
ON HOMOTOPY 3-SPHERES
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WOLFGANG -AKEN

A homotopy 3-sphere M is a compact, simply connected 3-manifold with-
out boundary. After the work of Moise [6] and Bing [1] M possesses a tri-
angulation. The Poincar coniecture [9] states that every homotopy 3-sphere
M is a 3-sphere. In this paper we prove three theorems, related to the
Poincar conjecture, about maps of a 3-sphere S onto M and about 1- and
2-spheres in M3.

1. Theorems 1 and 2, concerning maps S -- M and closed curves in M3.
From the work of Hurewicz [5], Part III, it follows that there exists a con-
tinuous map S -- M of degree 1 (where S means a 3-sphere). We shall
prove that there exists an especially simple map of this kind.

THEOREM 1. If M is a homotopy 3-sphere then there exists a simplicial map
/ S - M of degree 1 such that the singularities of " (i.e. the closure of the set

of those points p M for which .-1 (p) consists of more than one point) lie in a
(polyhedral, compact) handlebody in M.
One might consider this result as a step towards a proof of the Poincar con-

iecture. Indeed, if it were possible to restrict the singularities of /to a 3-cell
in M instead of a handlebody the existence of a homeomorphism S -+ M
would follow.
From Theorem 1 we may derive another aspect of the Poincar problemby

considering simple closed curves in M.
From the definition of simple connectedness it follows that every closed

curve C M bounds a singular disk D M. If C is a tame, simple closed
curve then one can find a D which is also tame and possesses only "normal"
singularities (see [7], [8]), i.e. double curves in which two sheets of D pierce
each other, triple points in which three sheets pierce each other, and branch
points from each of which one or more double arcs originate; the triple points,
the branch points, and the interiors of the double curves are disioint from the
boundary "D of D, but the double curves may have end points in "D.
As Bing [2] has proved, M is a 3-sphere if (and only if) every tame, simple

closed curve C M lies in a (compact) 3-cell in M3. The statement that
C lies in a 3-cell D M is equivalent to the statement that C bounds a
"knot projection cone" D in Ma, i.e. a (tame) singular disk whose singularities
are one branch point P and double arcs originating from P, being pairwise
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disjoint otherwise, and terminating in "D2. (A small neighborhood of a knot
projection cone in M is always a 3-cell.) Hence one would prove the Poin-
car6 conjecture if one could prove that every tame, simple closed curve C c M
bounds a knot projection cone in Ma. Theorem 2 of this paper (which may be
considered as a corollary of Theorem 1) is a first step in this direction: it states
that C always bounds a knot projection cone D with additional singularities
that do not touch "D C.
THEORE 2. If C is a tame, simple closed curve in a homotopy 3-sphere M

then there is a (tame) singular dislc D c M with "D C such that D has the
following singularities:

(a) One branch point P of multiplicity g (g may be zero) and g double arcs
QI Qlg (in each of which two sheets of D pierce each other), starting from
P and ending at "D with OQ c D2 such that the Q P’s are pairwise disjoint.

(b) Closed double curves RI, R (h may be zero) which may pierce
themselves and the Q s in triple points of D2, but which are disjoint from "D2.

In the special case h 0, D is a knot projection cone; in the case g 0,
D is a so called Dehn disk (see [8]). In the latter case it follows from Dehn’s
lemma (stated by Dehn [3] and proved by Papakyriakopoulos [8]) that there
exists a (tame) disk D*2 with "D*2 C and h* 0 (and also g* 0). Now
the question arises whether it follows in the general case (g 0) that there
exists a (tame, singular) disk D.2 with "D .2 C and h* 0 (and g* arbi-
trary, not necessarily equal to g). An affirmative answer to this question
would imply the Poincar6 conjecture.

If one applies the methods for proving Dehn’s lemma, as developed by
Papakyriakopoulos [8] and later simplified by Shapiro and Whitehead [12], to
this problem then one has to consider a small neighborhood D c M3 of D2, a
covering of Da, etc. Then all conclusions of the proof of Dehn’s lemma in [12]
apply to our problem as well, except in case (1) wherein the boundary "D of
D (or that of one of the neighborhoods in the coverings) consists of 2-spheres
only: for case (1) it follows easily in dealing with Dehn’s lemma that C bounds
a nonsingular disk; however it seems to be difficult to prove for case (1) in
dealing with our problem, g 0, that C bounds a knot projection cone.
Nevertheless I hope that someone will be able to fill this gap in the proof of
the Poi_ncar6 conjecture.

2. Theorem 3, concerning 2-spheres in M. We obtain another aspect of
the Poincar5 problem if we consider 2-spheres in M instead of closed curves.
If we remove the interior of a 3-cell C from M we get a so called homotopy
3-cell M. It follows from the Hurewicz theorem [5], Part II, that every
2-sphere in M may be homotopically deformed into one point.

Let us consider a 2-sphere F M, "topologically parallel" to the bound-

We denote the interior of (tme) point set X by X, the boundary by "X, and the
closure by X or-X.
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ary of M, i.e. such that F -t- "M, bounds a 3-annulus F c M. If one
could prove that F can be deformed into a 3-cell H M not only by a
homotopy but also by an isotopy whose image is tame at each level then the
Poinear6 eonieeture would follow (since it would follow that M is a 3-cell).
It follows from the work of Smale [13] on regular homotopy that F can be de-
formed onto the boundary of a 3-cell in H in such a way that no branch points
occur at any stage of the deformation. In order to go one step further in this
direction we shall show that F can be deformed into H by especially simple
homotopie deformations that take place in a special order.

First we have to define some special homotopie deformations. Let

F’ M,
with the image a(F’:) M denoted by F, be continuous mp, defining
(tame) 2-sphere with canonical singularities (i.e. normal double curves and
triple points, but without brnch points, see [8]). Let A’z be disk in F’:

whose image a(A’z) is lso (nonsingular) disk A. Let

A* M
be another tame disk with A*2n A ’A "A* such that A + A*2 bounds
a 3-cell K c M. Now we consider a deformation 6 that changes a into a*
such that

and a* A’2 is a homeomorphism onto A*2. We call such a deformation non-
essential if there exis ts an epi-homeomorphism

f’M--M with r(F2) a*(F’)

that is the identity outside a small neighborhood of K3. We call t an ele-
mentary deformation of type 1, 2, or 3, respectively, if the surface defined by,
a has only normal singularities and one of the following conditions holds (see
Fig. 1)"

Type 1. Either ease (a) -(K3 n F2) is a disk B with ’B A*2
(b) -(Ka n F) consists of two disks B2, C such that

or case

and B n C is an are with
B2, .C A*2

(B n C) K.

For convenience we shall use the word "deformation" not only for deformations of
maps but also for deformations of polyhedra X M (i.e. for changes of X into X* such
that there can be found homotopic maps $, (* X’ -- M3 with ((X’) X, *(X’) X*).
This is convenient since a surface with normal singularities, defined by a map

" X .-o M8,

is essentially determined by the image polyhedron (X’-).
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Type 2. -(Ka n F’) is a disk B such that each of the intersections "B n A
and "B n A*2 consists of two disjoint arcs with

(’B2nA2) A2 and (B2A*2) 0A,2.

Type 3. Either case (a) -(Ka a F") is a disk B with "B A2; or case
(b) -(Ka n F2) consists of two disks B2, C such that "B: A2 and each of
the intersections "C a A2, "C n A*2, C B is an arc with

(’C2 n A2) A2, (’C2 n A .2) A*2, (C n B2) C2, B2.
We remark that an elementary deformation of type 1 (a or b) changes the

image sphere F only in a small neighborhood (small with respect to F2) of an
arc (connecting a point in A to a point in B2 or in B n C2, respectively);
a deformation of type 2 changes F in a small neighborhood of a disk (whose
boundary intersects each A and B in one arc). According to this one might
say that a deformation of type i (i 1, 2, 3) is essentially/-dimensional.

THEOREM 3. Let M be a homotopy 3-cell and oo F’ M. an embedding
of a 2-sphere, topologically parallel to "M. Then oo can be deformed step by
step into maps o1, o. o of F’ into M such that the following holds:

(a) (i 1, 2, 3) is obtained from o_1 by a finite sequence of elementary
deformations of type i and non-essential deformations.

(b) The image oa(F’) lies in a 3-cell H M
The two essential points of this theorem (which are not immediate conse-

quences of Smale’s results [13]) are (1) the order in which the deformations
take place and (2) that no deformations are used that move the surface over a
triple point.
We remark without proof: If it were possible to avoid the deformations of

type lb (i.e. to avoid triple points) or to avoid the deformations of type 2 then
this would imply the Poincar4 conjecture; this would hold even if H were not
a 3-cell, but homeomorphic to any compact subset of euclidean 3-space with
connected boundary.

3. Sketch of the proofs. The theorems are proved by considering defor-
mations of singular 2-spheres in a homotopy 3-cell M. We start with an
embedding

--+ _M

of a 3-annulus F’0 into M such that one boundary sphere S’ of F’0 is mapped
onto "M and the other boundary sphere F’0" onto the 2-sphere F ao(F’2).
Now we deform F into a 3-cell H c M- in the simplest way we can find. To
do this we choose a simple cell-decomposition P of the homotopy 3-sphere
M M q- C (C being a 3-cell with C n 21J_ "C "M) into one vertex
E, r elements E, E (i 1, r) of each dimension 1 and 2, and one open
3-cell E containing Ca. Then we choose a neighborhood ja of the 2-skeleton
G of F, and we may assume that our initial 3-annulus 50(Fa) is M 0ja,
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hence F .ja. Now we use the fact that M is simply connected by taking
a collection of r singular disks, bounded by the 1-skeleton G of P (that con-
sists of the r loops E{ with the common vertex E); these disks with the bound-
ary point E in common form a "fan" V with singularities. We can choose
V such that its only singularities are pairwise disjoint double arcs
A} (j 1, s, as depicted in Fig. 2). Now we contract V, changing it
only within small neighborhoods A. of the A. s, onto a nonsingular fan V, a
small neighborhood H of which is a 3-cell; that means we deform the
1-skeleton G into the 3-cell Ha. We carry out corresponding deformations (see
footnote 4) of the 2-skeleton G onto a "singular 2-skeleton" G} and of its
neighborhood ja onto a singular polyhedron J} and we change the map 50
correspondingly into a map fl F’ --+ M with flz IS’= fl0 ]S’. All the de-
formations of G, J’ take place in the A... -+- U.=I A. is a handlebody K.
The corresponding deformations of F) onto F re of type la only.
Now we have to deform the rest of F2 ito H. First we remark that J

may be decomposed into a neighborhood T of the deformed 1-skeleton "V
and into r "prismatic", singular 3-cells P (being prismatic neighborhoods of
middle parts of the deformed E’s), such that T c H. That means, that
part of F lying outside of H lies in the "top" and "bottom" disks of the P’s.
The boundaries of the top and bottom disks of P may be joined by an arc
W c F nU and by an arcW c P the so obtained 1-spheres W +W
bound singular disks W H. We can choose these W’s such that their
only singularities are double arcs and that singular, prismatic neighborhoods
W of them fit properly to F nd to the Pu s. Then we expand the singular
3-annulus, defined by /, over these singular prisms W (denoting the changed
3, by **); the corresponding deformation of F onto a singular 2-sphere F,
may be decomposed into deformations of type 1 ( and b) yielding a singular
2-sphere F (and map al according to Theorem 3) and after them deforma-
tions of type 2 yielding F,. Now F, contains "folds" around the P s con-
sisting of the top and bottom disks and joining disks (containing the We s);
so we can expand the singular 3-nnulus over the P’s (denoting the changed
/, by 3 F’ -- M with/3[S’2 30 S’). The corresponding deformation
of F yields F H (and a) and may be decomposed into deformations of
type 2, yielding F (and a), and after them deformations of type 3 (a and b);
this completes the proof of Theorem 3.
To prove Theorem 2 we observe that the complement M K of the

handlebody K is covered one-to-one by 3. So we deform the given curve C
isotopically into a curve C M K; then we choose u knot projection
cone D’ bounded by the knot 3-(C0) in the 3-annulus F’; we bring about by
small deformations the situation in which /(D’) has only normal singularities.
Then D /3(D’) has the demanded properties. Theorem 1 is proved by
extending 3 to a 3-sphere S F.
We remark: If it were possible to find the map

/ F’ -- M,



164 WOLFGANG HAKEN

(with gS(’F’s S’2) C HS) such that -I(M Hs) is locally one-to-one
then the Poincar conjecture would follow by an easy conclusion. We would
obtain such a map if it were possible to deform the 3-annulus 0(F3) onto
(F’s) by "expansions" only. But in our procedure some of the very first de-
formations in the A’s (and only these) are not expansions, so we get certain
surfaces in F’s such that is not locally one-to-one at (and only at) the points
of these surfaces. ( maps these surfaces homeomorphically into K3. More-
over it is possible to arrange our procedure such that these exceptional surfaces
become disks.)

I. Proof of Theorems and 2
We prove Theorem 1 and 2 first. After this we shall prove Theorem 3 by

consideration of some more details.

4. Preliminaries. Let M be a homotopy 3-sphere. After Moise [6] and
Bing [1] there exists a triangulation of Ms. This means there exists a ho-
motopy 3-sphere, homeomorphic to Ms, that is a (straight-lined, finite)
polyhedron in a euclidean space of sufficiently high dimension n. So we
may assume for convenience and without loss of generality that M itself
is a polyhedron in . All point sets considered in the subsequent part of
this paper are polyhedral in ’ in the sense of [10] (i.e. finite unions of straight-
lined, finite, convex, open cells in ); they are denoted by capital roman
letters, and their dimensions by upper indices. We use the notation ’X, , X
for the boundary, closure, interior of X, respectively, and X Y
X (X n Y) for the difference.
By a decomposition of X we mean always a collection of finitely many pair-

wise disjoint point sets whose union is X. A decomposition A is called a
cell-decomposition, if the elements of A are open cells such that for every two
cells A, B e A either A n "B 0 or A c "B holds. We call a cell-decomposition
A a straight-lined triangulation if its elements are open, straight-lined simplices
in such that the open faces of each element are also elements of A; we call
a cell-decomposition 0 a triangulation in general if for each element A e O
the decomposition O(fi_) of X, consisting of all those elements of 0 that lie
in X, is isomorphic to the decomposition of a simplex (of the same dimension
as A) into its interior and its open faces.
By a (polyhedral) neighborhood of X in Y (as defined in [14]) we mean the

closure of the simplex star of X in a second barycentric subdivision A** of a

(general) triangulation A of Y such that X is the union of elements of A; the
neighborhood is called small with respect to Z V W (see [4, Kap. 1,2])
if Z n Y, V n Y, W n Y are unions of elements of A.
By an arc, disk, or 3-cell we mean, if not stated otherwise, a compact,

nonsingular 1-, 2-, or 3-cell, respectively.
All maps considered in the subsequent part of this paper are simplicial

maps in the sense of [11, p. 114]: a continous map a A’ -- B is called sim-
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plicial if there exist straight-lined triangulations A’ of A’ and A of B such that
maps each element of A’ linearly onto an element of A.
Let C be a 3-cell in M and denote the homotopy 3-cell M Ca by M.

5. A simple cell-decomposition r of Ma. We can find a cell-decomposition
r of M-a with the following properties:

(i) F contains just one 0-dimensional element, say E, and just one
3-dimensionM element, say Ea.

(ii) C Ea.
(iii) F contains r elements, say El, -.-, Elf, of dimension 1 and r ele-

ments, say E, E2r, of dimension 2.
(iv) Each element E lies at least 2 times in the boundary of U=I E

(i.e." if U is a neighborhood of a point of E in Ma, which is small with respect
to

then Ua n [,J=l Fa consists of at least 2 pairwise disjoint open disks).

Proof of the assertion, r may be found as follows:
Step O. We take an arbitrary decomposition r0 of M into open cells.
Step 1. We delete, step by step, such 2-dimensional elements of F0 that

separate two different 3-dimensional elements; this yields finally a decom-
position r with only one 3-dimensional element (see [11]).

Step 2. Now we contract a maximal tree in the 1-skeleton of r into one
point; this yields a decomposition P with property (i).

Step 3. If a 1-dimensional element .El Fe lies iust once in the boundary
of a 2-dimensional element Ee I’ and does not lie in the boundary of any
other 2-dimensional element of F. then we delete both E and E; repeating this
operation as often as possible, we obtain a decomposition ra with properties (i)
and (iv). ]Pa possesses also property (iii) since the Euler characteristic of M
is zero (see [11] ).

Step 4. To obtain P we deform the 2-skeleton of I’a isotopieally such that
the deformed 2-skeleton lies in M Ca.

Remark. In the ease r 0, M is obviously a 3-sphere and we have nothing to
prove. Therefore we may assume for the subsequent sections of this paper that
r 0. We denote the 1-skeleton U i=1 Ei and the 2-skeleton Ui= of r by
G1, G2, respectively.

6. The 1-skeleton G of I’ bounds a singular fan V. We assert" There exists
map

with the image f(V’) M, denoted by V, and with the following properties
(see Fig. 2)"

(i) V’ consists of r disks V’I ’,---, V, possessing one common boundary
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point E’, and otherwise being pairwise disioint; V’2 is disioint from M3, F’2.
(ii) "V2= G1.
(iii) The only singularities of V are pairwise disjoint, normal, double

arcs A, ..., A8 (s may be zero) such that each of the two connected components
A. A of (A) possesses iust one boundary point in V’ E’ and otherwise
lies in V’ (for allj 1, s).

(iv) The arcs A. (j 1, s) intersect G G at most in isolated piercing
points, V intersects G G at most in piercing curves whose intersection and
self-intersection points are the piercing points A n (G G).

(v) -(-{V n [G G1]I is disjoint from "V’ E’, i.e. a connected com-
ponent of

V1(Y i-i [G G1])
is either a 1-sphere or an open arc whose boundary lies in

ll #1"E’ + U._-_[(’A. + "A n V’]
(see Fig. 3).

Proof of the assertion. Step O. Since M is simply connected there exists
a map 0 V’: - M with properties (i) and (ii).

Step 1. From 0 we can obtain by small deformations (by a similar procedure
as described in [7]) a mup V’2 - M, also with properties (i), (ii), such that
the only singularities of V (V’:) are normal double curves, triple points,
and branch points of multiplicity 1 (see [8]), and such that the triple points,
the branch points, and the interiors of the double curves lie in V, and that
E is no double point.

Step 2. Now we consider the set D of 11 double points (not including the
triple points) of V, and we remove, step by step, all those connected com-
ponents DI, D of D that are disjoint from V. To do this we can find
an arc C V that joins a point of "V (E - "D) to a point of a component
Dk (provided that d # 0) such that Ck n/)x, C n Vx fl; then we remove
D (without introducing a new component of that kind) by a deformation of
z (see Fig. 4) that changes V only in a neighborhood of C, nd so on. In
this way we obtain finally after d deformations a map zz V’ -- M.Step 3. Now we can remove the triple points of Vz xz(V’) by deforma-
tions of zz that change Vz only in neighborhoods of double arcs of Vx that
join the triple points to "V E. Further we can remove the branch points
by cuts along those double arcs of Vz that join the branch points to "V E.
This yields a map

,x V’2 -- M,with (V’:) denoted by VIIIVx, such that the set D of double points of
consists of pairwise disjoint arcs D-m, ..., D.

DsayStep 4. If one of the components of the inverse image of D
is disjoint from "V’, then we choose an arc C V’, joining a point of D’k to
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point of
-1V’- [E’ + z,(Dn)],

0wt --1 0gt D/1with -k n ’zzz(Dzzz), -k n "V’2 0, and we remove zzz by a deformation
Vzzr only in a neighborhood of Fzz(Cl)of Fzz (similar to Step 2) that changes

and so on. This yields finally a map

with the properties (i), (ii), and (iii).
Step 5. From ft, we obtain by small deformations a map

r" V’ M,
with v(V’) denoted by Vv, having the properties (i), (iv).

Step 6. From v we obtain, by deformations that change Vv only in a small
neighborhood of "Vv , a map " V’ -- M* with the required properties.

7. Neighborhoods A of the double arcs A of V. Let A, A] be
pairwise disjoint neighborhoods of A, A respectively, in M which are
small with respect to G2[ V (see Fig. ha).
A n G consists of two disjoint arcs;we denote them by K, L. The closures

of the connected components of (A n V2) A are two disks; we denote them
by V., V such that

VL.,
We choose a neighborhood A of A. in V., which is small with respect to ,
and we denote the nonsingular fan-(V O=A) by V.
We denote those connected components of A n G that contain g, L,

respectively, by K, L. The closures of the connected components of g g
and L L are disks I, ..., Kt and Lx, ..., L, respectively. Those
connected components of A n G that are different from K, L are disks

(re may be zero). We arrange the notation such that the disksNl, N.K, ..., Kt lie around K in" the order of the enumeration and such that
V lies in this order between Kt and Ks.

8. A small neighborhood Ja of the 2-skeleton G and its complementary
3-annulus Fg. Let T be a neighborhood of in M, which is small with
respect to

1 V2IAI [A]IAI A.
Let Ja be a neighborhood of G in M, which is small with respect to

TIV[AI] A. IAI [A,.
Then M, ds is a 3-annulus F0
We denote T n d by Ts, and the two connected components of T n A

(j 1, .-., s) by Ts, Ts (see Fig. 5b) such that K m T. and L m Ti.
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Further we denote the connected components ofJ n A by K-, L.,
where

K c K, L c L., Nm c Nm (m 1,..-,vi)

and the connected components of (K TK1) and (L T) byK, ..., Kt
and L, L, respectively, where

Kk n Kk 0 (/c 1, --., tl) and LI ,’1 LI ]0 (1 1, --., ui).

Those t1 1 connected components of (Ai K.) that are disjoint from VI
are 3-cells F:il, F:it-i in F (see Fig. 5b).
The connected components of-(j3 T,) are r 3-cells; we denote them by

P, P3r where E n P 9 (i 1, r), and we denote the disks E2ap
by P. Then P can be represented as cartesian product P >< 11, where 11 is
the interval --1 -< x zr 1, such that

(i) P is the central disk, i.e. p >< 0 p for all p P
(ii) the top and bottom disks are the connected components of P1 "JS,

i.e. (P >< 1) -t- (P >< -1) "P "JS;
(iii) the polyhedra A, V2, A intersect P "prismatically", i.e."

A nP (A P) X 11, V n P (V: P) X 11, AnP3 (AP)2 X I1.
Let F be a 3-annulus, disjoint from M3, V’2, F’2, and let

0" F’0 --+ M
be a homeomorphism with the image 0(F’0) F). We denote the boundary
2-spheres )-1(.j3) and -I(’M) of F’o by F and S’, respectively. (We may
bring about by isotopic deformations the situation in which 0(F’0) ao(F’)
with a0 the embedding given in Theorem 3.)

9. Deformations in the A1 s that take onto the boundary of the nonsin-
ltj--gular fan V,. We denote the 3-cell K A- ,= FL (see Fig. 5b) by Q and

choose a neighborhood QI of-(’A "Q)in-(A Q), which is small
with respect to G=IV=iASI TlJ, such that (with respect to the product
representation introduced in Sec. 8)

i(Q.inP) (Q.lnP) >< (i 1, --.,r).

Then we denote the a-cell-[A (Q -[- QI)] by O and the disks "0 n Q.
0i n "Q,i by 0i and 0i, respectively.

Now we cn find n epi-homeomorphism tij Q} -- Q} + O} with the following
properties (see Fig. 5)

(i) tii (Q} 0}) identity; ii(0) 0}i.
(ii) 6i(K}) (K}- "Ai) + (’Ai-
(iii) tii(K) intersects L} in just one point and intersects each disk 0,

Vi L L N} N. in just one nrc (for ull k 1, t);3u

6i(Ki) is disjoint from VI.
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(iv) The neighborhood tij( TK’) of ti(K) in A is small with respect to
T V21LI IL NI N,j and intersects O in just two disjoint
disks.

(v) The intersections of ti.(Kk) (K) ( 1, t), and (TK)
with L (1 1, -.-, u) ndN (m 1, ..., v) (see also Fig. 6) can be
written as cartesian products, using the product representation of the P’s
introduced in Sec. 8; the sme holds for the polyhedra

(L n (K) ), (L n (K) ), -(N n (K) ),
--1(N n (K)), 7(T n (K)), (Vn (K)).
"J M be the map defined byLet

(a) v ]-(J 0=K) identity,
(b) v lK aiK (for allj 1, ..-, s),

and denote the images v(g), v(G), v(G),v(T), (P) byJ}, G}, G, T, 0},
respectively. Obviously we have G} "V.
Now we denote - ’0 (0i) by 0, and we choose s pairewise disjoint 3-cells

0t0, ..-, 0, (see Fig. 7) that are disjoint from M, Vt2, F’, ,’o such that
t3 t3 t2 t3 II* t3 t*O n Fo O then we denote F0 += by F and we choose a map

with the following properties:

i--1 --1 5--1 --1(I) I-[F’o O= O= o (F)] 0 L-IF’0 O= O: 0 (F)].
(II) 1 -(F) [F] "[0]fl0 (F)] for all j 1, .--, s;= , ..., t).

(III) [0.a is an epi-homeomorphism of O. onto 0.
We remark that the map is locMly one-to-one, except for the "reflection

disks" O2, i.e. if p is a point of F and if U’a is a sufficiently small neighborhood
of p in F’ then V’ is a homeomorisphm if and only if p U=O.2.

10. G and its neighborhood T lie in a 3-cell H*.
hood of V + T in M, which is small with respect to

Let H be a neighbor-

--1that intersects the P’s prismaticMly, i.e.’v (Hn P) (i 1, ..., r) can
be written as cartesian product using the product representation of the P’s
introduced in Sec. 8 (compare Fig. 11a).

11. Arcs W in "J* n’T joining top and bottom disks of the prisms P. T
a handlebody of genus r. The intersection "J n "T is a 2-sphere with 2r holes,
denoted by T2.

We assert" There can be found r pairwise disjoint arcs W,
such that (for all i 1, r)
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(i) 0T: .iWi c "Wi p X (using the product representation of the
P’s introduced in Sec. 8) with pi an arbitrary point in "P Uj=IA we denote
the arc pi X 11 by W

(ii) if S c Ts is a 1-sphere, topologically parallel to W + W, i.e.-
such that there exists an annulus in T with boundary curves S and W + Wi,
then S is homologous to 0 mod 2 in M (W + W]).
We denote the arc v(W) by Wi. There exists just one connected component

of /;1 Wi)--we denote it by W--such that (W’i1) W ;and W’ c "F;.
the 1-spheres "P1, "’’, "Pr formProof of the assertion. 1 rst we remark that

a l-dimensional homology basis mod 2 of T (if we identify the chains rood 2 with
the corresponding polyhedra). If "P, "Pr were homologously dependent
mod 2 it would follow that there exists a surface in T.r with boundary some of the
"P’s; this surface could be completed by the corresponding disks P to a closed
surface, non-separating in M, but this is impossible since M is a homotopy
3-cell.
We choose an arbitrary system of pairwise disjoint arcs

WI, ..., wrl C 7’2

fulfilling condition (i). Now W ff Wei (, 1, r) s homologous mod 2
in Ts to a linear combination =ci "Pk wath coefficients c 0 or 1.
c 0 then we take W W1. If c 0 then to obtain W we take a small
neighborhood N of "t) I in T and replace the arc Wn N by another arc
in N with the snmc boundary points such that W + W is homologous rood 2

*1 T 1Sto W + Wz + "1) in s. Now the W fulfill condition (ii) also. For
every i 1, ..-, r there exists a surface in T whose boundary consists of
S and some of the "t),. except "P and whose interior lies in T this surface
can be completed by the corresponding P’s to a surface B
that is bounded by S only.

12. Singular disks W}i in H corresponding to the arcs W. Let
o,’ F,2,W’x, W’ be r pairwise disjoint disks that are disjoint from Ma, .,

such that
Wti t2 ,1 r)n "F’r "W n "F’r W (for all i 1,

Owtl tl t2We denote "W by Wei, and O=l W by W’z.

Now we assert: There exists a map 0 W’ -- H, with the image 0(W’) H
denoted by W, and with the following properties-

(i) O lW 1 [Wti and We) Wi (for alli 1, r).
(ii) The only singularities of W} arc pairwise disjoint, normal, double ares

B, B (b may be zero) such that each of the two connected components
tl lttl 0--1 OwtlB, -. of (B) possesses just one boundary point in [J= nd otherwise

lies in W’ (for all f 1, b). W intersects the P s prismatically.
(iii) There exists a neighborhood U’ of "W’ in W’z such that O(U’) Tus
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Proof of the assertion. Step O. Since Wi + Wi H3 (for all i 1, r)
there exists a map 00 W’2- H with property (i).

Step 1. As in the proof of Sec. 6, steps 1 to 5, we can derive from 00 a map
0x:W’2 -- H with properties (i), (ii).

Step 2. We choose pairwise disjoint neighborhoods N, --., N3r of the
1-spheres W + W in H, which are small with respect to T (w’).
The intersection "N n 0x(W’) consists of a 1-sphere N, topologically parallel
to Wi + Wi, and of an even number n of meridian circles of N each of which
pierces N in just one point. Now we choose an oriented 1-sphere X in
"N n Tj, topologically parallel to W + W, and an oriented meridian
circle Y ofN that intersectsX in just one point; we denote the homology classes
of X and Y in "N by and i, respectively. Then the homology class
of the properly oriented 1-sphere N is m -- w i.
Now we need the fact that the coefficients w are even numbers. To prove

this we show that bothN andX are homologous 0 rood 2 in M, (W -- W)"(1) N bounds a 2-dimensionM polyhedron D Oz(W) that intersects
W + Wi in the even number n of piercing points. From D we remove n
disks, being the intersections of D with a small neighborhood U ofW --in N, and replace them by 1/2-ni annuli in "U such that we obtain a 2-dimensional
polyhedron bounded by N and disjoint from W + W.

(2) (v IT --1z) (X) is a 1-sphere S T and there exists an ammlus B*
with boundary curves S and W -t- W and with OB,. o,z. On the other
hand S bounds a surface B Jin (W + We) as constructed in the proof of
See. 11 which can be chosen disjoint from B* We can bring about by small
deformations the situation in which n(B + B*) has normal double curves
but no branch points (since n is locally one-to-one). Therefore (and since
n lBT is one-to-one) n(B) intersects the boundary curve W -t- Wi of
n(B + B) in an even number of piercing points. From n(B) we obtain, as
in (1), a 2-polyhedron disjoint from W} -t- W with boundary X.

If w 0 (for some i 1, r) then we choose a point in 0W, which is
no double point of OI(W’), and a neighborhood R of this point in N which is
small with respect to t%(W’2) IW. We denote the disk R n 0,(W’) by
Wi. In R we choose a disk R(see Fig. 8) such that "R n W is one are
R, such that R n W is an open are one of whose boundary points lies in

3R R and the other one in W R, and such that [’(W -t- R) n Rd
is an unknotted chord in R. Then we choose an epi-homeomorphism

x" R R
with Xi I’R identity and X(-[’(W -t- R) n Rd) Wi R, and a map

0 W
__
H

with

0,,(0.?(Wa)) X,(W,, -t-
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Now let Nx, be a neighborhood of W + W in N, being small with respect
to Ox,(W’2) IT. Then N, n 0**(W’2) consists of a 1-sphere N,, topolog-
ically parallel to Wi W, and of ni + 2 meridian circles of N**. The

N in Ni N, ishomology class n of the properly oriented

+ (w 2)

with , m the homology classes of X, Y, respectively, in N N,.
The sign in the coefficient w 2 depends on the choice of R (see Fig. 8). So
we can derive by {=w operations of the kind described map

O, W’ H

such that (under nMogous notation) the curve N is homologous to X in
N N,(forMli= 1, ...,r).

If 0 (for 11 i 1, r) then we choose 0, 0, etc.
Sep 3. From 0, we cn obtMn by deformations (that change O,(W’)

only in the N’s) a mp 0 W’ H with the demanded properties (i), (ii),
(iii).

13. Deformation over prismatic neighborhoods of the singular disks W.
The map 0 can be extended to a map W3 -- H3, with (W’) c H3 denoted
by W, such that (see Fig. 9) the following hold"

(i) W’3 may be represented as cartesian product W" X I, where I, means
an interval -1 x, __< 1, with p 0 p for all p e W’2, and W’ is disjoint
from M, F’2, V’2. We denote the components W’ X I, of W’ by W’3.

(ii) W’, n F’, "W n "F W’, I with

(iii) W and the Ps intersect each other prismatically, i.e."
--1

-(W n P) {[O-(W n P)] n W 2} X I.
(using the product representations introduced in See.8 and in (i), respectively).

(iv) If p is a point of W, 0-(p) is either one or wo points. The se B of
M1 double points of W is disjoin from he disks (W X I) (i 1, -.., r)
nd is prismatic, i.e.

(using the same product representation as in (i)).
We denote the 3-annulus F + W’ by F’ nd we define a map

" F M
such that , [F’ [F’ and , ]W’ .
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14. Deformation over the prisms Pi In "Far S’2 there are 2r pairwise
disjoint disks P, P’-- (i 1, -.., r) mapping onto the top and bottom disks

t2of the Pis, i.e. such that xx(P+/-i) (P X 1). Now we choose r pair-
wise disjoint 3-cells P, ..-, P’, disjoint from M, F’, V’, such that

p3 ,3 ,3 ,3 ,2 ,2 ,i
n F "P n "F P+ + P_ + (W X I)

(being a disk, for all i 1, r); and we choose epi-homeomorphisms

" p P
such that n’ (.p,a n "F’) (’P’ n "F’). Finally we denote the
3-annulus F’, + U= Pa by F’ and we define a map

F’ M
3such that F’ and IP n’.

We denote the handlebody H + U K -=A by and (K n (F’) by
K’. We remark that 3(’F’ S’) Ha and that

1-(’- K’)’-(’- K’) -(M K)
is an epi-homeomorphism. Moreover is locally one-to-one, except on the s

surfaces -(’0? n F’); it is locally three-to-one on the ares -(’0;. n F’) and
locally two-to-one otherwise on-(’0;? n F’a).

15. Conclusion. There can be found an epi-homeomorphism X M --+ M
such that the image C X(C1) of the given curve C lies inM K3. Then
we choose a knot projection cone D’2 c F’3 with "D’ -1(C0). We can choose
D’2 such that ]D’ is locally one-to-one. Further we can bring about by
small deformations the situation in which the singularities of the image (D’)
are normal. Then D X-I((D’)) possesses the demanded properties. This
proves Theorem 2.
We choose two disjoint 3-cells C’a, C"a with

C’anF’a S’2 "C’a, C"anF’3 "F’3- S’ "C",
an epi-homeomorphism

’: C’a--+ C
with ’[S’ IS’2, and a map

" C"--+ H
with (’ "F’a S’) "F’a S’) Then F’a -t- C’ -t- C" is a 3-sphere S
and the map , S -- Ma, composed of , ’, ", has the demanded properties.
This proves Theorem 1.

II. Proof of Theorem 3

We bring about (by isotopic deformations) the situation in which the 2-sphere
"Ja o(F’o) (see Sec. 8) is equal to the image F ao(F’) under the given
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embedding a0. We denote the 2-spheres

"F;3- S’2, "F;- S’2, "F’3- S’2

by F’I2, F’, F’I, respectively, and we choose epi-homeomorphisms uo,
u, u- of F’ onto F’o, F2, F, F’2, respectively, such that a0 (o F)’u0
and

--1 ,2 ,2 --1 ,2 ,2

tt[i] (Fill fl Eli-l]) I.t[i-1] (Fill fl Eli_i]) (for [i] I, II, III).

We denote the maps
’2( F)’u, (u F’)"ur, ( F,)

defining singular 2-spheres in 21//;, by a, au, aa, respectively. Now aa ful-
fills already the condition (b) of Theorem 3, and it remains to show that t he
deformation from ao to aa, which may be derived from the proof of Theorem 1, 2,
can be decomposed into a sequence of elementary deformations, according to
condition (a).

16. Decomposing the deformations in the A s. The deformation from a0

to as, changing the 2-sphere F in the A}’s (see Sec. 9), can be decomposed into
a sequence of =tj. (ui -4- 2vi) elementary deformations of type la, intermixed
with nonessential deformations, (see Fig. 5).
We denote the connected components of the (prismatic) intersections

Lv(K)n . (j= 1,..., s;k 1,-..,t- ;l= 1,..-,u.)

under current enumeration by C C, and the connec’ted components of

n(K’) n N. (m 1, vi)

by D, ..., D. Further we denote that connected component of v-I(C)
(g 1, c) that is different from C by ,,(:’a and that connected component
of v-(D) (h l, ..., d) that is different from D by Da. Finally we denote
the intersections of the Ca,, C’,, D, D3’s with the P’s (see Fig. 1 la) by C,, C’2,

2D, D, respectively, and the intersections of the K, L. s with the P s by
respectively.gpi Lpjl

17. Decomposing the deformations over W. We can bring about by small
deformations the situation in which the singular discs W and their prismatic
neighbourhood W (as constructed in Sees. 11, 12, 13) are in a "normal posi-
tion" with respect to the singular 2-sphere F a,(F’2) and to the singular
disks P, etc., i.e. such that the following conditions hold"

(i) F, Ha, the A-s, and the P}’s intersect W} prismatically with respect
to the product representation introduced in See. 13.
We denote (o-l(p) X I,) by P (Fig. 9).
(ii) r/-(W} n P}i) (i 1, ..., r) is disjoint from those connected eom-

Ki n v n Pi) andponents of - H -Lei n v (H n Pi) (j 1, ..., s;
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k 1, t. 1, u.) that contain the arcs Kp.k n "Pi, p. n "P,
respectively, in their boundaries (see Fig. 1 la).

Now we carry out the deformation of ai into axr in three steps"

Step 1. Let B (f 1, b) (see Fig. 10) be that connected component
tlof -’(B3) that contains B. We choose pairwise disjoint neighborhoods

of the B’s in W’, which are smll with respect to -’(F n W}) -’(B) and
which re cartesian products in the product representation introduced in Sec.
13. Now we deform F over the 3-ceils (B) which cn be done by a
sequence of elementary deformations of type la. We denote the map so ob-
tained from ar by a, and -(Wt2 Uf=lb B,) by W. Now we have to de-
form F, ax,(F’) over the remaining nonsingular 3-cells (W I,).

Step 2. In W we choose pairwise disjoint ares XI, X (see Fig. 10)
with 0WeX that join points of

w; U::l
to points of

such that
(a) every double point of 0-1(F, n W) o W2 is end point of one arc Xm,
(b) every connected component of O-I(F, o W) a W2 contains t least

one end point of an arc X,
(c) theX s intersect 0 (F, in isolated piercing points that

are no double points of O-I(F, W) W,
(d) the points O(’X, n "W2) are no double points of F,.

Now we choose pairwise disjoint neighborhoods Xm of the X’s in W2, which
are small with respect to O-I(F, W). Then we deform F, over the
3-cells (X X Ik) which can be done by a sequence of elementary deforma-
tions of type 1 and lb. According to the notation used in Theorem 3 we
denote the map so obtained from a, by al and al(F’) by F. Further we
denote -(W ,.=lXm) by W**.

Step 3. Finally we deform F over the remaining 3-cells (W**’2 i1,).
This can be done by a sequence of elementary deformations of type 2 (and
may be nonessential deformations) since the curves v-l(F n W}) n W, are
nonsingular, pairwise disjoint, open ares with boundary points in

t2"W$, U=IWpi

By this we obtain from al the map au.

18. Decomposing the deformations over the P s. We carry out the
deformation of au into a in four steps (see Fig. 11).

Step 1. Let Q be a neighborhood of a point "P in "P 0pl which is small
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y OQ.with respect to -l(Fx n P#i) and let "P Further we choose a
neighborhood Y of Y in P, which is small with respect to

--1 7--1 ]s,t

and intersecting the disks C, C’ D prismatically, i.e. such that_
11 i 11v (v(Y X )) [v-I(v(Y X ))

(using the product representation introduced in Sec. 8). Then we deform
F over the 3-cells v( Y X i1) which can be done by a sequence of elementary
deformations of type 2 (nd may be nonessential deformations). We denote
the map so obtained from a by a,, and a,(F F,, further
(P Y) by P (see Fig. llb) the image v(P) by P,, and the inter-

sections of Ke, Le with the Pi’s by K,, L,, respectively. Further we
denote the set of double points of

,(U P x#i=1

by D, and the connected components of

-’(D )nUr , i=

by C., C’,o, D,h, D’, such that

D;,cD (=,...,;h=,...,d).

Step 2. We choose pairwise disjoin arcs Y, Y (see Fig. llb) in
wihgb c 0p(f 1, -, y) that join points of Y to points in

0p -(Fz, n P,), and we choose pairwise disjoint neighborhoods Y of
the Yz s in P, which are small with respect to
such that, with the notation P, -(P Yf), the following hold"

(i) The arcs Yz intersect the curves -In F,r, n P,) n P,d in iso-
lated piercing points that are no double points (and no boundary points) of
that curves.

(ii) The arcs Yx are disjoint from the disks Co, Co,D (g 1, c;
h 1, d) and from the arcs -( "Ki n 0p)(j= ...,s;lc=l,... t)
and intersect the disksD prismatically, i.e. such that

2 t2n(Yz n D,) [n(Yz n D,) n D,] X

using the product representation introduced in See. 8. The Y s intersect the
, lso prismatically.
(iii) If Z is connected component of-[-l(F, a P,i) a P,] then one

of the following cses holds (see Fig. 12):
case . Z is an arc (that is either disjoint from the disks C,, C,, D,
D’., ori i. t bo..ry o on dik Ci, C, or D).
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case b. Z consists of two arcs, piercing each other in one point, and is dis-
ioint from the disks C, C, Dh, D.
case c. Z consists of two arcs Z, Z lying in the boundary of one disk
D, and of one arc Z that pierces Z and Z each in one point.
case d. Z consists of the boundary of one disk Dh and of an arbitrary
number of pairwise disioint arcs that intersect D each in one arc (and
D each in two points).
Then we deform Fx, over the 3-cells (Ys IX) (i 1, ..., r;

f 1, yi) which can be done by a sequence of elementary deformations of
type 2 (and may be nonessential deformations). According to the notation
used in Theorem 3 we denote the map so obtained from axe, by a and a(F’)
by F. Further we denote the intersections of the disks K,.k with the P,i’s
by K,.k.

Step 3. Now we deform F over the 3-cells.(K,. X Ix) (j 1, s;
/c 1, t) which can be done by a sequence of elementary deformations of
type 3a and 3b and nonessential deformations. We denote the map so ob-
tained from a2 by a2, and a, (F’) by F,.

st.Step 4. The remaining parts v [P. [J,--1 X’ K**] Ix) of the P s
are nonsingular 3-cells, and we can deform F. over them by a sequence of
elementary deformations of type 3a and 3b (and may be nonessential de-
formations). By this we obtain from a. the map a3.

19. Conclusion. The maps al and a, as obtained in Sec. 17, Step 2, and
Sec. 18, Step 2, respectively, and the map a3 possess the demanded properties,
and Theorem 3 is proved.
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