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ABEL SUMMABILITY OF JACOBI TYPE SERIES

CALIXTO P. CALDERON and VIRGINIA N. VERA DE SERIO

1. Introduction

A brief description of the Jacobi type series is as follows: Let PP (y) be the
n-th normalized Jacobi polynomial of parameters ¢, 8; namely

1
f PEP PSP 0)(1 = 1)1+ y)Pdy = 8,
-1

for ¢, B > —1. For their definitions and estimates see [S]. The m-dimensional Jacobi
polynomial of order n = (ny, ..., n,) is given by

PeA (X) = lﬂ[P,(,fti'ﬂf)(xj),

Jj=l1

where X = (x1,...,xn) € R™", a = (a1,...,0m), B = B1,..., Bm)aj > —1,
B > —1,j=1,...,m. We will let J@#) denote the measure defined on the cube
O0=[-1,1]x---x[-1,1]1=[-1,1]" by

m

d1e? =TT =) QA +y)” dn--dyn.

j=1

Clearly,

..........

Q
Likewise, we introduce the Jacobi functions, namely,

FeP () = PEP ()1 - »*2(1 + )P,

fora, B > 0, y € R. Itis immediate that these functions are orthonormal with respect
to the Lebesgue measure on the interval [—1, 1]; i.e.,

1
f FP ()FP (3)dy = bne.
g
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The m-dimensional Jacobi functions are
m
Ffla,ﬁ) X) = n F'(:ivﬂj) (xj)’

WhereX=(x1,...,xm)ER’",ot=(otl,...,otm),,B=(ﬁ1,...,,8m),aj Zo’ﬂj >
0,j=1,....mandn = (ny,...,ny).

Remark 1. 'Throughout this paper, all the single and m-dimensional parameters
« and B will be non negative.

We shall be concerned with multiple Jacobi functions series of the type

> Cuprom BB (1) - B (3,

wherea; > 0,8, >0, j=1,2,...,m,and

for f € L' (Q). For short we write

> G FEP(X).

n=(ny,....,nm)

The Abel summability of the multiple Jacobi functions series is given by

lim . Z r;" - rr':z"'cnn n,,,FSf"ﬂ')(xl) . Ff,i’”’ﬂ"')(xm),

[T o S G S L I

whenever this limit exists. The Abel approximation will be denoted by

F@rX) = F@iee Pm Xty e Xm)
..... B B )

Il
~
—s
£3
2

Likewise, we define the coefficients with respect to the normalized Jacobi poly-
nomials:

The Abel approximation for the Jacobi series is given by

FX) = fOr1 e Ty X1, Xm)
= ) Gy PO (xy) - PEE (),

Riyeeny Ry
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and its restricted maximal operator is

@, o xm) = sup | f(ri, .. Pmy X1, .o Xm)| 10 <1 < 1,

The well-known estimates on the Jacobi polynomials allow us to write the Abel
approximation as the following integral (see L. A. Caffarelli-C. P. Calderén, [CC2]
p. 278):

f, X)=f(r1,...,rm,x1,...,xm)=f K®P (r,X,Y) f(¥)dJ@P),
0 ,

forO<rj<1,j=1,...,m. Here

m
K(“’ﬂ)(r, X, Y)= l_lK(Otjvﬁ}) (rj,xj, yj)
Jj=1

is the multiple Watson kernel for the Jacobi polynomials. For an expression of the
one-dimensional Watson kernel see Bateman [B], p. 272, and §4 below. We shall
alternatively use the Watson kernel for the Jacobi functions and the Watson kernel
for the Jacobi polynomials. The first kernel can be obtained from the second one by
multiplication by the factor (1 —x)*2 (1 — y)*? (1 + x)?/> (1 + y)?/%. Thus, the
Abel approximation for the Jacobi functions series can be expressed as

fa X)=f(rl,-.-,rm,xl,-mxm)=f K“P (o, X,Y) f(¥)dy, (L)
Q

where K@P (r, x,y) = K@P(r, x,y) 1 = )2 (1 = )2 1 + )2 (1 + y)P2,
is the modified Watson kernel for Jacobi functions.
We consider the maximal operator

f**(xl?u"xm): sup f(rl,...,rm,Xh...,xm),

1—7‘,'

1
0 i<1l, =< <M,i,j=1,...,m,
<rj< Y < i,Jj m

1—r j
for a given constant M > 1. The unrestricted maximal operator is defined as

G xm)= sup |[f@ri,...ofmxt,..xm)|,0<rj<li,j=1,...,m.

The properties of these maximal operators are the key to understanding and proving
convergence a.e. of the Abel approximation. The first result in this direction was
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published in 1974 by L.A. Caffarelli and C.P. Calder6n, [CC2], where they developed
a method for handling the maximal operator for the restricted Abel sums of arbitrary
L'(J@P) functions. Their result is the L!-weak type estimate for the restricted
maximal operator, for details we refer the reader to [CC2] and also §6 below. One
of the results in this paper is the weak type estimate for the maximal operator of the
restricted Abel sums of multiple Jacobi functions series of arbitrary L! (Q) functions.
In order to achieve this result we use two different methods. The first one, which is
argued in §5 below, uses an approach based on a domination of the modified Watson
kernel by an infinite superposition of Poisson type kernels, namely,

> S 2 (r)
(@.B) .
K" (r,x,y) < C(a,8)+C (2, B) j§=0 b; 120
% j j
+C(a,ﬁ)ij 2<p(r)(2(p(r)+h(x))

S (- + 20 ) (Do ) +h )

where b; ~ 2792, (r) = k — 1 and h (x) = 1 — x. This method deals basically
with the Lebesgue measure case.

The second method is an adaptation of the corresponding one in [CC2] and is
discussed in §6 below. In this context, it gives a generalization of the main theorem
in [CC2] to a family of measures given by the weights

dJ1@P) =TT - yp* A+ y)? dyy -+~ dym,
j=1

where @; > @; > 0, ; > B; > 0, j = 1,...,m. The main tool in this approach is
the following domination of the Watson kernel:

1

1
Ka,ﬂ (r’ X, Y) < C
> | PRl (X))

n=(ny,....nm

xn,x,n X)),

fornj € Z, n; > —1; where
In (X7 r) = In| (XI, rl) X e X Inm (xm»rm)’ I_| (xi’ ri) = [_1’ 1]9

X1,(x.r is the characteristic function of I, (X, r), the I, (x;, r;)’s are suitable intervals
and p is either the Lebesgue measure restricted to Q or the m-dimensional Jacobi
measure J@#), @; > a;, B; > B;, with only a possible change in the constant
C =C(a, B,a, B). K*f (r, X, Y) denotes the modified Watson kernel K in the case
of the Lebesgue measure.

We have included in §4 and §6 below and in the Appendix some results that were
stated in [CC2] with proofs merely outlined or omitted in the simplest cases. It is
not only in the spirit of further clarification that these proofs have been included here
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in detail; in fact, the density and complexity of the exposition in [CC2] make some
repetition unavoidable.

As indicated above the method of §6 below gives both results, Theorem 2.1 and
Theorem 2.2. In fact, the estimates for the Watson kernel are obtained simultaneously
for both scenarios in the various auxiliary lemmata in §6, foro > O and 8 > 0. In
§5, as pointed out above, a different approach to estimate the Watson kernel is found
and discussed throughout. This is the first of a series of papers on these and related
topics.

The paper is organized as follows: In §2 the main results are stated; §3 includes
some auxiliary lemmas; §4 provides some estimates for the single Watson kernel. In
§5 a theory for the Lebesgue measure case is discussed, while in §6 a unified theory
for both measures is given. Finally, we have added the Appendix in §7.

2. Main results

THEOREM 2.1. Iffe L' (Q) and

O, e Xm) = SUp | f(F1s ey Py X15 e e ey Xm)| s
(iyeen rm)
1 l—r,-
O<ri<l, —< <M,i,j=1,...,m,
=M= 1oy / ’

where
fou.ormxn. o xm)= D Gy FOP () - O (x,),

Riyeeny Rm
and

forot=(061,...,am),ﬂ=(,31,...,,3m),aj_>_0,ﬁj20,j=1,...,m,then
@ Wf*>Mn0l<$Iflli,A>0.

Here C is an independent constant. Furthermore, f (Flyeeos¥myXly.v.,Xm) CON-
verges a.e. to f(X1,...,Xm) as (riy...,rm) — (1‘,..., 1"), restrictedly; that
. 1 1—r; .o

is, when w = l——:f < M,i,j=1,...,m, for some fixed constant M > 1. If

f € L'(log* LY""!, then the condition of restricted convergence can be relaxed to
convergence. Moreover, an estimate in the spirit of Jessen-Marcinkiewicz-Zygmund
inequality is valid:
.. -1
i) [(f*Y dx <Ci+CofIf] (log*|f)" dx,
Q Q

where 0 < y < 1, Cy and C, depend on y only.
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If p > 1, then

@iy [(f*? dx <Cp [IfIP dx,
] Qo
whenever f belongs to L? (Q) .

As indicated in the introduction, the second method used to prove the above
theorem also gives the following result:

THEOREM 2.2. Let f € L'(J@P), a=(ay,...,am), B=(B1, ..., Bm),®; >0,
Bi=0,j=1,...,m,

and let

.....

FL e T X Xm) = Y P PGy PO () - PO ()

Then, its restricted maximal operator,

O, xm) = sup | f@r, .o P X1, Xm) 10 <1 < 1,
[(S T m

1 1—r;

— < < M, ‘a j = 1’ )

M=1=p ="/ "
satisfies

1@ (g 22y < $ [ 151 as@d,
Q

forany A > 0,a; > a; >0, Ej > Bi =0, j=1,...,m, for some independent

positive constant C = C(«, B, &, B).

Remark 2. Here dJ@P) stands for a whole family of measures with parameters
@andB,& >a; >0, B; = B; >0, j=1,...,m, where ; and B; are the original
parameters of the Jacobi series in question. As a particular case we get the known
result already proved by L. A. Caffarelli and C. P. Calderén [CC2] in 1974.

3. Auxiliary lemmas

LEMMA 3.1. Let S be a bounded set in R™. Suppose that for each X € S there
is associated a non-degenerate rectangle R(X) with edges parallel to the coordinate
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axes and center X, such that the edge parallel to the j-th axis has length given by
hj®),j =1,...,m. The functions h;(t) are assumed to be continuous, non-negative
and satisfying the monotonicity type condition

hj(t1) < kjhj(t2) whenevert; <t,, 0 <t;,t € R,

for some positive constants k; depending only on j; hj(t) > 0 fort > 0, h;(0) =0,
hj(t) > ccast > oo, forj=1,...,m.

Then there exists a denumerable subfamily {R(X,)} of rectangles that covers S
such that each X € R™ belongs to at most

2"m! [ ] (2 +log, (1 + &)

Jj=1

rectangles. Here log, stands for the logarithm to the basis 2.

The proof of this lemma can be found in L.A. Caffarelli-C.P. Calderén [CC1],
pp- 222-223. A consequence of this lemma is the following one, whose proof is in
L. A. Caffarelli-C. P. Calderé6n, [CC2], p. 279.

LEMMA 3.2. Let S be a bounded set in R™ such that for each X belonging to S
there is a non-degenerate rectangle R(X) associated with it, with edges parallels to
the coordinate axes and center X, such that the edge parallel to the j-th axis has
length given by

Ki0” @) [hj ) + 9;0)]'

where t = (X) is a parameter and h; is a function that depends on x; only, satisfying
the Lipschitz condition

|hj(s1) — hj(s2)| < Cjlsy — sal, Ci>0,j=1,....,m.

The @;(t) are increasing functions of the parameter t > 0, continuous at t = 0,
00 =0,j=1,...,m.

Then there exists a denumerable subfamily {R(X,)} of rectangles that covers S
and such that each X € R™ belongs to at most

m

C (m) [T(1+1og, (1+Cjk;))

j=1

of such rectangles.
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LEMMA 3.3. Letu; > 0beafinite measureontheinterval[—1,1),i =1,...,m,
and let |1 be the product measure iy X -+ X pon Q = [—-1,1} x --- x [-1,1].
Let Q = Q1 X Qa, where Q1 = [-1,1V and Q, = [-1,11"7/, and let v; =
i X oo X Wy, V2 = (i X o+ X fm, 1 < j < m. Let f be a function belonging to
L' (Q) and consider the maximal operator

1
*(X) = su
I ,J,’ Vi (In, (61, 8) X -+« X I (x5, 1))
X f ! /lfl dvy | dv
v2 (Q2) o
I,,,(x,,t)x'nxl,,i(x,-,t) [2]

where I,,, (x;, t) is the interval

[%i = Kiol ™) (i) + i)' i+ Kio} @) (hix) + @) n [-1,1,

i=1,...,j.Then

p{frx >} <

j K;
cmIT. (1 +}‘log2 1+ CiK))) /‘ \fl du.
0

Here h;(x;), ¢i(t), C; and K; are the functions and constants already defined in
Lemma 3.2.

Proof. It follows from the standard procedure applied to

1
g(xl,...,xj)=mf|f| dvy,
Q2

by using Lemma 3.2. The passage from Q) to the whole cube Q is immediate after
taking g(x1, ..., Xj, Xj41, .0y Xm) = 8(x1,...,x;). 0O

4. Auxiliary estimates

From [B], p. 272, the single Watson kernel for the Jacobi polynomials can be
written as

/2
2+a+p _
K (. x, y) = ri-a-pr2 L (k1+a+ﬂ f sec™ P w cos (@ — pw dw) ,

dr z:Z8y
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1 1
where k = J(r? +r71),s = ksecw,

. ((x;}’)2+(s2—1)(32—-xy))%,

1
Z, = sz—i(x+y)+Y, and

1
Z, = s2+-2-(x+y)+Y-

The Watson kernel for the Jacobi functions is the modified Watson kernel obtained
from the previous one by multiplication by a convenient factor, namely,

K (r,x, ) = K* (r, %, ) 1 = )" (1 = y)*2 (1 + 02 (1 4 y)PP2.

ASSUMPTION. 0 < x,x; < 1, -1 < y,y; < 1l fori = 1,...,m and
12<r<1.

LEMMA 4.1. The following estimate for the single Watson kernel is valid:
K (r,x,y) < C (@, B) (1 +1L),

where C («, B) is a positive constant, L is the integral

2

(s — min(x, y))' ™ ds
L=d ——r)f x — )%+ (s — 1) (s — min(x, y)) 32 (s —k)'?
%

and k = %(r% +r73),0<x<1.

Before beginning the proof of this lemma, let us state some estimates that will be
needed. (Their proofs can be found in the Appendix.)
Letl <5 <2,0<x<1,]y|l <1. Then:

(i) s? —min(x, y) <4 (s — min(x, y));

(i) s — min(x, y) < 2(s — xy) < 4 (s — min(x, y));
(i) Ci((x — y)*+ (s — 1)(s — min(x, y))) < ¥?

< Cy((x — y)* + (s — )(s — min(x, ¥)));

(iv) 52 —min(x, y) < Z; < C(s?> — min(x, y));

(v) 1 <s?+max(x,y) <Z, <C;

i) if p(x, ) = (k — 1)% (k — x)?, thenk — 1 < o(x,r) <k —x, fork > 1;
i) Ci1=r?<k—-1<C,(1-=r)2,if0<r,<r <1.

Here C, C, and C; denote positive constants.
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Proof of Lemma 4.1. The proof is carried out through some estimates given in
four claims. By taking derivatives, the Watson kernel can be decomposed into the
sum of the following four kernels A, B, C and D:

/2
A = r(l—a—ﬂ)/2di (kl+a+ﬂ) f sectteth ¢ cos (o — ﬂ)w do
r

zezEy
2 2+a+
B = yU-a—P2pl+a+p / i(y-l) sec?t* 8 o cos (¢ — ) w do
ar 212} ’

0
/2 d 2+a+p ( ﬂ)
—a— _ay SEC w COoS(x — w
C = r(l « ﬂ)/2k1+a+ﬂ f ____(Z1 a) 5 do
dr zZyy

[}

/2
d /__g\ sec?t**P o cos(a — B)w
D = (l—a—ﬁ)/2k1+a+ﬁ/_(z ﬂ) do.
’ dr \“? ZeY @
0

CLAIM 1.
2
s1+ot+ﬂ ds

dw < C (o, 1 4 k~(te+h) f
(o, B) J 222 -7

/2

/ sec?t**B o cos (@ — B) w
B

J 222y

Proof. By changing variable and letting s = k sec w we get

00
dw < k~@teth /
k

s2+ot+ﬂ k ds

Z?ZgY s (S2 _ kz)l/z'

/2
/ sec2t*tf o cos (@ — B) w
) 7270y
Since weassumethat1/2 <r < I, wehavel <k < 3/2 < 2. Now, for2 < s < 00,
the last integral is dominated by a constant depending on « and S only; in fact,

sl+a+ﬂ sl+a+ﬂ C

Z‘{‘ZfY (s - k2)1/2 = (sz)“ (s2)ﬂ §2s = 2ratp’

because Y, Z;, Z, > s2, and therefore it follows that

(o9
sltetB 4g
/z“z"’Y gy =@
Y 4142 (s2 — k)
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Consequently,

M 2atp 2 ltatp

[E Pl v scaprar e [T L
z:Z8y 7228y (s — k)Y

4.1
CLAM2. |A|<C(a,)(1+1L).

Proof. The change of variable s = k sec w and (4.1) show that |A]| is bounded
above by

2
I+a+p ds
A=B72 (14g+8) k2 S | (a, ) +Ch et / u ,
¢ (et DR |C P z:Zy (s—0'?

which in turn is dominated by

ds
Z"‘ZﬂY3 (s — k)

Clp)+Cpd-r) / “4.2)

The estimate (ii) above for s = 1, applied to (x — y)* = x2+y2 —2xy < 2(1 — xy)
implies that

(x — y)* <4(1 —min (x, y)) < 4(s —min(x, y)) . 4.3
From (4.3) and the estimate (iii) above, it follows that
Y2 < C((x — )? + (s — 1) (s —min(x, y))) < C(s —min(x, y)).  (4.4)
Thus, (4.2), (4.4), and the estimates (iii)~(v) above give
Al =C(a, YA+ L).
CLAM3. [B| <C(a,8)(1+L). O

Proof. Similarly, by taking derivatives and changing variables, it follows that

—1—-xy ds
zeZ8y3s  (s—k'?

|IBl < C(a, )+ C (e, ) (1 —1) f 4.5

As a consequence of the estimates (i)—(v) above, we get

1
<C@p)
z3Zy3 (s — min(x, y))* ((x — y)? + (s — 1) (s — min(x, )))*/*
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Therefore, it only remains to be shown that 25> — 1 —xy < C (s — min (x, y)). Now,
257 —1—xy <2(s* —xy).
If y <0, then
2 _xy <5<5s <C(s —min(x, y)).

Suppose y > 0. Without loss of generality assume that min (x, y) = x; m(x, y) =y
is similar. Then

52 —-xy_<_s2 —x2=(s+x)(s—x)5C(s—min(x,y)). 4.6)
Thus, in any situation,
25> — 1 —xy <2(s* —xy) < C(s — min(x, y)). %))
Then, estimate (iii) above, (4.5) and (4.7) give |B| < C (¢, B) (1 + L).
CLAM4. [C]| <C(a,8)(1+ L)yand [D| < C (o, B)(1 + L).

Proof. Once again, by taking derivatives and changing variables, it follows that
|C| and | D| are dominated by

2 _ 1
C(oeﬁ)+C(aﬂ)(1—r)/ g2t xy) ds

Z“+‘zﬂY ( Y (s —k)'"?

and

252 —1—xy ds
C(a,B)+C (c, ﬂ)(l_r)/zlzﬂ+1 (1+ ) (

Y s — k)%’
respectively. Since0 <Y < Z;,i =1,2,and Z, ~ C, we get

1 1 _C®B
<
Y S v B

and

1 1 C B)
ze zf*‘y zezPy? ~ =Zirr
Because of (4.7) it suffices to prove that Y < C (s — min (x, y)). Now,

¥ = ((x;y)2+(s2——l)(s2—xy))%,
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(x — y)? < (1 — min (x, y))* < (s — min (x, y))?,

and by virtue of (4.6) we have
(s =1) (s> —xy) < (s* - xy)2 < C (s — min (x, y))?.
Hence,

Y < C (s —min(x, y)),

and so the required inequalities: |C| < C (¢, 8)(1+ L)and |D| < C (o, ) (1 + L)
hold.
Collecting results, Lemma 4.1 follows. 0O

Remark 3. In the case of the Lebesgue measure, the integral L and the Wat-
son kernel have to be multiplied by the bounded factors (1 — x)*/2 (1 — y)*/? and
a-x*?1- y)"’/2 (1 —f—x)ﬂ/2 a+ y)'e'/2 , respectively. So, the above lemma is
also valid for the modified Watson kernel and the corresponding modified integral L.

5. A theory for the Lebesgue measure case

_ 5.1. Estimates for the modified Watson kernel. The modified Watson kernel
K@P (r, x, y) is given by

K@D (r,x,3) = K“P (r,x, ) 1 = 0" A+ 02 (1= p)*2 (1 4 )2
Hence,
KP (r,x,y) < 2PK“P (r,x,y) (1 = )*2 (1 — y)*2.
By considering the estimate given in Lemma 4.1, the fact that
(1 =x)*?(1 = y)** < (s —min (x, y))*,

for s > 1, and the estimate (vii) in Section 4, it follows that K@ (r, x, y) is
dominated by

s — min (x, y) ds
(G =+ =D -x)" 6=

2
C@p+Cap) k- 1)1/2/

k

We want to get an expression involving a superposition of Poisson type kernels. The
elementary estimate

s—min(x,y) <s—x+|x —y|,
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gives
K@D (r,x,y) < C(@p) +C (@ B) - 1"

/ s —X ds
(=92 + G- -x)"6-b"

Ix—yl ds
+C(a, B) (k_l)l/zf |
((x—y)2 +(s—1) (S—x))3/2 (s—k)'?
Now,
2
/ s X ds
k (& — WA —1)(s— x))3/2 (s — k)72
12
= fz ! L (o) s
S 6= 6-D e RN
k ((«s——l%{x_»”’) + 1)
On the other hand,

/2 lx =yl ds
J (- y)2 + -1 —x) -0
1 = llf(s—x»”’ ds
(s — k)1/2 =16 —x) 2 32
(( (s— l)(s-—x))m) + 1)
1 ((s—lf(:—tc))”’ ds
=" -1 s =1 (s —x)" Vo
((((s—l)(s—x)) ) + 1)

Thus, the modified Watson kernel is dominated by an infinite superposition of Poisson
type kernels. The crucial estimate is

2
1 1
1 1/2/ , .
k—1) J (s-—k)l/z(s—1)1/2(s—x)1/2dsSC 5.1

which in turn follows from

2

1 1
12

k—1) kf TTEPGIDYSC (5.2)
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Remark 4. At this point, this estimate can be applied to the multiple Watson
kernel to give the Jessen-Marcinkiewicz-Zygmund inequality. In this case the well

known iteration method gives part (ii) of Theorem 2.1 because of (5.1) and (5.2)
above.

In order to get the weak type (1,1) inequality, we have to replace the continuous
estimate involving an integral by a series.

LEMMA 5.1.  The modified single Watson kernel admits a domination by a series
of Poisson type kernels, namely,

i o) 2J¢ (r)
K(a,ﬂ) X, < C s C s b A
r,x,y) < C,B)+C(a ﬂ)jgo T — y)? + 222 (r)

o0 29 (r) (¢ (r) + h (x))
+C@B)) b ; ’
= (=92 + 20 () (20 ) + h ()™

where bj ~279/2 o (r) =k —land h (x) = 1 — x.
Proof. Recall the basic inequality

K®P (r,x,y) < C(a,B)+C (e, B) (k— 17

2
- — d
x/ s—x+|x -yl s

(x=*+ =1 —x0)* ="

k

where, as before, we have used s —min (x, y) < s —x+|x — y|. By settings — 1 =
u (k — 1), we have the above integral dominated by

(k_l)m]o Wk =1+ —x)+Ix—y| (k- 1) du
—y)? - - — oWk —1)—k—1)1?
1 (c=yP+utc—D@E-—1)+1-x))"" @ ) )
i w(k—1)+ (1 —x)+ x -yl du
= (k- 1)[ . (53)
) (@ =y +uk— D@k -1+ 1-x)) =D
Setp =@ (r) =k — 1 and h (x) = 1 — x. Taking into account that
@ o +h@) + |x = y)) < @ (g +h() + o ((x — ) +u?g?) "2,
we have (5.3) bounded above by the sum of the following two integrals
x 2 4 2,2\
¢ ((x — y)? + u?¢?) du 5.4)

| (a7 )™ @0
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and
o0
¢ (up +h (x)) du ss
2 372 (u _ 1)1/2' ( * )
(= y)* + ug (up + h (x)))
The one in (5.4) is dominated by
uy du
(= +u2p?)u@—1'"?
o 2J+1 o
2J
SZ./ du1/2 2‘p2‘2‘
=\ u(@—1) =y +2%¢
On the other hand, (5.5) is less than or equal to
241 ) .
CZ f 2/¢ (21<p+h(x)) O
Jou (u - 1)‘/2 ((x = »)? +2i9 (209 + h(x))) "

5.2. Proof of Theorem 2.1. In order to simplify the writing of the proof we
may consider without loss of generality m = 2, a typical case. The proof of the
theorem relies on a very simple fact, namely, that T = Z}.io b;T; is weak type (1, 1)

if 720 b;’* < oo and each T; is sublinear, weak type (1, 1) with uniformly bounded

type constants; i.e., u ({T; (f) > A}) < £ 1fll;, i =0,1,2,.... Foraproof of this
property see, for example, C. P. Calderén [C, p. 121]. Taking into account (1.1) and
Lemma 5.1, it will be enough to show that each one of the following operators is of
weak type (1, 1) with uniformly bounded type constants:

2Ji Qi +h;(x;
Gi = sup /f O (2o () +hi(x) 7 1f Ol dndy,
Q=1 ((xi — yi)* +2iip (r) 2/ (r) +hi(x))))

219 (r) (2719 (r) + hi(x1))
G, = sup > - . 7
r o ((x1 = y)? + 2010 (r) (2719 (1) + hi(x1)))
22¢ (r)
(X2 — y2)* + 22292 (r)

If (1, y2) | dydya,

2/ (r)
G; = sup[/ - If &1, y2)| dydya,
0 it (i — yi)? +2%ig2 (r)

2/ 27 +h
Gs = sup | PO Re O tha) [ 17 0rtd dn
r o (Gi=yD* +270 €) (2@ (1) +h1(xD))
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and

_ g () [
Gs —s\rxplf 2 () (1 If(yl,yz)ldyz) dy1,

where ¢ (r) =k — 1 and h;(x;) = 1 — x;. Let us write
6; (xi,r) = 2" (r) (2% (r) + hi(x)) .
Now, the integral in G is dominated by

i
c Y 2 Il £ )ldyidya,
z.%;o T Gor, 082 PV Ly myistiiqmn 01 PPN

which follows from a standard procedure by considering both estimates
9[ (xi T ) 1
(G =y 40 26 G )

for 24 (6; (xi, Y/ < |x; — yil < 251 (8; (xi, r))'/*,1; > 0, and

0; (xi, 1) 1
2 7S G )
((xi - ) +6; (x,-,r)) 6 (xi, r))
From Lemma 3.2 with ¢; (t) = 2fip (r),t =1 —r, K; = 2" and C; = 1, we have
: Il
su If O, ydldydy, > A]
rp 20+ (8 (x1, 1) 0y (x2, PN S i yi<2i @i
C (m)

=1
Therefore, G, is weak type (1,1) because

> (A +m) A +1272 ) < oo
1,120

G, and G3 are handled in a similar way by making an appropriate use of Lemma
3.2; G4 and G5 follow from Lemma 3.3. 0O

6. A unified theory for both cases

6.1. Estimates for the Watson kernel. This section provides an estimate for the
multiple Watson kernel which is based on an estimate of the integral L that dominates
the single Watson kernel in Lemma 4.1. These estimates are summarized in the
following two lemmas:
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o0
LEMMA 6.1. L < C(a,B) Y i-nlﬁml;r—)] X1y (¥), where I, (x, r) denotes
n=0 n ’
the interval

[x = 2"0 x, ) x + 2% (x, ] N[-1,1],

and Xj,(x.r) is its characteristic function, n = 0,1,2,.... w is either the J®P
measure or the Lebesgue measure restricted to [—1, 1]. In this latter case the integral
L is modified by multiplication by the factor (1 — x)*/* (1 — y)*/ 2, ox,r)=(k—
I)I/Z(k _ x)1/2.

LEMMA 6.2. The multiple Watson kernel satisfies the inequality

K (r,X,Y) < C Z !

1
X (Y),
n=n1,....Am) 2m/2. .. 2mm/2 1 (I, (X,r)} &

fornj € Z, nj > —1, where
In (X?r) = In. (xl’rl) X eee X In,,, (-xmsrm)» I_| (xiari) = [—11 1]’

X1,(x.r) is the characteristic function of I, (X, r) and p is either the Lebesgue measure
restricted to Q or the m-dimensional Jacobi measure J®P, a; > a;, B; > B;, with
only a possible change in the constant C = C(a, B, @, B). K*P(r, X, Y) denotes the
modified Watson kernel K in the case of the Lebesgue measure.

For the proof of Lemma 6.2, it will be convenient to consider the following esti-
mates of the integral L and the J*# measure of the intervals I, (x, r).

ca- 1
LEMMA 63. L < a-n 0<x<l.

= (k —min(x, y))**2k—-1""~

Proof. ltis clear that

2
(s — min(x, y))'™* ds
L = —r)/
s (= »?*+ (s = 1) (s — min(x, y)))3/2 (s —k)"?
2
< - r)/ (s — min(x, y)) ds
=< J o

min (x, ¥))* (s — D*? (s — min(x, y))*/? (s — k)!/?

2
1-=r) / 1 ds
~ (k — min (x, y))"““l/2 J s — 1)3/2 (s — k)1/2‘ (6.1)
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The fact that 1 < k and an integration by parts show that for any a, b with
b>a>k>1,

ds___,[@=h" _k)m] /” (=R
(S _ 1)3/2 (S _ k)l/2 - _(b _ 1)3/2 (a _ 1)3/2 (S _ 1)5/2
! (a —k)1?
= 2L(b—l) a—1)3/2] f(s—1)2
Y I )‘/2]
T Le-D @-1?
3 3 3
B R R ©.2)
Therefore,
C(-=r) 1 0

= (k—min (x, y))**/2 k-1

LEMMA 6.4.  For any Borel set E in R™, J@B(E} < C(a, B, @, B)J@P (E},
whenever a; > o, B = B;, j=1,...,m.

Proof. Observe thatfora, 8,y € R, |1l — y| <2 and |1 + y| < 2 imply that

) B 1 —y\&ete 1+ B—B+8
A-yf sy =24 (232) 7 (352)

2
< C(a,B,a,B) (1 —y)* (1+y)*,
for any @ > o, B > B. Thus, the lemma follows immediately.

LEMMA 6.5. J@P) (Iy(x,r)} < C (e, B,& B)px,r) (k —x)* for & > a,
B =8B

Proof. By Lemma 6.4, it is enough to show the case J©#. The J©# -measure
of the interval I (x, r) satisfies

TP (I (x, )} = / (1-y)*(1+yPdy < 2"/ (1 —y)*dy.
Io b

Suppose that x + ¢ (x, r) < 1. For short, we will sometimes write Iy and ¢. Then
x+p
J@P I} <C(B) /(l—y)“dy =C(a, B)((1 —x +¢)* —(1 —x —p)**!). (6.3)
x—p
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The Mean Value Theorem applied to f (u) = (1 — u + ¢ (x, r))**! gives
AI-x+@)" - -x—-9)*"* < C@)20x,r)(1-x)*

< C(@ex,r) (k—x)*.
Ifx+¢(x,r) > 1, then

1
J@P (I} < C (B) f 1-»*dy=C@pl-x+o". (64
x—¢
In this case, (1 — x) < ¢ (x, r), hence

(A —x+9)** <20 x,r)Qpx,r)*.
But, o(x,r) = (k — 1) (k — x)? < (k — x), and s0
(1—x+¢)*" < C@ex,r)k—x)*".
Therefore,
J@P (Io (x,r)} < C (o, B) o(x, 1) (k — x)*. (6.5)
O

LEMMA 6.6. L < C(a,ﬂ)#m ifyel,(x,r)—L_i(x,r)and 1 — x <
2" lp(x, r).

Proof. Notice that in this case, y < x and k — 1 < ¢(x,r) < |x — y|. Then
min (x, y) = y and

b—den [ (5 = min(z, y))'"* ds
o " J (= + (s = 1) (s — min(x, ) s ="
1+x—yl|
< -7 ((it';);jl_—yyls) f - _"i)m.

Notethat 1 +x -2y =1—x+2(x —y) < 2" lo(x,r)+2|x — y| < 3|x — y|.
Hence

lx — yl|
&= lx—yP
Now, assume that k < 1 4 |x — y| < 2 and consider the integral

2

c(-r)

Lisca-n =

A+ x -yl -k <

(s — min(x, y))' @ ds

Ly=(10-r) .
? ((x = y)2 + (s — 1) (s — min(x, y))) /> (s —0)'/2

1+|x—y|
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Asin (6.1) and (6.2), we get
C(-r) 3

L, < s
PR -+ —y - D)

80, y < x < k implies

cCl-r)

L = |x — y'a+3/2'
Altogether, it follows that

c(d-r)
L= l-x _ yla+3/2'

257

O

LEMMA 6.7. Ify € I(x,r) — I,_i(x,r) and 1 — x < 2" 'o(x,r), then

J@PL,(x,r} < C, B, &, B)lx — yI**, fora > o, B = B.

Proof. Because of Lemma 6.4, it is enough to show the case J®#). Observe that

1 <x+2"lp(x,r) < x+2"p(x,r). Thus
1
TP (1)

I,
" x=2"¢p

C @B (1—x+2"px )"

< C@p) (2 oix,n)"
< C(a, B)lx —y|**!.

I

(1= y)* (1 +y)Pdy < 2# f (1—y)*dy

a

LEMMA 68. L <C (a, B) 2l ifyel, (x,r)—L_1(x,r)and1 —x >

(1=x)%|x—y|
2 lo(x, r).

Proof. First, suppose thatk > 1 + %—‘;xﬁ From Lemma 6.3, it follows that

c(-r) 1
(k — min (x, y))**"2 k — 1
cC(l-r) 1-x
- (1 _ x)a+1/2 (x _ y)2
(k _ 1)1/2 (1 _ x)1/2
(1—x)*(x — y)?
k-1 k-—x)'"
c o 2
I=x)x-y)
p(x,r)
(1-x)*(x—y*

L
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Now, assume that k < 1 + (il_:yx)—z Observe that [x — y| < 2"¢(x,r) < 2(1 —x).
Then, fork <s <1+ -(51:_%1, we have

(x —y)?
- X

s —min(x,y) <1+ —min(x,y) <1—min(x,y) +4(1 —x)

and
l1—min(x,y) <1l—x+|x —min(x,y)| <1—x+21—x) =31 —x),
$0
l—x<s—min(x,y) <71 —x).

With this estimate and the ones of the integrals L; and L, in the proof of the previous
2
lemma, with 1 4 |x — y| replaced by 1 + ("T__ﬁ)—, we get

1—r
_ x)ot—l/2 lx _ yl2 :

L=<C(p) a

Hence

k=D -x)'? @(x,r)
Ao oy =~ @P o s HE

L=<C(ap) O

LEMMA 6.9. J@P) (I, (x,r)} < C(a, B,&, B) (1 —x)*2"p(x, 1), whenever
l—x Z 2n_l‘p(x’r)7& Za75 Zﬂ'

Proof. This result follows similarly as in the Iy case. Indeed, the inequalities
2" lg(x,r) < 1 —x < 2"p(x,r), give (6.3) and (6.4) with ¢(x, r) replaced by
2"lo(x, r) and 2"¢(x, r), respectively. Thus, the factor 2" gets in (6.5) to yield the
desired estimate. [

Proof of Lemma 6.1. Case 1. u = J(@®B),
Lety € Iy (x,r). Lemmas 6.3 and 6.5 give
cC(-r) 1
=<
(k — min (x, y))*+!/2 k — 1

and J &) (I (x, r)} < C (@, B, &, B) p(x, 7) (k — x)* . Then

C(d-r) 1 C(a B, a B)ex,r)k—x)

L < * —min ()2 k=1 J@B) (I (x, r)} XIoer) (V)
_C@pap)i-n 1 k-1"&=—0"k=»" o
= (k — x)*172 k—1 7@B) (o . 1)) XIo(x,r) LY

- 1
Cle. B, a, T e L AloGr .
< C(a,B.a,B) FICT) {Io(x,r)}x” )y ()
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Here we have used the fact that (k — 1) ~ (1 — r)?, which follows from the estimate
(vii) in Section 4 above.

Assume that y € I,(x,r) = I_y(x,r). 1 —2x < 2" '9(x,r), then L <
C (a, B) —_Fm and J("‘ B) {I, x,r)} < C(et, B, @, B) |x — I"‘+l from Lemmas
6.6 and 6.7 respectively. Hence

—r I y|a+l

|a+3/2 J(“ ﬂ) {I }
- = 1 —-r 1
b F) o @ 1,
- C(a,B,apB) 1-r 1
= on/2 (k _ 1)1/2 ](&’ﬁ) {In}
e (o B, @, B) 1
= /2 J(&,ﬁ) {In}

h
IA

C(aﬂaﬁ)

X1 oery ()

IA

Xb,eery) ()

Xt,x,r) ()

X o) () - (6.6)

When 1 —x > 2""lg(x, r), Lemmas 6.8 and 6.9 imply that L < C («, 8) (l—h

and J @A) (I,(x,r)} < C(a, B, @, B) (1 — x)* 2"¢(x, r). Finally, one can obtain the
required estimate for L by handling the case as in (6.6) above.

Case 2. u is the Lebesgue measure.
The kernel to be considered is

“Prxy) = K9P (rx,y) (1 — )2 (1 = »)*2 (1 4+ 0)P2 (1 + y)P?
< 22K (rx, ) (1 =02 (1 = y)*2,

and the corresponding modified integral L is
L=L1-x)**1-y?.
Now, Lemma 6.3 gives

4 cCd-r) 3 )
L < (k min (x, y))a+1/2 k (1 - Xx) /2 (1-1y) /2 )

Notice that

A-0"A=p*? _
(k — min (x, y))*
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Suppose thaty € Ip (x,r), ie., |x —y| <@ (x,r),|y| < 1. Then

~ (1 --r) 1 2¢(X,r)
k= C(k —min(x, )2 k=1 | X1 (¥)
— (1-r) 1 (k_l)%(k-—x)%
- C(k — min (x, y))"/? k — 1 | lol X1 (¥)
(1-n 1

< (k—- 1)1/2m Xlo (y)

1
< C— .
= Copp X »
The last inequality follows because of estimate (vii): (k — 1) ~ (1 — r)?.
Now, assume that y € I, (x,r) — I,_i(x, ), namely, 2"l (x,7) < |x — y| <
"o (x,r),n=1,2,....1f1 —x <2" ' (x,r), Lemma 6.6 gives

L<C@B) .‘;:I‘yjﬂ—m
hence
Lzc@p I—'|'+3—,5 (1= x)%2 (1 = ).
Notice that

H—yl<l—xl+Ix—y <2" 0@ rN+20x,r) <2"p(x,r)
and

|| =2""'o (x,r).
Thus, L is dominated by

C (o, B) ——la-;g,/—z (2" o (x, r))m/2 ("o (x ,"))m/2 —I"}(lf——rz x1, ()
1
< C(a, ﬁ)l—wu i X )

because |x — y| ~ 2"¢ (x, r). By using this fact once again,

1—r

1
sc@h 120 (x, )2 | 1]

x1, ().

But, (¢ (x,r)"? > (k — D'? and (k — 1)'/? ~ (1 — r) imply

C@p) 1
n/2 |]|

L< X, (¥).
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In the case that 1 —x > 2""'¢ (x, r), Lemma 6.8 implies that

L< C,pB)ex,r) :
(1—x)"|x —y?

consequently,

C,B)ex,r)

i< TR 1 —-x)*21 —y)*?
c ’ , 2n+l ,

_C@pa-—yn"1

= n (1 _x)a/2m X1, ()’),

because |x — y| ~ 2"¢ (x, r) . Now,

11— yI*? < (11— x| + 1x — yD™" <222 (11 — x|*? + |x — y|*?).

Then
(1 — y)*/? ( x — yl“ﬂ)
A—x)2 = c@fi+ (1 —x)*?
n a/2
<cwfi+ (2" (x,7)) —
(29 (x, 1)
= C(a).
Therefore,
-3 C(aaﬂ) 1 C(avﬁ) 1
L=< T le,. ()’)57/2"—% xi, () o

Proof of Lemma 6.2. It follows immediately from the one dimensional estimates
in Lemmas 4.1 and 6.1. O

6.2. The joint proof of Theorems 2.1 and2.2. 'We consider the maximal functions

1
M, (f) (X) = sup ————s
) X) P L (X, ) LX)

forn = (ny, ..., nm), where u is either the Lebesgue measure restricted to Q or the
m-dimensional Jacobi measure J (&#), a; > o, B; > B;. By Lemma 3.2 applied to
the family of rectangles {1, (X, r)} with

If Mldu (),

o) =k@r) =1, hi(x;)=1-x;, C;i=1, K;=2",
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we get the weak type estimate

m
Clln;
j=1

A

uAM, (f) (X) > A} < ey » 6.7

for any A > 0. Taking into account the estimate for the multiple Watson kernel given
in Lemma 6.2 and (6.7), Theorems 2.1 and 2.2 follow from the observation made at
the beginning of the proof of Theorem 2.1 in Section 5 ([C], p. 121, Lemma 1.3). O

7. Appendix

Supposethat 1 <s <2,0<x <1,|y| <1,

= () )

1
Zy =5 =+ +Y,

1
Z, s2+§(x+y)+Y.

Then it follows that

(i) s? —min(x, y) <4 (s — min(x, y)),
(i) s — min(x, y) < 2(s — xy) < 4 (s — min(x, y)),
(i) C1((x — y)* + (s — 1)(s — min(x, y))) < ¥?
< C((x — y)* + (s — 1)(s — min(x, y)))
(iv) s? —min(x, y) < Z; < C(s* — min(x, y))
(v) 1 <s?+max(x,y) < Z, <C.

Furthermore, if k = %(r% + r‘%) and p(x,r) = (k — 1)%(k — x)%, then

i) k—1<ekx,r) <k—x,fork > 1, and
i) ;A1 —=r)? <k—-1<C,(1=r)*forO<ry<r < 1.

Here C, C| and C, denote positive constants.
Proof. (i))Forl <s <2anda <1, we have

s2—a—4(—a)=s>—4s+3a<s>—4s+3=s(s—4)+3<0.
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Hence

s* —min(x, y) < 4 (s — min(x, y)),

because min(x, y) < 1.
(ii) To show that s — min(x, y) < 2(s — xy), it is equivalent to prove that

2xy — min(x, y) < s.
For let ¢ = 2xy — min(x, y). It can be readily seen that for y < 0,
¢c<—min(x,y)=-y<1<s.

Suppose min(x, y) = y > 0. In this case, we have

c=y2x—-1)<y=<1<s.
Finally, if min(x, y) = x, then

c=x2y—-1)<x<1<s.
Altogether, we get

s —min(x, y) < 2(s — xy).

In order to prove that s — xy < 2(s — min(x, y)), let d = 2min(x, y) — xy, and
handle this case as in the above paragraph.

Note that this last proof works for any s > 1.

(iii) By (ii) applied to s = 1, it follows that 1 — min(x, y) is of the same order
of magnitude as 1 — xy. Moreover, s2 — 1 = (s + 1)(s — 1) is of the same order
of magnitude as s — 1. Thus, s> — xy = (s2 — 1) + (1 — xy) is of the same order
of magnitude as (s — 1) + (1 — min(x, y) = s — min(x, y). Hence, the statement
follows immediately from the definition of Y.

(iv) Notice that Y2 > (%)2 implies Y > 1"—;1' Then

1 1 |
Zl=S2—§(x+y)+st2—§(x+y)+—2—(x—y)=s2—y,
and
Zizs ) -2y =st—x
1= ) =3 y)= .
These inequalities imply that

2

Zy > s* — min(x, y).
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From the last remark, we may apply (ii) to s2, in order to get
2 2 .
§* —xy < 2(s* — min(x, y)) .

Then,

Y2=iu—yf+@%4xf—xw

IA

2‘1- (1 — min(x, ))* + 2 (s> — min(x, )) (s* — xy)

< % (s2 — min(x, y))2 +4 (s2 — min(x, y))2
< C(s* — min(x, y))z,

Therefore, since min(x, y) < (x + y),

1
Z, ﬁ—§u+w+y

< s% — min(x, y) + C (s* — min(x, y))*

= C (s* — min(x, ))*.

WMZy=s+56+N+Y =22+ 5+ +56—y) =s*+xand

1 1
Zrzs+ s -5 (=y) =5+
Therefore,
Zy > s>+ max(x,y) > 14+x>1.

On the other hand, Y, x, y and s are bounded, so Z, is bounded as well.

(vi) This follows immediately from0 <k —1 <k —x.

Wi k—1=1¢t+rt = 1ot =2 =Zta— b = 00 - 2.

Since 0 < rg < r < 1, we have

Ci(l=r) <k—1<C(1-r)
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