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CHARACTERIZATIONS OF H AND
APPLICATIONS TO SINGULAR INTEGRALS

ATANAS STEFANOV

ABSTRACT. We give a necessary and sufficient condition for an integrable compactly supported function
with mean value zero on the line to be in the Hardy space Hi(R1). As a corollary, we obtain a new
characterization of H1(S 1) and p independence of the spectrum of homogeneous Calder6n-Zygmund
operators.

1. Introduction and statement of results

It is a well-known result that if a compactly supported function is in Lp (Rn) and
has mean value zero, then it is in the Hardy space H (Rn). In the fundamental paper
[2], Calder6n and Zygmund proved that Lp can be replaced by fK IflLg+ (Ifl) < xz
for any compact subset K of Rn. Moreover, it is known that Log+ (If I) cannot be
replaced by (Log+(Ifl))1- for any e > 0. Therefore the following question is
natural:

Question 1. Find a necessary and sufficient size condition for an integrable com-
pactly supported function on Rn with mean value zero to be in the Hardy space H

Although, it is unclear whether this question can be answered with a purely size
condition, we do have a satisfactory answer in dimension one.

Given a function f on the line, define almost everywhere a function mf on R1 by
setting

(1) dx.mf(a) f(x) In
Ix al

R

The content of Theorem below is that f 6 H (R1) if and only if mf is a function of
finite variation. We provide the following heuristic explanation for this. An integrable
function is in H(R1) if and only if its Hilbert transform is in L(R1). The result
in Theorem 1 states that my is of total variation if and only if Hf is integrable. But
formally speaking, the derivative of the function m.f is the "Hilbert transform of the
function f" which explains the relationship between the variation condition and the
space H. This heuristic argument makes sense for some functions f but it cannot
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be justified for a general integrable f since the integral giving Hf is never absolutely
convergent in this case. Question posed above is related to the following question
about Calder6n-Zygmund singular operators with homogeneous kernels. Consider
an operator

/, (Y/lYl)
(2) Tnf(x) p.v. / f(x y) dy,

R

where f2 is an integrable function on the sphere Sn-1 with mean value zero.
In 1956 Calder6n and Zygmund [2] proved that Ta is bounded on LP(Rn) if

fsn-1 If21Log+(If2l) < cxz. The LLog+L condition is also sufficient for weak type
(1, 1) boundedness of Ta, as shown by A. Seeger [10].

Coifman-Weiss [4] and Connett [5] proved that if f2 is in the Hardy space
HI(Sn-1), then Ta maps LP(Rn) into itself. We will refer to this condition as
the "H condition". In Theorem 2 we discuss other characterizations of HI(Sn-1),
one of which gives a very simple proof of the results of Coifman-Weiss [4] and
Connett [5].

The case n 2 is studied in further detail. Define

(3) dO.m() f2(0) In
I(0,

s1

As a consequence of Theorem 2 below (a 4: e) we have

Vars(ma < +cxz f2 6 HI(s1).

which gives a characterization of the multipliers corresponding to HI(Sl) kernels,
since

m() Y=(S2(x)/Ixl")() s2(o) --. sgn(O, ) + In It0’i

and therefore

Vars (m) < +oo f2 6 Hi(R1).

THEOREM 1. Let f be a compactly supported function, f 6 L (R1),
f f(x)dx O. Define a function mf on a full measure subset Af

_
R1 (i.e.,

RI\Af has measure zero) by

(4)
1

dx.my(y) f (x) ln
Ix ’yl,

R
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Then if VarAy (my) < cx, then

and

Ilfll, WarAs (mf + C IlfllL

Var_(my) Varas(mf <

Conversely, let f H (R1) be a compactly supportedfunction. Then

my(a) (f(.), In
l" -al

is well defined (via the H1-BMO duality) and

Var_(mf) < C Ilfllz4, < .
Remark. We are uncertain as of now how to formulate a higher dimensional

analogue of Theorem 1.

The next theorem gives an equivalence between different definitions of H (Sn-l).

THEOREM 2. Let f2 Ll (sn-1), fs,_l f2 0. Let Rj be the jth Riesz operator.
Then the following conditions are equivalent:

(a) f2 e Hi(Sn-1).
(b) (llxi)

Ixl" X(l_<lxl_<2) H (Rn).

(c) For every j, Rj ( n(xllxl) )Ixl" X(elxl2) 6 L (Rn).

(d) If Rj (n(X../lxl).) then Vj L (Sn-I) j n.lxl Ix
(e) (Onlyforn 2.) Vars(m) < .
( (Onlyfor n 2.) H ((e2riXzto.l) L(R).

As an easy consequence of Theorem 2, we obtain the following

COROLLARY (Coifman-Weiss 77, Connett 79). Let Tn be defined as in (2). Then

iff2 H(Sn-1), then Tf: Lp --+ L p, < p < o.

COROLLARY 2. Using the implication a = c in Theorem 2 we can easily deduce
LP boundsfor the maximal operator

Tf(x) suple>0lyfl>e (YllYl)IYl, f (x y) dy
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We refer the reader to [7] and [8] for detailed proof of the corollaries. We omit the
proofs of both corollaries.

As another application of the results in Theorem 2, we prove p independence of
the spectrum of Calder6n-Zygmund operators with H kernels. More precisely, we
have

PROPOSITION 1. Letf2 H’(S1) and < p < c. Letm ’(f2(./I. I)/1’ 12)
be the multiplier corresponding to Ta. Then

tr(Ta.p) cr(Ta.2) essrange m,

where Ta.p Ta: Lp Lp.

Proof. The implication cr(Ta,2)

_
tT(T2,p) is trivial, for if . o(T2,p), then

(Ta )Q-l: Lp Lp and therefore by duality and interpolation (Ta .)-1: L2

L2. The converse follows essentially from Theorem 2. Indeed pick . essrange m:
Since Varsl (m) < x, we have Varsl ((m(.) L)-1) < too and by Theorem 2,
we conclude that the multiplier fit(.) (m(.) L) -1 gives rise to an operator Tfi with

H 1. Therefore

(Tf2- ,)-1 T Lp
__

Lp D

Remark. To the best of our knowledge, the question of the p independence of
the spectrum remains open in higher dimensions (n > 3).

2. Proof of Theorem I

In this section we give a characterization of compactly supported functions in
HI(R1). Let us remark that the compact support condition is necessary, since oth-
erwise the function mf may not be well defined even a.e. By Fubini’s theorem,
if f LI(R1) has compact support then indeed my(a) fR f(x) In dx is

defined on a full measure subset Af C pl. We will pass gradually from simple
functions to Lipschitz functions and then we extend our result to arbitrary compactly
supported function in L

Let us start off with the simplest possible case, a simple function supported in
2[0, 1]. Set f(x) ,i_ ciX(ai,ai+l), where ai i/2k. For symmetry, set ci 0 for

i<0.

LEMMA 1. For any f simplefunction as above we have

2+ r2 2k+

2-k Ibi01- C II/11, <_ [ IHf(x)ldx < 2-k _, Ibi01-t- C
i=--2t+l -1

d i=-2’+1
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where

bio
2

ci

ioi=O.ikio

Proof We have

2 -1 ai+l 2

f E f dy -Hf(x) f(Y)
dy i i In

x y
i=o x y i=o0 ai

Note that

x ai

X ai+l

2t+

(5) [-1 + 2-k-’, 2- 2-k-’] U U {x" 2-n < Ix --io2-1 < 2-n+l}.
io=--2t+ n=k+2

If/= io, io- and 2-n < Ix- io2-t’l < 2-n+l, then

In
x ai In + + 0
X ai+l tO (i i0)2

since 2 Ix io2-1 < 2k-n+ < 1/2. Therefore

In x-ai ()=-’----S - 0
X ai+l i (i i0)2

Observe also that

In
x aio-1 -(n-k) <_1,
x aio

-(k-n) < 1,
X aio
x aio+l

when 2-" < Ix aiol < 2-n+. Thus

Ci n + O(1))+O ( ci )Y i,,
-(ci-ci-l)(k E (i --io)2

(6) Hf(x)=
io.io-1 ivkio

for 2-n < Ix aio < 2-n+l. We integrate (6) to get

Igf(x)l dx 2-n+l y i---- -+- (io Cio-1)(k n + O(1))
i&io.io-I2 <_ Ix--ai01<2-n+l

( ci)+2-no Y (i io)iio
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We sum over n and use (5) to get

i
0< IX --ai 2-- [Hf(x)ldx

n=k+2

([Cio[ + [Cio-1 [)(n k C)
2n--I

Icilc2-n+l
(i io)2’

IHf(x)ldx

<
2n-1n=k+2

(Icio[ + [Cio-11)(n k + C)
2n--1

Icilc2-n+l+
(i io)2"

Taking into account that C)2-n+l-.n=k-t-2 (n k -I- 2-k, we conclude that

IHf(x)ldx,

IHf(x)ldx < , +c 2t
_1+2_#_ io=-2t+l

and therefore

-t- 2-k E (i io)2#:io

2_2-t-1
2t+’--I (2 2t--/..01 ) S2-t Ibiol-c2-t I%1-1- Icil < IHf(x)ldx,

io=-2t+l \io=0 "= _l+2-t-I

IHf(x)l <_

_
Ib,ol+ I%1+1c,

+2-t- io 2 + \io=0 =0

The same calculations applied on the intervals [-1, -1 + 2-t-1 and [2 2-t-1 2]
give

/_7 IHf(x)ldx <_ Ilfllt,,, IHf(x)ldx <_ Ilfll,
_2--i

Since f [ci I, we finally get the desired inequality.
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LEMMA 2.

2--T (x)

With notations as in Lemma we have

In dx- ff(x)In1
Ix aio+ Ix aioo

d +2-O iio(i_io)2J
Proof.

f(x) In
o

dx-f f(x)In1dx
Ix-aio+ll Ix-aiol

o

Ix-aiolf(x) In
Ix aio+ll

o

dx

2k_l ai+l

c, Ix-aiol
i=O.iio

x aio+l
ai

aio+l

dx + Cio / In
ai

Ix aio
Ix aio+l

dx.

Case 1.
We have

< io and x (ai, ai+l).

Ix aio

Ix aio+l 2k Ix aio+l
Thus

1(1)=1+ +O
i--io (i--io)2

ai+l

IX aioc In
IX aio+l

ai

dx 2-kci
io

’2-kc O((i_io)2 )
Case 2. > io and x (ai, ai+l).
A similar argument shows that

ai+l

IX aio
ci In

x aio+ll
ai

Finally since

we get

f(x) In
o

dx --2-k-

ai +

fin
ai

Ci2-k(1)io
t- ci 0

(i io)2

]x aio
Ix aio+l

dx 0,

dx 2-kbio + 2-k o
(i io)iio

H
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Observe also that

2TM

io=-2 +

2TM-1

E
io=-,-2+1

f(X) In
IX aio+l

dx f f(x)In
o

+- 2-kO
(i io)2

2TM -1

io=-2 +
f(x) In

o
[x aio+l

dx f f(x) In
o

Ix -aiol

+ O 2-klcil
i=1

By this observation and Lemma 1, we obtain

(7)
2TM

io=--2t+l
f(x) In

o

Ix --aio[
[x--aio+l[

2

dx C Ilflll <- f IHf(x)l dx,

-1

dx

dx

(8)

2
2t+

lHf(x)ldx < E
-1 i=-2t+l

f(x) In
o

Ix aio[
X aio+l

dx + C Ilflll

This is basically the assertion of Theorem for simple functions, since it is easy
to control the contribution of f_-loo IHf(x)l dx and f IHf(x)l dx.

LEMMA 3. Let f" R1 R1 be a Lipschitz function and supp f

___
[0, 1]. Let

my(a) fd f (x) In dx. Then

(9)

2

Var+_12(mf) c IlfllL < f IHf(x)l dx Var+_lz(mf) + c IlfllL,,
-1

where c is a constant independent of f

Proof. Note that there exists a sequence of simple functions fk }, such that

(1) f f pointwise, IAI < If I,
2t_l

(2) f Ci)(.(ai,ai+l),
i=0
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(3) Ifk(x) f(x)l < L2-k for every x 6 [0, 1], where L is the Lipschitz constant.

These can be taken to be the lower Darboux sums for f corresponding to the uniform
partition 0 al < < a2k 1.

I. Let us start with the left inequality first. We may apply (7) to each individual

fk (these are simple functions supported on [0, ]):

(10)

Also

2TM

io=--2 +
A(x) In Ix -aio[

Ix -ai0+l

2

dx C IIAII1 f InA(x)ldx.
-1

(11) Inf(x)l dx Inf(x)l dx.

On the other hand, my is well defined and continuous (due to the Lipschitz assumption
on f), so the total variation of this function can be evaluated as a total variation on a
dense subset. In particular,

Var_+(my)
s-1

sup E Imf(bi+) mf(bi)l,
-l<bo<"’<bs<2 i=0

where the supremum is taken on a dyadic partition of [-1, 2], i.e., bi qi/2n’
0 s for some integers qi and ni. Let us fix such a partition. Choose n
max{nl ns}. Then obviously the bi’s will be part of the dyadic partition with
diameter 2-n and therefore part of any dyadic partition with diameter 2-k, k > n.
Consider (10) for k > n. Since the bi’s are part of the dyadic partition (with diameter
2-k), we have

s-1

f dx-fA(x)ln dxf(x) In
Ix bi+l Ix bi[

o o
2TM --1

f< E fk(X) In
Ix ai0+li=-2t+l 0

2

< f Inf(x)l dx + C IIflll
-1

dx f A(x) In
o

Ix -aiol
dx

and therefore taking limit in k yields

s-I

f(x) In
Ix bi+l

0 0

dx
Ix bi

2

<_ f IHf(x)ldx+C Ilfll
-1
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Since the partition was arbitrarily chosen,

2

Var+12(mf) < f IHf(x)ldx + C Ilflll
-1

II. The proof of the right-hand side in (9) is more involved. First of all, consider
sequence {ft of simple functions as above. For this part of the proof we use (8). We
have

2
2TM-1

lHf(x)ldx <_ _,
io=-2t+l--1 of fk(X)In Ix -aiol

IX aio+l
dx + C Ilfklll,

where

2TM -1

io=--2 +
fk(X) In

o

Ix--aiol
Ix aio+l

dx < Ak-I-Bk,

Ak Ifk(X)- f(x)l In
io=-2 +

2t+l- x aioBt
I f(x) In dx

Ix aio+lio=-2t+ )

Clearly Bt < Var+2(mf) < cx. For At we use the estimate

2TM --1 ai+l

At < IA(x)- f(x)l In
Ix- aio+ll

aio+2

+ Ifk(x) f(x)l In
Ix aio+ll

As in Lemma 1, if x (ai, ai+l) and 7 io 1, io, io + 1, then

Taking into account the choice of ft’s (condition 3), we obtain

ai+

(12) Ifk(X) f(x)l In
Ix aio+ll li iol

ai

dx

C ) 2_2k
(i i0)2
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aio+2

(13) f If(x)- f(x)l
aio-

x aio]In
IX ai0+l

2-k

dx < CL2-k f In dx < CLk2-2
x

o

Thus

2+-1

(
io=--2t+l iTio

2TM-1C )2-2L+ E Lk2-2
(i io)2

io=-2 +

<C
2t+

io=-2t+l
(Lk2-2) -i- CL2-kk CLk2- --+ O.

Thus

limsup IHf(x)ldx < Var+(mf) + C Ilflll
k---x

The only fact that remains to be proved is

(14)

2 2

f ]Hf(x)ldx < limsup f ]Hf(x)ldx.
k---o

But since f --+ f in L 1, we have that for every > 0

C
I{x: Inf,(x) nf(x)l >_ }1 _< -IIf fill --+ 0

and therefore Hf --+ Hf in measure. Then select a subsequence {fk,} so that
Hfi, --+ Hf a.e. The assertion follows from the Fatou’s lemma.

The next lemma follows from Lemma 3 by dilation and translation.

LEMMA 4. Let f be a Lipschitz continuousfunction with compact support, such
that f f(x) dx O. Then

(15) Var+(mf) c Ilflll IHf(x)[ dx < Var_(my) + c Ilflll

Proof If supp f

_
[0, 1], then it is easy to see that

Inf(x)lX(xt-l.21 <_ C Ilfll Ixl

Also observe that my is differentiable outside [-1, 2] and

]mf(a)lX(a-,21l <_ C ]If Ill
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Therefore

Inf(x)ldx <_ C + Ilfll/Ixl dx <_ C Ilflll,

0 < Var-l(my) + Var-(my) < C f
and combining the last two inequalities with Lemma 3 we get (15).

The general case follows by an easy dilation and translation argument. To this end,
notice that every compactly supported function f can be recovered from a function

f with dilation g, and translation ra, where f: suppf
_

[0, 1]. Observe that

H(3t o f) 3t o (Hf),

m,of(a) my(a/t)

where the second identity holds because ofthe mean value zero property of f. Having’
these in mind one easily gets

H(t o f)I1 I1, o (Hf)II1 Hf I1,

Var+ (m,oS)) Var+ (my (./t)) Var+(mf).
It is also straightforward to check that the translation does not affect the expressions
involved in (15) and therefore the lemma follows. I’-1

We are finally ready to proceed with the proof of Theorem 1.

Proofof Theorem 1. Let q be a C function supported in [0, 1] and

f I(Y)[ dy 1. Define fk f * l/k. We know that f is a smooth function

with mean value zero (j3t(0) 0) and has compact support. Thus, we are in a
position to apply Lemma 4. We have

(16) IIHAII,, < Var+(m/,) + C IIAII,,

where mf (a) f (f ql/) (x)In dx. But
R

i(i ) ..m.t (a) Opll,(y)f(x y) dy In
Ix al

Iz (a y)l
dz

f dPllk(Y)mf(a y) dy,
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where we used Fubini’s theorem (mf is defined and an absolutely convergent integral
on which is a full measure subset of R1).

So

(17) rn.t. (a) f rI,/t(y)mf(a y) dy.

Take any sequence of points a < a... < a. Notice that since AI is a full measure
set, so is Fli"= (ai f). Thus

n-1

Imf. (ai+l) mft (ai)l
i=1

[f l/k(y)(mf(ai+l-y)-mf(ai-y))dy
i=1

<- fC (ai-af) Il/k(Y)l[lmf(ai+l--y)--mf(ai--Y)l]
< f Il/k(Y)lVara(mf)dy Varaj.(mf).

Therefore

Var+(mf,) < VarA(mf)
and in particular, by (16),

(18) IIHAIIL, < WarA,.(mf) -q- C IIAIIL,
We now finish with an argument similar to the one in Lemma 3. Select a subsequence
such that Hfn "+ Hf a.e. An application of Fatou’s lemma then gives

Ilnfll, C Ilfll _< WarAr(mf)
and this proves the first assertion in Theorem 1.

The converse direction of the proof is in fact easier, since everything is correctly
defined via the H BMO duality. Let f H and fk f 1/ as above. Apply
(15) to get

(19) Var+(my,) C f L < HA L.

Observe that ft f l/t --+ f in H sense. (See [11], p. 127, 5.1(c).) Therefore

Hft--+ Hf in L l,

f, lnm.t. (a) fk, In
l" -al -al

=my(a)"

Taking limits in k in (19), we obtain

Var+(mf) <_ IlHfll, + C Ilfll, C Ilfllal
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3. Characterization of H (Sn-l)

In this section we prove Theorem 2, which gives equivalence between various
notions of H (sn-1). Let us recall that (a) (d) in Theorem 2 is the Ricci-Weiss
result in [9].

Proofof Theorem 2. (a) (b) Let "2(0) __,i).iai(O), where ai are
H (Sn-l) atoms. It clearly suffices to check that

a(x/lxl)l,x,n X(1 <[x[<2) < C,
H

a(x./Ixl)where C is uniform on H atoms. Let b(x) Ixl" X(l<lxl<2). Also, denote by
J (991 q)n-1) the Jacobian factor of the unit sphere surface measure as a function
of the polar angles. In what follows we will always assume that a vector x Rn

is represented by its polar coordinates (01 Pn-1, r), where the first (n 1)
components are the polar angles and the last one is the polar radius. Hence

J(q)l On-1) I(sin- 991)(sinn-3 992)... (sin g)n-2)l.

Clearly, J(99 n-1) does not vanish on an open set on the unit sphere and
therefore without loss of generality we may assume that

diam(supp a) < n,
0 < Cn < J(cPl n-1) < on the support of a

where the small constants n, Cn depend only on the dimension n. These can be
achieved; otherwise, ifdiam(supp a) > 8n, we use the trivial estimate Ilbll/, _< 2/.
Define the auxiliary function

b(qg q)n-, r)
a(q) 99n_1) J(qgl 99n_1)

X(1 <r <2)-

We prove that b H’ (Rn) C, Observe that a(1 n--1)J (1 @n--1) is a fixed

multiple ofan HI(Rn-l) atom. Consider g(q)l 99n_1, r) (Ol q)n-1)h(r),
where

(1) gr >0; h>_0,
(2) supp gr c B(0, 1); supp h c B(0, 1),
(3) fp=l, fh=l.

Define

Mgb(X) sup Ib gtl(x).
t>o
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The idea is to show that this maximal function has enough decay at infinity (due only
to the fact that/ has mean value zero and is an L function), while around the origin
we exploit the structure of .~Obviously supp C [0, 27r]n-1 [1, 2]. Choose a
compact set K, so that supp b C K and dist(Kc, supp D) > 1. This can be done
independently ofa, so every constant that appear later on, depending on K is actually
uniform with respect to a. For x Kc we have

- lf (x-z) az,b gt(x) [(z)g

,.+,a f  z)vg(X-SzZ)
Since supp g C B(0, 2)and x Kc we have

1 2 C

-Ix- szzl- Ixl

thus we get

(20) Mg[(x) sup 1/, gtl(x) < C/Ix[n/l,
t>0

which is the desired estimate at infinity. For x K,

I * gtl(q91 on-, r) I(a J) aPl(o qgn--1)
r
X(1 <r <2) * ht (r).

which yields

Mg)(q91 qgn_l, r) < M(a J)M (X(I<r<2)/F)
Thus by Cauchy-Schwartz we obtain

L MgN(x)dx <_ IlMo(aJ)llt(in_l)v/rrz(Ki IIM (x(<r<z/r)llz.

where zr2(K) is the measure of the projection of K on e2. This, together with (20),
implies II/,llnRn) _< C. By the atomic decomposition in [3], we can represent D
as a sum of atoms whose supports are in a small neighborhood of the support of the
function. Let (99 On-, r) Lii(O (19n_1, r), where the angular parts
of the supports of the bi’s are supported in a small neighborhood of supp a. Let

/i (91 (Pn-1, r)
bi(x)

J(qgl qgn-1)
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Observe that b(x) ,i Xibi(x) and

f bi(x)dx f/i(1 qgn-l,r)dtpl...dqgn-ldr 0,

Isupp bil Isupp i 1,

Ibi@l On-l, r)l
Ibi(x)l < sup

o,r J(q)l On-l)

This implies that II/;i [[H < C and

IlbllH, _< C I)il _< CIl(illH, <_ C. m

C C

Isupp/il Isupp bil"

589

(b) = (c) The proof of this direction consists of the trivial observation that the
Riesz transforms map H into L 1.

(c) = (d) We have

For 4/3 < Ixl 3/2, we will prove that the first function is bounded, whereas the
second one is integrable by assumption. Indeed,

lxl XI.I<) (x) Cn lim xj-yj f2(y)

<lyl<l Ix- yln+l lyl"
dy

Cn fv (x;-y; xg
I< Ix yl"+ Ixl

f2(y)
lyi’n dY

< C IIf211L1 max
1/3<_1x1<_5/2

v (Ixl,+l)
Similarly,

Rj -X(i.l>2) (X) Cn
.-1 Ix pOI"+l p

and again for 4/3 < Ixl _< 3/2, we get

Rj X(I.I>.) (x) < C
n-I 12(O)lp-- dOdp < C 11211,.
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Observe that we actually proved

V(x)
ixln

X(4/3<lxl<3/2) E L (Rn),

which is the same as Vj E L I(Sn-l) as stated.
(d) = (a) This direction is contained in Theorem 2 in [9].
We pass now to the two dimensional case. First of all observe that (a) (f) is

just a restatement of the fact that the Hilbert transform determines H (R1). For the
equivalence (e) (b), we use Theorem in a crucial way.

(e) = (b) By (1), we have

mf(e2rria) (cos 2yrx, sin 2yrx) In

(cos 2x, sin 2rx) In

dx

dx.
cos 2yr Ix all

In what follows we shall identify S1 and [0, 1] via the usual exponential map. In
particular we use Varsl (rnn) instead of Var(mn). Now, let us define

fit(a) m(e2ri(a-1/4)) f2(cos 2yrx, sin 2yrx) In
sin 2zr Ix all

dx.

Obviously

(21)

(22)

Var+(rh) < Varsl (ma) + C 11ff211L,(SX),

Vars (ma) < Var+(rh) + C 11ff211L,(SX).

It is not difficult to see that f2 Hl(S1) iff f2(cos2yrx, sin2zrx)X(o<lxl<)
H (R1). Now consider

m(a) f f2(cos2yrx, sin2yrx) In
0

dx.

By Theorem 1 and the previous observation, f2 H (S1) iffm has bounded variation.
We will now show that rn has bounded variation iff mn has bounded variation, and
Theorem 2 will be proved. Indeed, let

h(a) m(a) fit(a) f f2(cs2rrx’ sin2zrx) ln ( sin2rrlx al)Ixal
dx.

0
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It is straightforward to check that Ih’(a)l < C IIK211L,(Sl), a 6 (--2, 2) and so by
(21),

Var+(m) < Var+(h)+ Var_+2(rh)
_< C IIfll,<sX) / Varsl(ma).

it is also clear that away from [-2, 2], we have Im’(a)l < C IIK2IIL,(S )/a2 and
therefore

Var+(m) < Vars (mn) + C IIllLlSX)
Similarly we get the other inequality,

Vars (mn) < Var+(m) + C 1lff2llLl<S1),
which finishes the proof.
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