xlo(x,r) (Y)

Xto(x,r) (Y)
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Here we have used the fact that (k 1) (1 r)2 which follows from the estimate
(vii) in Section 4 above.

Assume that y In (x, r) In-l(X, r). If 1 -x < 2"-1o(x, r), then L _<
C (c,/3) 1,r and J(’/) {In (x r)} < C(c,/3 t,/) Ix yl+1 from Lemmasix_yl,+3/z
6.6 and 6.7 respectively. Hence

r Ix yla+l
L _< C (c,/, 6,/)

Ix Yla+3/2. J(’/) {In}
Xtn(X,r) (Y)

1--r
_< C (c,/, t,/) (2ntp)l/2 j(s,t) {In}

Xtn(x,r)(Y)

C (c, , t,/) 1-r 1
<

2n/2 (k 1)1/2 j(,,/) In
Xtn(X,r) (Y)

C (or, , 6t, ) 1
<-- 2n/2 j(a,) {In}

Xln(x,r) (Y). (6.6)

When 1-x > 2n-lo(x r) Lemmas 6.8 and 6.9 imply that L < C (a ) o(x,r)
(l_x)lx_yl2

and j(a,/) {In(x, r)} _< C(ot,/3, c,/) (1 x) 2no(x, r). Finally, one can obtain the
required estimate for L by handling the case as in (6.6) above.

Case 2. /z is the Lebesgue measure.
The kernel to be considered is

/<’) (r, x, y) K(a’t) (r, x, y) (1 x)/2 (1 y)a/2 (1 + x)/ (1 + y)/
<_ 2:K(’:) (r, x, y) (1 x)t/2 (1 y)Ot/2,

and the corresponding modified integral is

/_. L (1 x)t/2 (1 y)O/2.

Now, Lemma 6.3 gives

C(1 -r) 1

(k min (x, y))a+l/2 k
(1 x)t/2 (1 y)Ot/2.

Notice that

(1 x)a/2 (1 y)Ot/2
<1.

(k- min(x, y))
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Suppose that y Io (x, r), i.e., Ix Yl < tp (x, r), lYl < 1. Then

< C
(l-r) 2tp(x,r)

(k min (x, y))l/2 k 1 Ilol xo (Y)

(l-r) (k -1)1/2 (k x)1/2
C Xto (Y)

(k rain (x, y))/2 k Ilol
(1 -r) 1

< C Xlo (Y)
(k 1)1/2 Ilol
1

< C,-7-7, Z,o (Y)-

The last inequality follows because of estimate (vii): (k 1) (1 r)2

Now, assume that y In (x, r) In-1 (x, r), namely, 2n-1o (x, r) < Ix Y <

2’*o (x, r), n 1, 2 If x < 2n-l q9 (x, r), Lemma 6.6 gives

L < C (a, fl)
Ix yla+3/2’

hence

Notice that

L <C(a, fl)
Ix yla+3/2

(1 x)t/2 (1 y)a/2.

I1 Yl < I1 xl + Ix Yl < 2n-lg0 (x, r) + 2no (x, r) < 2n+lo (x, r)

and

Thus,/. is dominated by

II1 2n+lq (X, r).

1--r
C (ce, fl)

Ix yla+3/2
(2n-ltP (x, r))a/2 (2n+lq9 (x, r))a/2 2n+lqglll(X’ r)

1-r
< C (or, fl)

]x y,1/2l IIn--"l Xl, (y)

XI. (Y)

because Ix y 2o (x, r). By using this fact once again,

1--r
L < C (or, fl)

12nq (x, r"l/2)l IIn--"[] Xt, (Y).

But, (tp (x, r)) 1/2 >_ (k 1) 1/2 and (k 1) 1/2 (1 r) imply

C (, fl)
L<

2n/2 Iln’-[I Xt. (y)"
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In the case that x > 2"-o (x, r), Lemma 6.8 implies that

C (ct, ) o (x, r)
L<

(l-x)alx-yl2’

consequently,

because Ix yl 2"tp (x, r). Now,

I1 yl/2 <_ (ll xi + Ix yl)
/2

<_ 2/2 (11 xl/2 + Ix yl/2)

Then

(1 y)a/2
(1 x)t/2

Ix yl/2 )_< C (or) q-
(1- x)t/2

( (2"-ltp(2"-qg-(x-" "r))’/-2)(x,.,<_ C (ot) + r))a/2
C().

Therefore,

C(o,fl) 1 C(a,) 1L _<
2" II.--- x,. (Y) _<

2./2 II.--- Xt. (y).

ProofofLemma 6.2.
in Lemmas 4.1 and 6.1.

It follows immediately from the one dimensional estimates

6.2. ThejointproofofTheorems 2.1 and 2.2. We consider the maximal functions

Mn (f) (X) sup f
I In (X, r) Jln (X,r)

If (Y)I d/z (Y),

for n (n nm), where/z is either the Lebesgue measure restricted to Q or the
m-dimensional Jacobi measure J(a’Z), 6tj > otj, j > flj. By Lemma 3.2 applied to
the family of rectangles {I, (X, r)} with

tpj (r) k (r) 1, hj (xj) xj, Ci l, Kj 2n’
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we get the weak type estimate

Ix {Mn (f) (X) > } <

m

C Il nj
j=l

(6.7)

for any Z > 0. Taking into account the estimate for the multiple Watson kernel given
in Lemma 6.2 and (6.7), Theorems 2.1 and 2.2 follow from the observation made at
the beginning of the proof of Theorem 2.1 in Section 5 ([C], p. 121, Lemma 1.3). !-1

7. Appendix

Suppose thatl <s<2,0<x< 1,[yl<_ 1,

x-y +(s2 1)(sZ_xy)= 2

ZI s2 --(x+ y)+ Y,

Z2 s2 q- " (x -- y) + Y.

Then it follows that

(i) s2 min(x, y) < 4 (s min(x, y)),
(ii) s min(x, y) < 2(s xy) < 4 (s min(x, y)),
(iii) C1 ((x y)2 + (s 1)(s min(x, y))) < y2

< Cz((x y)2 + (s 1)(s min(x, y)))
(iv) sz min(x, y) < Z < C(s2 min(x, y))
(v) <s2+max(x,y)<Z2<C.

Furthermore, if k 1/2(r1/2 / r-1/2) and qg(x, r) (k 1)1/2 (k x)1/2, then

(vi) k-1 <qg(x,r) <k-x, fork> 1, and
(vii) C (1 r)2 <_ k _< C2 (1 r)2 for 0 < r0 < r < 1.

Here C, C and C2 denote positive constants.

Proof (i) Forl <s<2anda< 1, wehave

S
2 a 4(s a) s2 4s + 3a < s2 4s + 3 s(s 4) + 3 < 0.
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Hence

s2 min(x, y) < 4 (s min(x, y)),

because min(x, y) < 1.
(ii) To show that s min(x, y) < 2(s xy), it is equivalent to prove that

2xy min(x, y) < s.

For let c 2xy min(x, y). It can be readily seen that for y < 0,

c<-min(x,y)=-y< <s.

Suppose min(x, y) y > 0. In this case, we have

c=y(2x-1)<y<l <s.

Finally, if min(x, y) x, then

c=x(2y-1)<x < <s.

Altogether, we get

s min(x, y) < 2(s xy).

In order to prove that s xy < 2(s min(x, y)), let d 2 min(x, y) xy, and
handle this case as in the above paragraph.

Note that this last proof works for any s > 1.

(iii) By (ii) applied to s 1, it follows that 1 min(x, y) is of the same order
of magnitude as 1 xy. Moreover, s2 (s + 1)(s 1) is of the same order
of magnitude as S 1. Thus, s2 xy (s2 1) + (1 xy) is of the same order
of magnitude as (s 1) + (1 min(x, y) s min(x, y). Hence, the statement
follows immediately from the definition of Y.

(iv) Notice that y:Z >_ .u...()2 implies Y >_ !. Then

s2 1 s2 1
Z (x -t- y) + Y > (x q- y) q- (x y) s2 y,

and

Z1 >s2 (x + y) (x y) s2 x.

These inequalities imply that

Zl >_ s2 min(x, y).
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From the last remark, we may apply (ii) to s2, in order to get

S2 xy < 2 (s2 min(x, y)).

Then,

y2 l(x_y)2d_(s2- 1)(s2-xy)
4
1

< (1 min(x y))2 _}_ 2 (s2 min(x y)) (S2 xy)
4

< (s2 min(x y))2 -t- 4 (s2 min(x y))2
4

__< C (s2 min(x, y))2.

Therefore, since min(x, y) < 1/2(x + y),

Zl s2 --(x+ y)+ Y

_< s2 min(x, y) / C (s2 min(x, y))2
C (s2 min(x, y))2.

(V) Z2 s2 + 1 (x + y) + r _> s2 + 1/2 (x + y) + 1/2 (x y) s2 + x and

1 1
22 >_ S

2 -I- (X -- y) (x y) s2 -- y.

Therefore,

Z2 >_ s2 -}-max(x, y) >_ + x >_ 1.

On the other hand, Y, x, y and s are bounded, so Z2 is bounded as well.

(vi) This follows immediately from 0 < k < k x.

l(r + r-1/2 2) l(r-1/4 r 1/4)2 r 1/2)2(vii) k- 1 (1- r O(1- r)2.

Since 0 < r0 < r < 1, we have

Cl(1 r)2 < k < C2(1 r):z.
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