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Introduction

Order convergence in a lattice S may fail to be pretopological; when pretopo-
logical, it may fail to be topological; when topological, S may fail to be
topological lattice under its order topology.
We first state a condition el on the local ideal structure of S which is neces-

sary and sufficient to make order convergence pretopologieal. Under el, the
neighborhood filter at each point x in S is generated by a certain family of
closed intervals. Next we state conditions e2 and e3 each of which, when
combined with el, suffices to make order convergence topological. The order
topology obtained under e2 differs in a significant way from that obtained
under c3. In both eases, however, S is a topological lattice under its order
topology, and, in each ease, the order topology has an open subbase of ideals
and dual ideals reminiscent of Frink’s ideal topology [3] in a lattice.

1. Notation

For a subset A c S, A* will denote the set of ll upper bounds of A, and
A+ the set of lower bounds of A. {x} * and {x} + will be written x* and x+ re-
spectively. The "closed interval" notation, Ix, y] x* n y+ (x _< y) will be
employed.

If A, B are subsets of S, we define

A vB {x vy:xe A, yeB}; A ^B {x^y:xeA, yeB}.

5 and will be the usual notation for filters on S. Let

5+ (UF+:FeS) and

One can show that the families

{FvG:FeS, Ge} and {FaG:FeS, Ge}

are filter bases on S; the filter generated by the first is called 5 v , and by the
second, 5 ^ .
The following relationships are easily verified:

()
(b)
(c)
(d)
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2. Preliminaries

DEFINITION ]. Y order converges to x (also written ff --> x) if and only if
x inf y* sup Y+.
The intersection of all filters which order converge to x is denoted 0(x).

It is clear that Y - x implies Y >_ 0 (x); the converse of this statement is false
in general, as one can easily see by examining order convergence in the lattice
obtained by placing in parallel two replicas of the open interval (0, 1) of the
real line and adding a greatest and a least element.

DEFINITION 2. Order convergence is pretopological if and only if (x) -- x"

For each A c S, let A {x A A e (x) }. The operation thus defined
on subsets of S resembles the interior operator in the topological sense, but, in
general, (A) A.
DEFINITION 3. The order topology on S is generated by taking as a basis

for open sets the family {A A c-z_ S}.

DEFINITION 4. Order convergence is topological on S if and only if it
coincides with convergence under the order topology.

DEFINITION 5. q is a topological lattice with respect to a topology r if
and only if whenever Y and r-converge to x and y, respectively, then y v
and Y ^ r-converge to x v y and x ^ y, respectively.

A discussion of order convergence from the standpoint of nets is found in
[1] and [5]. We use a form of the definition adapted for filters by Ward [6];
our definition of the order topology is taken from the same source. The con-
cept of pretopologieal convergence was introduced by Choquet [2], and de-
veloped further by the author [4].

It is easy to see that if order convergence coincides with convergence under
any topology r, then r is necessarily the order topology. Another topology
(which we shall call X) related to the order convergence is obtained by identi-
fying as open those sets A such that A A. In general, the convergence
described by the topology X is coarser than order convergence, in the sense
that a filter which order converges to x also converges to x with respect to X.
These matters, considered under more general circumstances, are discussed
in [4].

In the two examples that follow, we vindicate some remarks about order
convergence given in the Introduction.

Example 1. Let $1 be the subset of the Euclidian plane defined as follows"

{(1, 0)} u {(x, y) "0 _< x < 1, 0 _< y _< 1} u {(1, 1)}.

(Here _< refers to the usual order relation among real numbers.) The set $1
is thus the closed unit square with the right boundary, minus endpoints, re-
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moved. This set becomes a lattice when the order relation <: is introduced as
follows"

(xl,yl) -< (x2,y2) means x_< x2 and y_< y2.

By examining order convergence at the point (1, 0), one can draw the follow-
ing conclusions" (1) The set

A {(x,y)’1/2_< x_< 1, y 0}

is in ( (1, 0) ), but A (1, 0)} is not in ( (1, 0) ); (2) Convergence with
respect to the order topology is strictly finer than order convergence; (3) Order
convergence is strictly finer than convergence with respect to the topology
(4) Order convergence is pretopological, but not topological.

Example 2. The following sets are constructed in the Euclidian plane"

H {(x,y)"0_< x_< 5,0_< y_< 2};

K= {(x,y)’O<_y<_ 5,0<_x<_2};

L {(4, 4)} u {(5, 5)}.

Let $2 H u K L. S. is a lattice under the order described in Example 1;
furthermore, order convergence on $2 is topological. However, by considering
order convergence at (4, 1) from the lower right, at (1, 4) rom the upper left,
and at (4, 4), we see that S is not a topological lattice in its order topology.

3. The condition c
Let I be an ideal in S such that sup I x; let D be a dual ideal in S such

that inf D x. Then the family

{[y,z]" yeI, zeD}

is a filter base; if is the filter generated thereby, then + I * D, and it
follows that x. On the other hand, for any filter , + is an ideal and *is a dual ideal.

Let L(x) designate the intersection of all ideals I such that sup I x; let
U(x) denote the intersection of all dual ideals D such that inf D x.

LEMMA 1. (1) L(x) (V(x))+; (2) V(x)

Proof. By the remarks preceding the lemma,

L(x) CI{+" - x}.

If y e Il{+ -- x}, then for each filter order converging to x there is a set
F e such that y e F+. But y is a lower bound of the union of such sets, and
hence y e (2 (x))+. On the other hand, if y (2 (x)) +, then y e V+ for some
Ve2(x); but - x implies Ve, and thus ye+. The proof of (2) is
similar.
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THEOREM 1. Order convergence is pretopological on S if and only
x sup L(x) inf U(x) for each x e S. When order convergence is pretopo-
logical, the family

S {[y, z] y e L(x), z e U(x)}

is a filter base for 5 x

Proof. The first assertion is an immediate consequence of Lemma 1. Let
5: be the filter generated by $. Then 5: -- x implies = >_ 5 (x). On the other
hand, if [y, z] e 8, then there is V1 e X)(x) such that y e V+, V2 e (x) such that
z e V*, and it follows that V1 n V2 [y, z]. Thus 5: 2(x).

The condition "x sup L(x) inf U(x) for all x e S" will be referred to
henceforth as c.

THEOREM 2. Let S conform to c.
(1) If U(x v y) U(x) U(y), then 5: ---+ x and --> y implies

(2) If L(x ^ y) L(x) ^ L(y), then 5: -- x and y implies

:a -- XA y.

Proof. It suffices to prove (1). We note that

(5: )* 5:* v * U(x) v U(y) U(x v y).

If z is a lower bound of (5: v )*, then

x vy infU(x vy) implies z_< x vy.

But x is a lower bound of if*, y a lower bound of *, and thus

x vy inf(5: v)*.
Furthermore, since all elements of (5: )* re upper bounds of (5: )+,
x v y is an upper bound of (5: )+. If z is an upper bound of (5: )+,
then z is an upper bound of + v +, und it follows that z >_ x y. Thus

x vy sup (5: )+.
4. The condition c

We now seek conditions on S under which order convergence will be topo-
logical.
c. IfxeL(y) then

nd if x e U(y) then
U(x) n L(y) O,

L(x) n U(y) .
Each of the lattices considered in Examples 1 nd 2 fails to stisfy c.
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The next two lemmas pertain, to a lattice S which has the properties cl and
c2. The notation U(x) n L(y) will be shortened to (x, y}.

LEMA 2. y e U x if and only if x e L y

Proof. IfyeU(x),thenbyc2thereisze@,y},andxez+ c L(y). The
converse is similar.

LEMMA 3. Sets of the form L(x) and U(x) are open in the topology X.

Proof. It must be shown that y U(x) implies U(x) (y). If y e U(x),
choose z e (x, y}. Then z L(y) implies that there is V e (y) such that
V c z* c U(x), whence U(x)e(y) The proof that L(x) is X-open is
similar.

THEOREM 3. Under conditions cl and c, order convergence is topological on
S, and the order topology has an open subbase consisting of ideals and dual ideals

of the form L x and U x respectively.

Proof. Let t(x) be the filter generated by sets of the form (y, z} which
contain x. By Lemrna 3, and Theorem 1, Section 1, [4], 5(x) >_ N(x). If
y L(x) and z U(x) (so that [y, z] is a typical basis element of 2 (x)), we can
choose y’e (y, x} and z’ (x, z}; it follows that

x [y’, z’] c (y, z} c [y, z].

Since [y’, z’] e (x), it follows that (y, z} e 2 (x), and t(x) >_ (x). Thus
t(x) is the neighborhood filter at x for the topology . From the remarks
preceding Example 1, it follows that the order convergence is topological on S.
Since N(x) is the neighborhood filter at x for the order topology, the last
assertion of the theorem is evident.

THEOa 4. Under the conditions el and e, S is a topological lattice in ’its
order topology.

Proof. By Theorem 2, it sufIiees to show that

U(z v y) U(x) v U(y) and L(x ^ y) L(x) ^ L(y).

We verify only the first of these propositions. It is clear that z e U(z) u U(y)
implies z U(x) and z U(y), and by Lemma 2, x L (z) and y L (z). Thus

x v yeL(z) and z eU(x v y).

This reasoning is reversible.
Let T be a finite set. We define the finite product lattice 1-It S to be the

set of all functions mapping T into S, ordered as follows: f _< g means

f(t) _< g(t) for all e T. If S satisfies e, and e, then so does IIr S. In par-
tieular, the properties e and e extend to n-dimensional Euclidian space with
its usual ordering.
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Note. Definitions 1-4 are valid for partially ordered sets as well as for
lattices. If the statement of Lemma 1 is regarded as the definition of L(x)
and U(x), then the proofs of Lemmas 2 and 3 and of Theorems 1 and 3 are
valid without alteration. Thus partially ordered sets which meet the require-
ments el and e have the order topology described in Theorem 3. An interest-
ing non-lattice that meets these conditions is the set of all "open" disks in
the Luehdan plane, ordered by inclusion.

5. The condition c
The results of the lst section cn be essentially duplicated by imposing a

different condition on S.

ca. IfxeL(y) andx _< zthenxeL(z), and ifxeU(y) andx >_ zthen
zU(z).

THEOREM 5. Let S be subject to cl and ca. Then the following statements are
true"

(1) If y e L(x) and z e U(x) then the set [y, z] is open in the topology X.
(2) The order convergence is topological.
(3) S is a topological lattice under its order topology.

Proof. (1) For given xeS, let yeL(x), zeU(x), we[y, z]. If x >_ y
then y L(w), w _< z implies z U(w); thus by Theorem 1, [y, z] (w). It
follows that [y, z] [y, z], and [y, z] is open in the topology X.

(2) From (1) we deduce, as in the proof of Theorem 3, that order con-
vergence nd X-convergence coincide; hence order convergence is topological.

(3) It suffices to show that U(x v y) U(x) v U(y). If

z U(x v y),

thenz >_ x vyimplieszeU(x) andzeU(y). If

z e U(x) v U(y),

thenzeU(x),zeU(y),andx v y_<z. ThuszeU(x v y).
An example of a lattice satisfying Cl and ca is the set of all subsets of any

non-void set Q, ordered by inclusion. If x is a subset of Q, L(x) consists of
those finite subsets of Q which are included in x; U(x) is composed of the
complements of those finite subsets of Q which have no points in common
with x.
A finite product of lattices satisfying c. and c is again a lattice with these

properties.
It is not difficult to show that c and ca can be extended to partially ordered

sets if L(x) and U(x) are defined, for each x, in accordance with the note at
the end of the preceding section. Parts (1) and (2) of Theorem 5 extend to
partially ordered sets that meet these conditions.
A iinal theorem shows that conditions c and ca are, in a sense, independent.



THEOREM 6. If the order convergence is topological on S, then the order
topology is discrete if and only if S satisfies c2 and ca simultaneously.

Proof. If the order topology is discrete then, for each x, L(x) x+ and
U(x) x*, and c2 and c3 follow immediately. Conversely, let y e L (x). By
Lemma 2, x e U(y), and x+ is open by Theorem 5. A similar argument
establishes that x* is open, and hence that {x} is open.

Concluding Remarks. When order convergence is topological, "closed
intervals" are closed in the order topology, and from Theorem 1 we deduce
that the order topology is regular as well as Hausdorff; hence it is metrizable
whenever it is second countable. The set of all open disks in the plane, par-
tially ordered by inclusion, is metrizable in its order topology. For a disk x,
L(x) consists of those open disks which are included in x and not tangent to x;
U (x) consists of the open disks which include x and are not tangent to x. The
order topology is also metrizable in the complete lattice of all subsets of a
countable set S ordered by inclusion. If x is a subset of S, then L(x) is the
collection of finite subsets of x and U(x) is the family of all complements of
finite subsets of S not in x.
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